DERIVED MODULI OF SECTIONS AND PUSH-FORWARDS

DAVID KERN, ETIENNE MANN, CRISTINA MANOLACHE, AND RENATA PICCIOTTO

ABSTRACT. We use the derived moduli of sections RSecqy (3/€) to give derived
enhancements of various moduli spaces, including stable maps and stable quasi-
maps, which are compatible with their usual perfect obstruction theories. As
an application, we prove that G-theoretic stable map and quasi-map invariants
of projective spaces are equal.
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These enhancements encode both the classical and the virtual geometry of many
well-studied moduli spaces, such as moduli of stable maps and quasi-maps (see
Section ; in the second part we use these derived moduli spaces to give a novel
geometric proof of the following theorem.

Theorem 0.0.1. Let g,n,r and d be positive integers and let Rﬂg,n(}}”r7d) and
RQ, »(P",d) denote the derived moduli space of genus g, degree d stable maps,
respectively quasi-maps to a projective space P”.

(1) We have a derived morphism

¢:RM, (P, d) > RQ, (P, d)
and an isomorphism
@O, . .a) = Or3, . (br.a) 1 Deon(RQ(P", d)).
(2) There is an equality of virtual structure sheaves
(1) tO(E)*(’)Vﬁ“w oD = og;n @) 1 Go(Qgn (P, d)).

Consequently, G-theoretic stable map and quasi-map invariants are the

same (See Corollary[5.2.3).

The second part of the theorem generalises the already known cohomological
result (see [CFK10], [MOP11l, Theorem 3] and [Manl2b, Proposition 5.19]):

(2) t0 (@)« [Mgn(P", d)]"" = [Qgn(P", d)]"" in Ax(Qgn(P", d)).

This shows that our statement is a categorification of .

The equality above is part of a family of results on wall-crossing formulae on
moduli spaces of quasi-maps. In [CFK20] Ciocan-Fontanine and Kim provide a wall-
crossing formula for complete intersections in projective spaces and Zhou generalises
this to (certain) GIT quotients [Zho22]. Recently, Zhang and Zhou proved the
analogue statement in G-theory [ZZ20]. These proofs rely on the construction of a
clever master space and localisation on this space.

Our strategy is new, since endowing the moduli spaces with a derived structure
allows us to give local geometric arguments while still carrying the information
about the virtual structures of these spaces. We first construct a contraction mor-
phism ¢ (see Theorem [0.0.1}(1))) at the derived level. Then, it is enough to prove
the isomorphism of the structure sheaves of the derived enhancement locally, which

: : : vir vir
is easier. As the virtual sheaves Oﬂg,n ®r.d) and O@_q,n (Br.a) € shadows (see ()

of the structure sheaves Opyz  (pr q) a0d Opg  (pr gy, Our result implies the G-
theoretic statement. The main part of our local argument consists in constructing
compatible derived atlases on the space of stable maps and on the space of quasi-
maps.

The advantage over the classical situation is that local information can now be
used to obtain global statements: rather than having external information based
on choices of perfect obstruction theories, this data is now encoded in the geometry
of the derived moduli spaces. We hope that having a derived enhancement of the
quasimap moduli space will give a new perspective on wall-crossing and mirror
syminetry.

In the following we introduce the moduli of sections (see Chang-Li [CL12] §2]),
which is the central object of study in this paper. Consider an Artin stack 9t with
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a flat, nodal, projective curve € and a morphism of 9-Artin stacks 7 : 3 — €. For
any test scheme S — 91 the moduli of sections is defined as

Secon (3/€)(S — M) = {f : Cs — Zs|rs o f =idcs},
for mg : Zg == 3 xoq S — Cg := € xg9n S. In order to obtain a representable derived
enhancement of this space, we additionally need to require that the Artin stack 3
is smooth relative to €.

If MM = MP'T is the moduli space of genus g, n-pointed prestable curves and €
is its universal curve, we can take m : 3 — € to be a trivial fibration 3 = € xgy X
where X is a smooth projective variety or DM stack. Then Secy, (€ x X/€) is the
moduli stack of prestable maps, containing as an open the usual moduli space of
stable maps to X (See Example [1.1.3). For nontrivial fibrations, this construction
recovers moduli of quasi-maps and twisted theories such as stable maps with fields
(see examples in §1.2).

In §1} we recall a construction of Lurie [Lurl8, 19.1] which gives a natural derived
structure, denoted by RSecyy;(3/€), on the moduli of sections. Its relative tangent
complex turns out to be compatible with the perfect obstruction theory defined by
[CL12] and vastly generalized by [Web22] (see [1.2). For a precise statement, see
Corollary

The moduli space of curves on projective spaces (or more generally on toric
DM stacks) admits various compactifications, which are all substacks of a common
moduli of sections. As a map to the projective space P” is a line bundle with
sections, the (underived) moduli of quasi-maps to P", denoted by Q. ,(P",d), and
the moduli of stable maps, denoted by M, ,(P",d), are both open substacks of a
moduli of sections over Pic = Pic, ,, ; — the moduli space of line bundles over
pre-stable curves. We thus obtain derived structures on the moduli space of stable
maps and quasi-maps, denoted by RM, ,,(P",d) and RQ, ,,(P", d) respectively. In
[STVT1H] the authors define another derived structure on M., (P",d), which is
induced by a Hom-space over IMP'7. In we prove that the derived structure
in [STV15] and the derived structure described above are the same (see Theorem
2.3.2)).
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Outline of the paper.

In §1] we review the natural derived structure on the moduli of sections and its
properties. We also investigate the case when 3 is a bundle (see Proposition .

In we study in detail the cases of the moduli of stable maps and quasi-
maps viewed inside the derived stacks of sections. We prove that the two derived
structures — the one coming from the moduli of sections and the one from maps —
are equivalent (see Theorem [2.3.2).

In §3[ (see Theorem @ we construct the derived morphisms

(3) @ : RSecy; (£9771/€) — RSecy, (£9711/0),

where Pic denotes the stack parametrising pre-stable curves together with a line
bundle and Bic denotes the stack parametrising pre-stable curves without rational
tailsﬂ together with a line bundle. Over Bic we have a universal curve and a
universal line bundle:

£ — ¢ — Pic.
Similarly, over ‘J\Z}E we have a universal family

£ - & - Pic.
The truncation of morphism recovers the map

¢ Myn(P",d) = Qg (P, d)

defined in [CFK10], [MOP11, Theorem 3] and [Manl2bl Proposition 5.19], which
contracts rational tails.

In 4] we prove that the pushforward by ¢ of the derived structure sheaf of the
moduli space of stable maps is the structure sheaf of the space of quasi-maps (see
Theorem . The main idea is to find compatible derived atlases on the two
spaces. On RM, ,(P",d) each chart consists of a triple (W, F,6), where W is a
smooth stack over Pic, F' is a vector bundle over W and 6 is a section of F' such
that locally RM, ,,(P",d) ~ Z"(0). Here Z"(6) denotes the derived vanishing locus
of . We construct a similar atlas for RQ, ,(P", d).

Historical note on derived algebraic geometry applied to moduli spaces.
Moduli spaces appearing in Gromov—Witten theory and, more broadly, in enumer-
ative geometry, are usually singular and they may have irreducible components of
different dimensions. To extract information about enumerative problems, such as
various types of invariants, one needs to integrate over these moduli spaces. As
such spaces do not carry a fundamental class of pure dimension, various techniques
have been developed to construct an ersatz.

Historically, Li-Tian [LT98] and Behrend-Fantechi [BF97] have proposed solu-
tions to the integration problem by introducing virtual cycles, which allowed coho-
mological Gromov—Witten invariants to be formally mathematically defined. Using
similar techniques, Lee [Lee04] constructed a virtual structure sheaf, which is key
in defining K-theoretical (or in fact G-theoretical) invariants. These constructions
formalize the objects used by Kontsevich in [Kon95]. The definitions of these vir-
tual objects are not intrinsic; rather, they depend on the choice of a replacement
for the cotangent complex of the singular moduli space. The unworkable cotangent

lRational tails are trees of P! that do not have marked point. See Definition for details.
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complex is replaced locally by a 2-term complex of vector bundles: this is the per-
fect obstruction theory. For many moduli spaces, the choice of this replacements
comes from the geometry of the original moduli problem.

In the seminal paper [Kon95], Kontsevich proposed a different approach to solve
this problem via the notion of differential graded manifolds (or schemes), in short,
dg-manifolds. This idea was developed by Kapranov and Ciocan-Fontanine in
[CFKO01] and[CEFKO02].

In [STVTI5], Schiirg-Toén-Vezzosi use derived algebraic geometry to give a more
geometric interpretation of these virtual objects. This idea is one of the numerous
applications of the field derived algebraic geometry developed by Toén—Vezzosi (eg.
[TV05] and [TV0§|, see [Toeldl §3.1] for a nice overview) and by Lurie in [Lurls].
The derived and dg approach are related, but they are not equivalent (see [Toel4]
for the difference).

On the side of differential geometry, Joyce has developed parallel theories of
d-manifolds and d-orbifolds and closely related theories of Kuranishi spaces (see
[Joy14] for a summary of d-manifolds, [Joy19] for Kuranishi spaces). Central to the
study of moduli spaces are the ideas of derived critical loci [Vez20], studied by Vez-
zosi, and the parallel concept of algebraic d-critical loci introduced by Joyce [Joy15],
as well as those of shifted symplectic structures [PTVV13] of Pantev—Toén—Vaquié—
Vezzosi, applied to the study of Donaldson—Thomas invariants by Brav—Bussi—Joyce
[BBJ19]. Nowadays, many works use derived algebraic geometry to study moduli
spaces amongst them we recall [MRI8] [Ker20| [PY20] [BZCG™21| [Khal9] [AP19]
[AKL"22] [Kha21] [MTEJ19], [JS19]. Just as perfect obstruction theories, derived
structures on a scheme (or stacks) are not unique: they depend on a choice. In
many cases there are natural ones coming from the geometry.

Virtual structure sheaves via derived algebraic geometry. In this paper,
we use derived algebraic geometry to study the moduli space of sections. In the
following we sketch the way in which derived algebraic geometry recovers virtual
objects. For a derived stack RX, its truncation ¢o(RX) = X has a closed embedding
or derived enhancement:

j: X — RX.
Informally, RX and X have the same underlying geometric space, but the derived
stack is akin to a nilpotent thickening. If the derived stack RX is quasi-smooth,

that is its cotangent complex is cohomologically supported in (—1, c0], its structural
sheaf Orx has only finite cohomology. We can define a sheaf class on X via

(4) O§ir’DAG = (jx) ' Orx € Go(X),

where j, is the induced map between G-theory groups, which by dévissage is
invertible.

On the other hand, the derived enhancement gives a perfect obstruction theory
for X, as long as RX is quasi-smooth and X is a Deligne-Mumford stack. The
differential of the inclusion j gives a morphism

d] 3j*L]R% — Lx,

which, under our assumptions, is a perfect obstruction theory [STV15, Proposi-
tion 1.2]. Using this perfect obstruction theory, we can follow the recipe of Lee
[Lee04] to construct a virtual sheaf O;r’POT for X. We get an a priori different
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sheaf on X. The equality of OF""°" and OF"PAS in the G-theory of X is a deep
statement, which was proved in [BZCG™21, MR, §5.4 and §5.5] (see also [PY20, §6]).

Historical note on quasi-map wall-crossing. The moduli of quasi-maps for
a toric variety was defined in 2010 by Ciocan-Fontanine and Kim in [CFK10]. These
moduli spaces carry enumerative information closely related to the one of moduli
of stable maps, but with an easier geometry. Previous related spaces appeared in
[MMO7],[IMOPII]. The definition of stable quasi-maps was generalised by many
authors in [Tod11], [CFKM1I4], [CCFKI5]. One of the main uses of quasimaps is
in mirror symmetry (see |[GT14], [Givlbal, [GivI5b], [RZ18], [CIR21], [ZZ20]). A
nice overview of the quasi-map theory can be found in [CFK14a].

Wall-crossing between quasi-map spaces has been extensively studied (see [CFK20],
[CEK14b], [CCFK15l, [TY16], [CIR1T], [CIR21],[Zho22]). Wall-crossing is trivial
for sufficiently Fano varieties and non-trivial in the non-Fano case. This translates
into no-mirror transformation in the first case and a non-trivial mirror transforma-
tion in the second. In the case of Grasmannians it is easy to obtain a statement
using virtual push-forwards, giving a good geometric understanding. For the more
general case, we do not have an analogous proof of the wall-crossing formula in
[CFK14b]. We hope that derived geometry will shed light on this case.

Further directions. We believe that our main theorem is part of a new strategy
to prove equalities between virtual objects. The strategy is:

(1) to construct a morphism at the derived level so that we have a morphism
between virtual structure sheaves, and
(2) to prove locally that this morphism is an isomorphism.

For more general statements, one needs to develop a more general machinery:
we expect situations in which we have a simple virtual push-forward theorem, but
a more complicated relation between derived structure sheaves.

In terms of applications of such a machinery, it is natural to consider stable maps
and quasi-maps to a general toric variety X and to try to derive a relation between
(derived) structure sheaves. This is not straight-forward, as for a general X there
is no morphism

¢:RMy,.(X,d) --» RQ, (X, d).
On the other hand, it is possible to get an easy local picture.
We will treat these problems in future works.
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NOTATION

e Everything is over C.

e For locally free sheaf £ on a space X (a scheme, stack, or derived stack)
the vector bundle of £ is V(&) := SpecxSymp, EV.

e Let 901 be an Artin stack with a flat proper family 7 : € — 9 of relative
dimension 1. For any morphism 4 — 9, we denote my : €y — 4 the
pullback of (7, €). The most classical example would be 9t being the moduli
of prestable curves, denoted by 9, ,, of genus g with n marked points and
¢y,n its universal curve.

e We use R to mean a derived structure on a geometric object (for example
RX), and R (respectively L) aright (resp. left) derived functor, for example
RS (resp Lf*).

e For XY, Z non-derived stacks Hom (Y, Z) are Hom-stacks (relative inter-
nal hom) whereas Homx (Y, Z) are groupoids.

e For XY, Z derived (or non-derived) stacks RHom (Y, Z) are derived Hom-
stacks whereas RHomx (Y, Z) are simplicial sets.

e For X a non-derived stack, F, G sheaves on X, Homo, —mod(F,G) is the
global Hom of sheaves. For X a derived stack and F, G complexes of
sheaves, RHomo , —qgm (F,G) denotes the simplicial set associated by the
Dold-Kan correspondence to the complex Hom® (F, G) defined as Hom'(F, G) =
Hom®(F, G[i]).

e Pic, ,, 4 (or Pic for short) is the moduli space of prestable curves of genus g
with n marked points together with a degree d line bundle, more formally,
Picy a0 = Hoimmw(Cg,n,BGm x My ). When we impose some stability
conditions, we will write Pic® (see Notation .

e M, (P, d) and RM,,,(P",d) are the (derived) moduli of stable maps of
genus g with n marked points to projective space P".

e Q,,(P",d) and RQ, ,(P",d) are the (derived) moduli of quasi-maps of
genus g with n marked points to projective space P.

o We use the notations M, ,,, €, ., Pic, Pic®, RU, RV, W, W, ... for all the ob-
jects related to stable maps (for example prestable curve), that is objects
where the curve could have ratio\nﬁl tails. We put a “check” on the same
kind of objects 53/75,7”,Eg,n,‘ii/c,‘ﬁics,Rﬁ,R\v/,W,(f], ... for all the objects
related to quasi-maps, that is without rational tails.

1. BACKGROUND ON THE DERIVED MODULI OF SECTIONS

In this section, we recall the definition and basic properties of the derived moduli
of sections, also known as Weil restriction, constructed by Lurie in [Lurl8| 19.1]).

1.1. Derived structure of the moduli of sections. Let 9t be a (possibly de-
rived) Artin stack, 7 : € — 9 a flat, proper morphism of relative dimension 1.
Let 3 be a (possibly derived) Artin stack with a smooth morphism p : 3 — €.
We have an oo-functor 7, called the Weil restriction of scalars, right adjoint to
the base-change co-functor 7* (and constructed for example in [Lurl8 Construc-
tion 19.1.2.3]), that will be seen to preserve derived Artin stacks of locally finite
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presentation as stated in [TV22]:

s

—_
dSt/m L dSt/e.

Tk
Definition 1.1.1. [Luri8, §19.1] For a derived Artin stack 3 %> €, we denote
RM{)}((S/Q:) =Ty 3.

Proposition 1.1.2. [Lurl8| §19.1]
(1) The derived moduli of sections RSecyy(3/€) is the homotopical cartesian
product

RSecyp (3/¢) —— M

® [ l
RHomy (€, 3) —+— RHomgy (€, €).
where q is induced by composition by p : 3 — € and i is given by the identity
morphism.

(2) If 3 — M is a locally almost finitely presented (relative) 1-Artin derived
stack with quasi-affine diagonal, then RSecon (3/€) — M is a locally almost
finitely presented 1-Artin derived stack, with quasi-affine diagonal.

(8) If 3, &, M are classical (non derived) stacks, the truncation

Secon (3/€) = to (RSecoy (3/€))

is given by the functor Secyy(3/€) : (Sch/9M)°? — Gpoid taking sections
of 3 over €, that is:

&W(S/Q)(T — DLR) = {5 : CT =T Xom ¢ — ZT = CT X e B‘pT oS8 = idCT}
= HOHICT (CT, ZT)
where pp: Zp — Cr is the projection induced by p.

Example 1.1.3 (Moduli of stable maps). Let ¢ = 9t be the moduli space of pre-
stable genus g, n-pointed curves with its universal family. Let 3 = € x X for a
smooth projective variety X. Then

Secon (€ x X /€) = Homgy (€, MM x X).

For any choice of effective class 3, the moduli space M(X, ) of stable maps to X
is then an open substack of the moduli of sections Secgy (€ x X/€). Similarly,

RSecyp (€ x X/€) = RHomg, (€, M x X).

The usual derived enhancement of the moduli of stable maps [STV15 Section 2],
denoted RM(X, ), is the unique derived structure on M (X, ) which makes the
following diagram homotopy Cartesian

Secon (€ x X /€)—— RSecyy (€ x X/€).
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Remark 1.1.4. The stack RSecq,; (3/€) is in general a derived stack even if (9, €, 3)
is a triple of classical stacks.

We also record here the following functoriality result, which we will use in §2|
If we have stacks 35 — 31 — € — 91, we can take sections of 35 — € by passing
through sections of 3; — € first.

Proposition 1.1.5. Consider

3o ——F—— 3

o AN
lw

m
with 31,32 as in Deﬁmtzon . For i€ {1,2}, we form the moduli of sections
G, = R&W(Si/g) - M

with their universal curves m; : €s, — &; and evaluations ev; : €5, — 3;. We can
also form the moduli of sections over &1 of the morphism q:

Sy = RSecg, (€s, x4 32/Cs,).
Then G5 and ég are deried equivalent as derived stacks over IN.

Proof. To fix ideas and notation, consider the following diagram

32
pri ql

32 x3, Cg, 3 e
P

¢ ¢
ég — G = R@m(‘%l/@ — M +—— G,.

\/

T
The composition pry o v gives an evaluation map €é2 — 35 over €, which in turn

defines a morphism f : S5 — &,. For simplicity, we consider f a morphism over
61, where the map r : &3 — G; is that corresponding to the evaluation evy o gq.
The classical truncation of this morphism is an isomorphism, as proved in [CJTW21]
Lemma A.1.2]. Moreover, the differential of f induces an equivalence of tangent
complexes (we anticipate here the formulae of . We have a distinguished triangle

Te,/s, = Teym = R xev3Ts, e — 7% T, jm = R*To 505 ¢* T3, /¢
which we can use to identify Tg,/s, With R*m xev3Ts,/3,. On the other hand,

o~ ~ k o~ ~ % %
T =R T2,%€V T32><h Cs,/Cs, R T2,% €V pT1T32/31

62/61 3,
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So the result follows by identifying r o f : S5 — &; with the structure morphism
of &5 = RSecg, (€5, x4 32/€s,) — 1, which is simply the observation that the
square

3, —1 3

pry oéTJT 6”11\

C@z e Q:Gl

of the big diagram is commutative. ([l
1.2. The linear case: 3 is a vector bundle. We will now consider the important
special case where 3 is a linear stack. As we will see, this case covers many disparate
constructions: moduli of stable maps to projective spaces (see Section , and
more generally to varieties which are GIT quotients by linear groups, as well as
moduli spaces of quasi-maps (see Section and moduli of stable maps with
fields (Example[1.2.5)). In this case, the derived moduli of sections is an affine stack
over its base.

We start with a review of the classical (non derived) construction. Let 3 =
V(E) = SpecgSym(EY) for € a locally-free sheaf over €. As proved in [CLI2],
sections of V(&) over M1 are an affine scheme, in fact an abelian cone:

Secor (V(E)/€) = Specoy Sym(R ' 14£Y ® wyr).
Indeed, let f: T — 9 and f : Cp — €, by Serre’s duality and flat base change we
have
Secon (V(€)/€)(T — M) = Home, (Cr, f*€)
= HOHI(QT,mOd (1:{171-T>l<.]/c\*gv ® Wrp OT)

= Homo, —mod (R 74 f* (€Y @ wy), Or)
= Homo, —mod (f¥*R'M4EY @ wx, Or)
= Specoy Sym(R' 14 €Y @ wo ) (T — M).
Ezample 1.2.1 (Hodge bundle). For 9t = MY, the moduli of pre-stable curves,
the Hodge bundle $) is the cone of sections
Secoy (V(wy)/€) = SpecyySym (R 7, O¢).
This is a vector bundle of rank g, since R0, Q¢ = Ogy.

Ezample 1.2.2 (Stable maps with fields). Let X = M, (X, 8) with its universal
family
(mx,evy): €x —> X x X.
Let &€ be a locally-free sheaf over X. The moduli space of stable maps with fields
in £ =V(£) - X (see [CL12, [CTW21] [Pic21]) denoted X¥ can be seen as
X = Secy (V(eviEY @we, x)/€x) = Specy Sym(R' mx,evié).
We will now cover the general case where 3 is a derived vector bundle, that is
3 = V(€) = RSpece (Sym(")

for € € Perf>%(Og).
In this specific case, the derived space of section is itself a derived vector bundle.
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Proposition 1.2.3. Let 3 = V(&) for £ as above. Then
RSecy; (V(£)/€) = RSpecgy Sym((Rrx+&)Y).

Proof. Let f : T = RSpecA, — 9 be an affine derived scheme over 97 with
f:Cp=T Xgn ¢ — € the induced map and 7p : Cp — T the induced projection.
From Definition [I.1.1] we have

RSeco (V(€)/€)(T — M) = RHome (Or, V(LF*E)) *kttom (r,00) T
= RHomg, (Cr, V(Lf*€))
= RHomo,,, —dagm(Oc,, LF*E).
The second line follows by [Lur09) 5.5.5.12]. On the other hand,
RSpecySym((Rmx+&) Y ) (T — M) = RHomo,, —cdga(Sym((R7x+E)"Y, Rf:Or)
= RHomo, —dgm ((Lf*Rrx+E)", Or).
By flat base-change,
RHomo, —dgm (Lf*RrxxE) Y, Or) = RHomo, _agm((Rrr« LF*E)Y, Or).
By the sheafified Grothendieck duality statement of [NeelOl Corollary 4.4.2],
RHomo, —dgm (Rrrs L*E) ¥, Or) = RHomo, —agm (Rrrs RHome, (L*E,wey), Or)
— RHomo, _dgm(Rr4 (LF*EY @ wry), Or).
By the global duality statement of [Neel0O, Theorem 4.1.1],
RHomo,, —dgm (R77s (Lf*é’v ®wry ), Or) = RHomo,, _dgm(Lf*Ev QWry, TrO7).
So finally,
RHomo,. —dgm(Lf*E" @ wry, 7 Or) = RHomo,., —dgm(LF*EY @ wry,way)
= RHomo,,, —dagm(Oc,, LF*E).
U

Ezample 1.2.4 (Derived Hodge bundle). The derived version of the Hodge bundle
of Example is

RS = RSecy(V(wn)/©).
In Theorem 5.4.2 [BZCG™21] (see also [PY20] §8.1), we have a deformation from
this derived bundle to

9 xop Adp[—1]

The latter consists of the usual Hodge bundle in degree 0 and a trivial line bundle
in degree 1.

Ezample 1.2.5 (Derived stable maps with fields). Keeping the notation from Ex-
ample we define the derived version of the moduli space of stable maps with
fields. We have from Example a derived enhancement of the moduli of stable
maps to X, RX := Rﬂg’n with a universal family gy, evrx : €gx — RX x X. The
derived enhancement of the moduli of stable maps can be constructed as

RX" = RSecgy (V(evgx€" ®W€Rx/R3€)/¢R3€) = RSpecpySym(R7rz, evpxE[1]),

the second equality coming from Proposition [1.2.3] and Grothendieck duality.
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Remark 1.2.6. The formation of the derived definition of the moduli of sections
commutes with flat base-change, so for a flat morphism 4 — 9 we have

RSecy (V(Eu)/€u) =~ U xon RSecoy (V(£)/€).

1.3. Tangent complex and perfect obstruction theory. Recall that for a de-
rived Hom-stack H := RHom y (Y, Z) we have a universal family

Hxhy = 7

Jm

H

and the relative tangent complex Ty, x is given by the following simple expression
(see [CFK02, Thm 5.4.8] or [STV15] p.13] or the proof of [MR18, Prop.4.3.1] or
[CHS22| Proposition B.10.21]):

(7) TH/X = RWH*LGV}}Tz/X.

Applying this fact to the diagram in Definition [I.1.1] allows us to compute
Trsec,, (3/¢)m- The cotangent complex of a Weil restriction is also computed in
[Lurl8| §19.1.4].

Theorem 1.3.1. [Lurl8 §19.1.4] Let RS := RSecoy(3/€), as per our convention
we have Trs : Cres = RS Xg;n ¢ - RS and evps : Crs — 3.

TR@WQ/@)/W = RWRG*LEV]EGTB/C'
Using the well-established relationship between quasi-smooth derived enhance-
ments and perfect obstruction theories, we obtain the following.
Corollary 1.3.2. (c.f. [STVIH, §2.2]) If 3 — € is a smooth Deligne—Mumford (not
derived) stack,
S = Seco(3/€) = to(RSecyn(3/7))

has a relative perfect obstruction theory in the sense of [BE9T] given by

TG/EDI i E@/gﬁ = Rﬂ'@*eng‘g/@.

2. DERIVED STRUCTURE ON STABLE MAPS AND QUASI-MAPS

There are several ways of constructing derived moduli spaces of maps to a quo-
tient. The rest of the paper is concerned with maps to projective space P". Below
we describe the construction of the stacks of prestable curves with line bundles,
stable maps and quasi-maps to projective spaces as particular cases of the moduli
space of sections.

2.1. Background on the classifying stack BG,,. We first recall the follow-
ing algebro-geometric description of the classifying space of line bundles, which is
representable by a smooth algebraic stack of locally finite type by [LMBO0Q]. The
classifying stack of line bundles, or equivalently G,,-torsors, is the quotient stack
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BG,, = [¢/G,,]. By definition a morphism T' — BG,, is given by Cartesian dia-
gram

P— e

I

T —— BG,,

where the vertical morphisms are G,,-torsors. The universal G,,-torsor over the
classifying stack BG,, is the quotient morphism e — BG,,. The associated univer-
sal line bundle is [A!/G,,] = A! xg,,  — BG,,, so that a line bundle L — T is a
pullback

L —— [AY/Gy]

o

T — BG,,

Finally, as first observed by Lafforgue, and shown in the derived setting in [KR19,
Proposition 3.2.6], [A!/G,,] is the classifying stack of line bundles together with a
global section, since given T' — BG,,, the dashed arrow in the following Cartesian
diagram is equivalent to specifying a section of L:

L —— [AY/G,,]

i />’ J’

T°~—— BG,,

By the same token, [A"/G,,] is the stack classifying a line bundle together with r
global sections.

2.2. Prestable curves with a line bundle. The stack parametrizing prestable
curves with a line bundle can be viewed as an example of a derived moduli of sec-
tions. We require line bundles to be sufficiently ample when restricted to unmarked
components, this slight modification simplifies the arguments of

Let 90t = MM be the moduli space of pre-stable genus g, n-pointed curves with
universal curve €. Consider the moduli space Pic®; = Pic°, ,, ; parametrizing
pairs (C, L) of a pre-stable curve and a line bundle of degree d with the additional
“stability” conditions

(1)
wlgg RL® >0

where wlc(fg is the canonical bundle of the curve twisted by the sum of the
n marked points.

(2)
deg(L)

on all components C; of C.

c, =0

This is an open substack of the usual stack of curves with a degree d line bundle,
denoted by Pic®,;.

Then Pic®; and an open substack of the derived moduli of sections of € x BG,y,,
that is

Pic®,; < RSecyn (€ x BG,,/C).
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The pullback of the universal curve over Pic®; is denoted as usual by mpic, :
Cpics, — Pic®;. The universal section induces an evaluation g : €qies, — BGypy,.
By Theorem the relative tangent of the morphism Bic®; — M is

Tipics ,jm = Raspies 5+ L3 Tpa,,
= Rmﬁicsd*ocmicsd [1].
Pic®; — M is a smooth Artin stack of relative dimension g — 1.

2.3. Stable maps to P" as sections. From example [I.1.3} we can construct
RM, »(P",d) as an open substack of RSecyy (€ xP"/€). Then theorem recovers
the usual formula

T, or.aym = Bpra, ey Tbr
e ;o _ .
where f : Cpzz (g g — P" is the second component of the universal evaluation
VR, (PT,d)"
On the other hand, we may view degree d maps into P" as (an open substack of)
sections of r +1 degree d line bundles over a curve. With notation from example

we can define the universal bundle of Bic®; as the pullback of the universal bundle
[A'/G,,] over the classifying space BG,, = [¢/G,,]:

L4 - [Al/Gm]

J |

Cpie, —2— BG,p,.
The corresponding locally-free sheaf is denoted by £4. In the non-derived setting,
this is indeed well-known that we can think of stable maps to projective space as
an open substack of the moduli of sections of line bundles:

mg,n(]P)Tv d) c Mmicsd(ﬁff’"“/eimicsd).

This description gives rise to a perfect obstruction theory relative to Pic®; which has
been proved to be compatible with the usual one (see for example [CL12, [CFK10]).
In the discussion below, we strengthen previous results by proving a derived state-
ment (our Theorem which easily implies the classical one (Corollary .

Lemma 2.3.1. The derived stack of sections RSecyn (€ x P"/€) is an open substack
of R@micsd(ﬂfrﬂ/%_ﬁcsd), the derived stack of (r + 1)-tuples of sections of the
universal bundle of Pic®,.

Proof. By definition, £"*! = €qie=, X [0/, | [A7F! /Gy ]. Since PT = [A™H1\{0}/G,,,]
is open in the global quotient stack [A"*!/G,,], then at the level of derived moduli
of sections we obtain an open immersion:

(8)  RSeopie, (Cpic, X[o/c,0) P/ Cxpicr,) = RSecyies, (£ /Epics,)-

Finally, can identify the derived stacks of sections R@micsd (Copics, X0/, P/ Eopics,)
and RSecyy (€ x P"/€) by applying Proposition with 371 = € x BG,,, 32 =
¢ x P (]

So far, we have two ways of obtaining a derived enhancement of M, ,(P", d):

e RM, ,(P",d) obtained from the open immersion M, ,(P", d) < Secyy (€ x
P7/€) and the enhancement Secyy (€ x P7/€) — RSecyy (€ x P7/€), or
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o R'"M,,(P",d) obtained from the open immersion My ,,(P", d) © Secy;e (£ /Cypics, )
and the derived enhancement Secqy;.. | (L9 JEqies,) — RSecqics (L8 /Cpies, ).

We will see below that these two enhancements are equivalent, thus we use the
notation RM, ,,(P", d) freely for either of them.

Theorem 2.3.2. The derived enhancement RM, ,(P",d) and R'"M, (P, d) of

Mg n(P7,d) described above are equivalent derived stacks.

Proof. The proof easily follows from Lemma [2.3.1| and the fact that given an open
substack i : X — 2) and a derived enhancement Qj) of 9, there exists a unique (up
to derived equivalence) derived open substack P Qj enhancing .

More explicitly, observe that the open immersion

My (P,d) < @micsd@?rﬂ/@msd)
factors as
My (P, d) < Secqics, (Cqic, X[o/G,n] P/ Cpics,) © &micsd@@r“/@mus)

and by the proof of Lemma the middle space has equivalent derived en-
hancements R&micsd(@mcsd X[e/G] P7/Cpics,) and RSecyy (€ x P"/€). Moreover,
R@%csd (Cpics, X[o/Grn] P"/€qics,) is also equivalent to the enhancement of its
classical truncation coming from

@mtcsd(@mcsd X[0/G )P/ Eopies,) © Eqsicsd(}:@r“/@mcﬁ - Rﬂmicsd@@rﬂ/@%cs)

by Equation . This shows that there is a unique derived enhancement Rﬂg,n (P, d)
of My, (P",d) that is open in both RSecgy (€ x P"/€) and RSecqy;e= (£87+! /Copics).
O

From this discussion, we can write a point in ng,n(ﬂw, d) as (C, L, sq,...,5)
where C' is a genus g, n-marked prestable curve (we suppress the notation for the
marked points), L is a degree d line bundle on C and s, . .., s, are sections. In this
notation, the stability conditions of stable maps translate to the following.

Definition 2.3.3. [Stability conditions of stable maps as sections]

(1) The bundle wlc?g ® L®3 is ample, which is a condition on the pair (C, L)
already present in Pic®,
(2) The sections (sg,...,s,) have no common zeros.

Corollary 2.3.4. There is a forgetful morphism M, ,,(P",d) — Bic®; sending
(C,L,sgy...,8) — (C,L).

The morphism is quasi-smooth with dual perfect obstruction theory

" _ _ °__ Pr+1
TH, . ey micy = Erd, om0y i, = BOTRA, L ora)s £57, b a)

where Eﬂg,n(ﬂmr,d) is the locally-free sheaf on Qﬂg,n(w,d) obtained from the map
into Pic®;.  This perfect obstruction theory is compatible with the usual perfect
obstruction theory of stable maps in the sense of [Manl2a].

Proof. This follows from the discussion above and Corollary [
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2.4. Quasi-maps to P" as sections. We have another way of understanding
maps of curves to P”, by relaxing the concept of map and allowing a linear system
(L,s0,-..,8:) on a curve C' to develop some base points. Consider Pic, = Pic, , 4
the usual stack parametrizing genus g, n-marked pre-stable curves with a degree d
bundle without stability conditions. Let €y, £4 denote the universal curve and
universal bundle respectively.

Definition 2.4.1 (Stable quasi-maps[CEFK10, Definition 3.1.1]).
@g,n (P, d) = mmicd (£§T+1/€‘mcd)

is the open substack defined by imposing following conditions on each geometric
fiber
(1) (non-degeneracy )The linear system (L, sg, ..., ;) has finitely many base
points away from the nodes and the markings of C.
(2) (stability) The line bundle wlgg ® L& > 0 for any € € Qxo.

The derived enhancement Secys; | (L9 Jeqic,) — RSecyic, (L9 /i, gives

a derived enhancement 9, ,(P", d) J, RQ, ,,(P",d). The usual perfect obstruction
for the moduli of quasi-maps (eg. [CFK10]) comes from this derived extension.
Indeed, the computation in Theorem [I.3.1] shows that

Tg, .eraymic = 3" Tag, (v mic = R Opr (1),
where as usual m and f are the universal projection and evaluation respectively
from QﬁR@g A(Brd) We will see in the next section a slightly different construction

of 9., (P, d) that yields an equivalent derived enhancement.

3. STABLE MAPS AND QUASI-MAPS TO P"

In this section, we construct a morphism between the derived enhancement of
the moduli space of stable maps to P" and of quasi maps that is

¢:RM, (P, d) > RQ, (P, d).
We prove that
&0k, . br.0) = Oxg, . (br,a) I Deon(RQyn (P, d)).

3.1. Revised notation. From here, we will adopt a slightly different notation from
that of the preceding sections in the interest of clarity. Let 9 := 9, ,, denote the
moduli space of genus g pre-stable curves with n marked points and let 7 : € — 90
denote its universal curve. Let Bic® = Pic® g.n,a denote the moduli space defined
in Example and let 7 : € — Pic® denote its universal curve. Recall, that Pic®
parametrizes pairs (C, L), with C' a prestable curve in 9 and L is a line bundle of
fixed degree d over C subject to the stability conditions in Then we define €
by the following cartesian diagram

¢ —

L b
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Notice that € — 9 is flat so that the stack fiber product is also the homotopical
fiber product. Let £ over € denote the universal bundle so we have

(9) £ ¢ —"— Pic® .

Definition 3.1.1. Let C be a point in 9. A rational tail T' in C is a maximal tree
of rational components without marked points and such that I' n C\I' is a point.

Let 9 denote the moduli space of pre-stable curves of genus ¢ with n marked
points without rational tails. Let 7 : é — S\)J/T denote the universal curve. In
[CFKI0l p.12], the authors prove that M is an open substack of finite type in 91,
with universal curve isomorphic to the restriction of € to .

Let ‘Ih/c denote the Cartesian product

‘f?i/c — Pic

r

Lo

~

M — M.

A closed point in q\h/c is a pair (5’ , Z) of a marked pre-stable curve with no rational
tails and a line bundle.

Definition 3.1.2. As in the case of Pic® let %S denote the substack of ‘4\31/c with
the additional stability conditions:
(1) for any € € Q~¢, we have
wlgg ® L& >0,

Here w'°® denotes the dualizing sheaf of the curve twisted by the sum of

the n marked points.
(2) on all components C; of C', we have

deg(L)|s > 0.

We have that ‘gi?s is an open substack of @E
We define € as the following fiber product

ér—>

( o I

q?t?sﬁzm.

We have a universal line bundle, denoted by € over €. As in @, we have the
following morphisms.

(10) g ¢ " it M.

3.2. Quasi-maps are defined over ’ﬁi?s. In Section we defined
(11) R@g,nGpr’ d) - Rﬂ‘nic(£®r+l/€mii>'

Given the definitions of this sections, we have a new substack ‘ﬁi?s c Pic. The
stability conditions of quasi-maps imply that the source curve cannot have rational
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tails. So the morphism R@g’n(ﬁ”ﬂd) — Pic factors through Yft/c Moreover, the
stability conditions of RQ, ,,(P",d) imply those of Definition , SO we obtain a
morphism RQ, ,,(P",d) — Pic® < Pic.
By Remark [[.2:6] we have that
RSecq — (L8 /€) = it X fhic RSecqy; (€871 /Eic).

So the open embedding in factors through an open embedding RQ, ,,(P",d)
RSecqr (£8r+1/¢). We state the implications of this below.

Proposition 3.2.1. The moduli space of quasi-maps Qg ,,(P",d) has a forgetful
morphism to the stack Bic® of pre- stable curves with no rational tails with a stable
line bundle (Deﬁnition . Over ‘,)31c it admits an open embedding into the de-
rived stack of sections RSer (‘9”*1/@), This endows Qg (P",d) with a derived
enhancement RQ,, (P, d) whzch is compatible with the derived enhancement from

Section [27)
In particular, this derived enhancement recovers the canonical perfect obstruction
theory of the moduli space of quasi-maps.

3.3. Derived morphism between stable maps and quasi-maps. In this sub-
section, we want to construct the following.

(1) A commutative diagram

)

-]

S B ¢

<

(12)

3

3
3

g

j

which relates @ and .

(2) A morphism (see Proposition [3.3.10| below)
€t RSecq;; (L9771 /€) — RSecqy — (£8r+1/Q)
that restricts to a morphism RM(P",d) — RQ(P", d).

3.3.1. Construction of contraction morphism ¢ : M — M. Recall that in PRO3|,
proof of Thm 7.1] or [Manl4l Prop 2.3]) one can construct a non separated| mor-
phism

c:IM— m

which contracts the rational tails. For S — 9N,

2This morphism is not separated because, the trivial family P! x A1\{0} — A'\{0} can be

completed at {0} by P! or the blowup of the trivial family in any number of points in the special
fibre.
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~

c:IM->M
(Cs,8) — (Cs. 9)

where CV'S is the family C's with rational tails contracted in each fiber. Recall that &

(resp. é) is the universal curve of M (resp. 53/1) Moreover, we have a commutative
diagram which is not Cartesian

k
=

=

(13) n

%
¢ =<

m — M.
Notice that ¢ is a birational morphism.

3.3.2. Construction of contraction of tails morphism c : Pic® — ‘ﬁ;b Recall that
we have @D,

£ ¢ —"— Pic® .
Let 91" be the divisor in 9 where the curve has rational tails. We obtain a

divisor © on € by pulling back 9 to ¢ and taking the irreducible components of
each fiber which correspond to rational tails.

Ezample 3.3.3. Consider a trivial family of smooth curves C x A! — A!  and
let p € C a closed point. We can obtain a family of curves with rational tails
C = Bl (0} (C'xA') — A'. Then the divisor of rational tails on C is the exceptional
divisor E, which is an irreducible component of the pullback of the divisor 0 € A'.

Definition 3.3.4. Let denote © be the divisor in € described above. By considering
the restriction of the universal bundle £ on ® we can split the divisor into

d
9= |9
i=1

such that £|p, has degree 6;. We write §© for )., 6,0.

We first define ¢ : Pic® — ‘J?i?s at the level of points (see [Manl4l §2.2]). Let
(C,L) € Pic®. Let T; be the rational tails of C' and let §; denote the total degree
of L on T;. Notice that ), 6; = deg(L|_,7,). Let C be the closure of C'\ U; Ti. Let
Q; denote the point T; N C'. We define

L= L\é(Z&Qi).

In families we proceed similarly: let S — Bic® with a family of curves Cs — S and
a line bundle L£g. We define Cg := ¢(Cs) contracting rational tails. We put

Ls = L] (69),
and we obtain a morphism
c: Pic® — &]}1?

(Cs,ﬁs) = (55755)'
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To show it factors as the required morphism
c: Pic® — ;f;s
we need to check that the following are true:
(1) If L has non-negative degree on each component of C, then L has non-
negative degree on each component of C.
(2) It wlgg ® L®3 > 0, then wlgg ® L® > 0 for all € € Q.
The first statement is clear. The only case where the first condition does not
immediately imply the second is that of a genus 0 component C; with less than two
marked points. The first condition then requires that the degree of L|¢, is at least
1. Note that any component of C has at least one marked point, so the degree of
wlci’g is greater or equal than —1. This shows that the degree of Z|§(Ci) is at least 1

and thus the claim.
We thus get the following commutative diagram

Pic® —— ‘fi?s
(14) J l

m —=— M.
?:.3.5. C\'o/nstruction of the morphism k : € — C. As €= € xon Pic® (resp. ¢ =
€ x5 Pic®) and the Cartesian diagram , writing all the diagrams, we get the

morphism k : € — ¢ such that the following diagram is commutative

-l

(15) Pic® —— ‘fi?s
| |

m—= s M.

3.3.6. Construction of the morphism £ — €. We can decompose the morphism k
as £ o k as in the following diagram:

e g

l l r

¢ c*@%
c*x
S C

(16) \

G ¢

<7
¢

—

2

g —%F

Jn

S

Notice that 77, m and ¢*7 are projective, so k is projective. As « is birational and
L(8D) is trivial on rational tails, we have that

Rk, L(6D) = 0.
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Then Rk, £(6D) is a line bundle on ¢*€. (See [PR03, Lemma 7.1 and p.652-654].

Claim 3.3.7. We have that
Rk, L(0D) = (*L.

Proof of the claim[3.3.7]. As & is birational, the two sheaves are isomorphic away
from the tails. On the tails, both are trivial. On a smooth atlas of c*é, they are
isomorphic away from the locus where the tails are attached to the curve which is
of codimension 2. We deduce the statement. (]

Remark 3.3.8. At the level of sheaves we have :
L — L(6D) and by adjunction £* k4 L(6D) — L(6D).
Notice that k*kL(dD) = L(ID) because both are isomorphic outside tails and

trivial on tails. Finally, we get a morphism from

L — L(6D) = ¥k L(0D) = K*I*L,
which leads to a morphism £ — £, £(6D) = ¢*£ that fills the diagram (16).
3.3.9. Construction of the morphism ¢ : RSecy; - (£¥+1/€) — RSecgre (£Ortl/g).
Theorem 3.3.10. We have a morphism

@ : RSecq- (£ /€) — RSecgr: (£971/Q).

Moreover, the restriction of ¢ to RM ,(P",d) factors through

RQy.(P", d) © RSecgr (£871/€),
giving a morphism, denoted by the same name,

¢:RM,,.(P",d) - RQ, ,(P",d).

Proof. Multiplication by the canonical section gives a morphism a : £ — L(§D).
We have the divisor exact sequence

(17) 0— L — L(6D) - L(6D)|so — 0

over Pic®.
The morphism a of sheaves induces a morphism £ — £(6D) of total spaces,
which induces

(18) RSecq;c: (£/€) — RSecy; - (£(6D)/€).

Now recall the locally-free sheaves

L(6D) —— ROk, L(0D) = (*L
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and let k4 £(0D) denote the total space of Rk, L(6D). There is an equivalence
RSecqys; e« (£(0D)/€) = Specy; s Sym((Rm4 L(6D))" )
~ Specgy;s Sym((R(c*7) x4 L(0D))")
(19) = RSecqy;es (14 £(0D) /c* ).

This equivalence is simply a restatement of the fact that the sections of the push-
forward of a sheaf on an open are sections of the original sheaf on the preimage.
Then by claim and , we have

(20)  RSecy;e (£(0D)/€) ~ RSecqs (ks £(6D)/c*€) ~ RSecqy,- ((*£/c*€).
Now we just have to construct a morphism
RSecyyes (£*£/c*€) — RSecgr: (£/€),

Let us consider the cartesian diagram

*C —L

p=c*7vrl

Pic® —— Pic®.

— ¢

By cohomology and base change, we get an isomorphism
Rp*E*Z — C*RTT*E,
that is we deduce that at the level of spaces, we have
RSecqier (£(0D) /€) = ¢*RSecyr: (£/€) = RSecqyq« (*€/c*E).

By composing, we deduce a morphism
(21) RSecqye« (£ ((5@)/@) ~ c*RSec (S/Q) — RSecgrrm (2/(’:)

Composing with ( we get a morphlsm

mew/e) — RSecyy- (£(09) /€)—>RSec s (E/8).

By applying the same argument to £8"*+1, we deduce the desired morphism ¢

(22) RSecy, . (2874 /€) —E RSece (587+1/6)
Pic® c Pic®.

Now we are left to check that the restriction of ¢ to RM, ,(P",d) takes image in
RQ, »(P",d). We can check this on points, let (C, L, so,...,s,) € RM, ,(P",d).
We need to see that stability conditions of stable maps on (C, L, sg, ..., s,-) imply
those of quasi-maps on ¢(C, L, s, ..., S,). The conditions about the ampleness of
the bundles, are already checked at the level of ¢ : Pic® — ﬁs. We only need to
show that if (L, so, ..., $;) has no base points, then (E, 30, ., 8r) has finitely many
base points away from markings and nodes. Let @); be the attaching nodes of the
rational tail T; on C. The only base points that are acquired by applying ¢ are on
the images of the @;s in C’ but these are smooth and unmarked points of C.
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Thus we have a well-defined map given by the restriction of 22 which we will
still denote by the same name:

¢ RM,yn(P",d) — RO, (P, d).

4. LOCAL EMBEDDINGS

The idea of this section is to control the map ¢ locally. In this section, by a slight
abuse of notation we also denote by ¢ the restriction/ base-change of € to various
charts of RM, ,(P", d).

For any point £ € RM, ,,(P", d) we construct

(1) RV — RM, ,(P",d) an étale neighbourhood of ¢,
(2) RV — RQ, ,(P",d) an étale neighbourhood of £ = ¢(¢), where the map
¢: RV — RV is the base change of ¢ : RM, ,(P",d) — RQ, ,(P", d),
(3) A smooth Deligne-Mumford stack W and a smooth scheme W with a mor-
phism ¢ : W — W which is proper and birational,
(4) a vector bundle F on W together with a section 6 such that
e the homotopical zero locus of 6 is ]R‘?7
e the homotopical zero locus of ¢*6 is RV.

Let us sum up the situation in the following diagram, where each square is
Cartesian.

RV — W
N 1.4
T h
Rf/r—> W
(23) l h lo 0
W——F
/ \
Lh % ~
w o q*F

Practically, we have that
RV = Z"(#) and RV = Z"(¢*0).

Notice that the right and bottom squares are homotopically Cartesian by [Sta22]
Lemma 08I6].
We will construct a different collection of open stacks: RU < RSec;« (£871/€),

and RU < R@%(E@T“ /&). We will also construct U, I smooth stacks such
that RU and RU sit inside them as a derived vanishing locus. These are all moduli
of sections with a minor stability condition. Later, by imposing the full stability
conditions for stable maps and quasi-maps respectively, we will obtain schemes RV,

W and RV, W.
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4.1. Constructions. For any point (C,L,%...,3,) € RQ, ,(P",d), let BL(3) =
NT_yZ(3;) be the base locus of (3, ...,5,). By construction, RQ, ,,(P",d) comes
with a universal curve, a universal line bundle over it and a universal (r + 1)-tuple
of sections &. We have that BL(5) — RQ, ,,(P",d) is a finite morphism.

Fix a closed point £ € RM, ,,(P", d) and £= (Cv", L, §') its image in RQ,, ,, (P, d).
We construct here some open substacks of the moduli of sections RSecqs; - (£ort+l/eg)

and Rm% (E®T+1 / é) containing ¢ and E in respectively. Later on, we will impose

stability conditions on these opens.

Construction 4.1.1 (Construction of the DM stacks U, RU and Lf], ]le') The first
step will be to choose an open substack £l = SEES containing the point (Cv", f/) and
a divisor A on the universal curve € that behaves nicely over {I. These choices will
depend on the choice of the quasi—\rriap {v and not just on its source curve.

By the stability conditions on Bic®, the line bundle wx ®£v) is 7-relatively ample.
After replacing wxz ® £ by an appropriate multiple, we may assume we have a very
ample line bundle with vanishing R'#%,. The divisor A is given by a choice of a
section of this very ample line bundle, i.e. a hyperplane on the projective space
of sections of this bundle. We can choose one such hyperplane that intersects the
image of (5” ,E’ ) transversally at non-special points, and we can restrict to the
complement {1 of the closed substack where A intersects the curves in the fiber at
special points or is ramified. We can moreover guarantee by a change of coordinates
that A~ C” consists of points disjoint from BL(¥). Recall that BL(3") comes from
the choice of E . By construction,

(24) R'%,L(A) =0
on all curves in this chosen neighborhood. To sum up, by our choice of hyperplane

we have that

(1) A does not contain 1-dimensional fibers of the restriction of Eg — $l and
(2) A on the chosen curve €’ is disjoint from the base locus of ¥ of the fixed
quasi-map fv .
(3) Ais disjoint from the special points of (', L) (i.e. nodes and marked points)
for all points (Cv', E) el
We fix the notation i ‘I?i? for this substack, which depends on a choice of a
point £ € RQ, ,,(P", d).

~

Let 8 := ¢~1(£l) and A := k*A. Since L has positive degree on rational tails (see
Section for the definition of Pic®), on {, we have

(25) Rl L(A) = 0.
We define
RU := RSec, (£3""!/¢y) W := RSecy (L4 (A)®+1/ey)

Rfj = R@ﬁ(égﬂ_l/éﬂ) (j] = R@ﬁ(vﬂ(2)®r+l/€ﬁ).
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Note that RU and RU are open in RSecyy;es (£P71/€) and RSecr (13@7”“/@) re-

spectively by Remark Moreover, we have £ € RU and c(f) e RU. By (2
and we see that (U and U are smooth Artin stacks and have no derived struc-
ture. Multiplication by the defining equations of the divisor A gives a morphism
of sheaves Ly — Ly (A) that gives a morphism RU — W. Snmlarly, we have
RU — . As in Theorem we have a morphism ¢ : W — w

Construction 4.1.2 (Labelling of base points). Fix ¢ := (C', L', s),...,s.) € RM, ,(P",d)
a closed point and ¢ = ¢(¢) = (C”, L/ L' %,...,5) e RQ,,(P",d) and construct the

neighborhoods described above.

Let ¢ = (e , Wy - - - W) be the image of £ inllU. Let BL(8") be the base locus
of (3),...,5.), and BL(w') be the base locus of (wy, ..., w.).

By construction, we have that the base locus BL(@') = BL(3') U A. This follows
because BL($') and A are disjoint by construction and for each i, w} is obtained
by multiplying § by the local defining equation of A. Then we have a labelling

BL(w'") = {wo— C= —O}mAu{sO— =3}
~~ ~ ~~ d
BL(w') BL(W')j,

By Section E we have that the pull- back of A on the universal curve over [/
is finite and étale over L. The chosen point C has the sectlons 3; generically non-
degenerate —i.e. they do not all vanish on any component of . By passing to the
open substack inside U where the sections are generically non-degenerate, we may
assume (U is itself a Deligne-Mumford stack (see [CFKI0, Lemma 3.1.6]).With this
assumption, W admits an étale chart, which is a scheme. On this chart we consider
a lift of Z , which by abuse of notation we denote Z . Passing to an étale cover of this
chart as in [Sta22l Lemma 04HL], we obtain an étale neighborhood u of 5, ie. a

scheme, such that on this neighborhood we have that BL(w') y and BL(0')z lie

on different connected components. This shows that the base-change of BL(w) to
(' can be written as a union of disconnected components BL(w) 5 and BL(w)j,
which contain BL(uw') 5y and BL(w')y respectively.

This means that for a point (Cv’7 L, o, ... ,Wy) € " the base points BL(w) of
(E, Wy, - - ., W,) are labelled by the connected components of the base locus

BL(Ww) = BL(w) xy u BL(w0)j .
We define the smooth Artin stack
LU/ = l\,U/I XL\I/] w.
Now we define a smooth scheme W < U7 by imposing stability conditions.

Construction 4.1.3 (Construction of schemes W and RV) Let

S<

(C, L,aby, ..., b,) € ' — Secy (L5 (A)/Cy).
This point is in W if
(i) the base locus of W, ..., w, is discrete and disjoint from all the special
points of C,
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(i) for any € € Qxo,
w2 @ L(A)® > 0.
Note that the base locus is labeled in the sense of construction because we
are in (/. Finally, we define

RV = RU xz W.

Remark 4.1.4. We have that W is a smooth scheme as it is étale over an an open
substack of V(RmysLy(A)) and V(RmysLy(A)) is smooth as Rlmy Ly (A) = 0.

\/

By possibly shrinking W we may assume it is an affine scheme.

Construction 4.1.5 (Construction of W and RV). Let W' = w xip W. It is a
smooth Artin stack. We have that I contains the point ¢, the image of £ in L. By
construction, we have a map q : ' — " and an induced map between universal
curves £. If for any point (C, L, w) € I, we denote its image under q by (Cv’, L, w),
then we have that ¢ maps BL(w) to BL(w). Since the base locus in " is labelled,
we have that the base locus in I is labelled:

BL(w) = BL(w)a u BL(w)r.
Let
(C,L,wo,...,w,) €W < Secy(Lu(A)/Cy).
This point is in W if
(i) the base locus BL(w) of wy, ..., w, is discrete and disjoint from the special
points of C,

(ii) the subset BL(w)y, of the base locus is empty and

(iii) the line bundle w9® ® L3 is ample.
Notice that by the definition of /' we have that the base locus is labelled and thus
condition (ii) makes sense. Finally, we define

RV :=RU xiy W.

Remark 4.1.6. Notice that for any (C, L, wy,...,w,) € W, the choice of A and the
stability condition imply that A |¢ does not intersect rational tails for any C.

This was not the case for points in W’ without the stability condition in (i) in
Construction ELT.5

Remark 4.1.7. The idea behind the construction is to define compatible atlasevs
on RM, ,,(P",d) and RQ, ,(P",d), in the sense that we want charts RV and RV
respectively such that

RV —— RMy,,(P", d)

| |

RV —— RQ, ,.(P",d).

In addition, we want RV and RV to be derived vanishing loci of triples (W, F, 0)
and (I\/I//, F , 5) where the first family is a pullback of the second. These are triples
of a smooth scheme, a vector bundle and a section. To achieve this, we start
by covering RM, ,,(P",d) and RQ,,(P",d) by sets open in RSecy;.(£5"+1/€)
and RSecgr (£87+1/¢). These sets will be of the form RU = RSecy (£97+1/€y),



DERIVED MODULI OF SECTIONS AND PUSH-FORWARDS 27

RU = R@Q(E@’"“ /EQ) They are chosen so that it is possible to pick sufficiently
ample divisors on A and A on éﬂ and €y which are away from the rational tails
and base points and give RU and RU smooth embeddings (see Proposition
and Lemma for more details).

We end up with a closed embedding m4 : RU — W = RSec (£(A)®+1/¢y)
and a similar one for RU. Here, m4(RU) is the space of (r + 1)-tuples of sections
of £(A) which are all divisible by the local equation of A. Now we could define
RV = RU RQ, ,(P",d) and RV = RU n RM, ,,(P",d), but more care is needed
at this stage.

Here W and W are necessary to define “non-degeneracy conditions” on U that
will restrict to those of stable maps when restricted to the subvariety RU. This is
the reason we pass to different (étale) neighbourhoods in the construction.

FIGURE 1. The ambient space is I/ which is an open in the moduli
of sections of £(A)""!, RU is an open in the moduli of sections of
£, RV is RUNRM, ,,(P",d). We draw this picture for stable maps

(in W and not (\I/]) but we should imagine the same for quasi-maps
in a compatible way.

4.2. Properties. Recall that I := RSecy (£ (A)®+1/€y) and U := R@Q(Eg(ﬁ)@rﬂ/@g)
are smooth (thus only trivially derived) Artin stacks.

Proposition 4.2.1. There exists a vector bundle E on W and a section o such
that RU is the derived zero locus of o.

Similarly, there exists a vector bundle E onl and a section & such that RU is
the derived zero locus of &.

Proof. Recall from and that we have Rlmys Ly (A) = Rl%u*zu(}l/) =0.
Multiplying by a local equation of A and pushing forward gives a distinguished
triangle of sheaves on 4.
(26) Ry Ly — Ry Ly (A) S Ry Ly (A)] 4 =
Observe that RU = V(R Ly ), and

W = V(Rmyy £4(A)) = V(musLu(A4)).

We also have Rlmry £4((A)|4 = 0, forced by the long exact sequence of and .
Then € := V(myxLy(A)|a) is a non-derived vector bundle on Y. The distinguished
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triangle in can be thus written as a fibered and cofibered diagram of derived
complexes

Ry L4 r*> Wu*EM(A)

| L

0 —— Wu*ﬂu(AﬂA-

Taking the total space V(—) = RSpecySym®(—)" functor gives us a homotopical
fibered product

RU —
h

w
(27) | £
i ¢,

Let E be the pullback of the bundle & by the projection W — 4, and o be the
section induced by s. We claim that the homotopical fibered square above implies
that the square below is also homotopically fibered

o,

(28) RU —— U

|,k

w—25F.
To see this, consider

0

(29) —

0
—

w
b
which is obviously fibered. Stacking (28] and yields (27). Since and

are homotopical fibered products, (28]) must also be a homotopical fibered product.
The second part of the statement is proved in the same way, with F and &
coming from the following triangle over il:

& 4—

(30) R, Ly — T Lo(A) > 7
O

The contraction ¢ : Pic® — ‘fgs restricts to ¢ : 4 — £ and induces maps
¢:RU — RU and q: U — W by the same construction as 3.3.10L All these
maps are in particular birational.

Lemma 4.2.2. We have a homotopically cartesian diagram

RUr% w

(31) Ei h Jz}

~

RU — [0,
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Proof. By Proposition 4.2.1] it suffices to show that E = §*F and o = G*o. Recall
that (E, o) is defined by the following diagram coming from .

E ——— SpecySym(mys Ly (A)|a)
1 2

Similarly (E’, o) is defined by the diagram below coming from .

E —— Specy Sym(7 C (E)| 3)

For ¢ : # — [ the usual contraction, we need to show that c* Ty E (i)|
s Ly (A)| 4 and that o g = s.
To see these, start with the triangle defining E and &.

*Riry, Ly —— g, Lg(A) c*s #i, Log(A) ; — 22—

l; |=

R
Ry (kL) —— s (K £3) ® Ou(4)) — (s (kL) © Ou(A)) 2 =
|=

F |=

Ry (Lu(6D)) —— myas (Lot (09 + A)) ———————— myy(Lu(A))| 4 ——

The first set of vertical isomorphisms are by cohomology and base- change and the
fact that k*A = A. The following are given by k*L = k*(*L = k¥, £(6D) ~
L(6D) (see Remark [3.3.8).

By the requirements of our construction, A does not meet ©. Then for the last
term we have Ty (Ly(A))]|a = mys(Ly(dD + A))|a. We conclude that ¢*(30) is
isomorphic to the following triangle:

(32) Rty (L (0D)) — mys (L (0D + A)) > mrys (Lo (0D + A))[4 =

Now we compare c* : to . Twisting by ® induces a map between
them

Ry, Ly s Lat(A) ————— mLy(A) 4 ——

| ! L

Rty (L (00)) —— s (Lu(0D + A)) =5y (Lu(6D + A))|a —

| | |

R (Ly(6D))]sn —— mouw (Lo (60D + A))[s9 ————— 0.
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The vertical map f above is as follows:

q:w L, et 1.
This shows that c*%g*iﬂ(i)u >~ s Ly(A)|a and that §o ¢ = s, completing the

proof.
O

Recall that we have that W is a DM stack and W and LU are Artin stacks such
that

W Zariski open (,U{ étale .

We also have

W Zariski open L\[’]’ étale (j]
where U is a smooth Artin stacks and the étale map factors through an open
~ ~/
Deligne-Mumford substack. Also, W and U are smooth affine schemes.
From the definitions of W and W we see that ¢ restricts to a map ¢ : W — W.

Lemma 4.2.3. We have a commutative diagram

W —— W
b
W —— W.
Proof. We only need to check that the image of W is contained in . This follows

by comparing the stability conditions in Construction [4.1.5]and Construction [4.1.3]
O

Lemma 4.2.4. We have that RV is an étale neighbourhood of & in RMg ,,(P",d).

Proof. Recall that RV is defined by

RVFF W

™ e

RU ——~ W.

The first observation is that W is étale over /. Indeed, we have defined an étale
neighborhood W' — W around ¢, the image of £ under the morphism m4 induced
by tensoring with O(A). In this, W is cut out in Construction by imposing
open stability conditions. Since the point ¢ was the image of a stable point &, the
stability conditions hold for it. So W — W is an étale neighborhood of (.

Thus, RV — RU is also étale, and £ € RV. On the other hand, we have an open
subset V of RU = RSec (L9 1/€y() given by

V= ngm(ﬂw,d) XR&(IHCS(E@T‘FI/@) (RU XLUU]/) 5
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that is fits in the cartesian diagram

RjV - I/E
Ve—— s RU xyl/ —— W'
r rh
" ét. J{ét.
ét. RU ————— W

I

RM 0 (P7, d) > RSecy; (£27+1/€).

We want to show that RV and V are equivalent. First, we show that their
truncations are isomorphic, that is tg(V) = V' ~ t,(RV) = V. It suffices to show
that the conditions of Construction [{.1.5] are equivalent to the stability conditions
of stable maps on points in the image of (the truncation of) m4. We recall them
here for the reader’s convenience. At any point (C,L,sq,...,s,) of U xuy W'
Definition state it is in V" iff the following hold:

(1) the bundle w2t ® L3 is ample and
(2) the linear system (L, sq, ..., ;) has no base points.

On the other hand, at any point (C, L(A),wy,...,w,) of W', Construction m
states it is in W iff:

(i) the base locus BL(w) of wy, ..., w, is discrete and disjoint from the special
points of C,
(ii) the subset BL(w)y, of the base locus is empty and
(iii) the line bundle w9 ® L3 is ample.

Conditions (1) and (iii) are clearly equivalent. We want to show that for points
in ma(U) condition (ii) implies condition (2)), and that holding for points of U
implies (i) and (ii), that is: their image under m4 lies in W.

Let (C, L, sg,...,s:) be a point in U,

ma(C,L,so,...,8:) = (C,L(A),wo,...,w,)
where w; is the image of s; under H°(C, L) — H°(C, L(A)). Condition (ii) implies

that the BL(w)  A. On the other hand, A and { were chosen so that BL(5) does
not intersect A on the open (?, then also BL(s) does not intersect A in U. Then
we see that BL(s) must be empty.

Conversely, if BL(s) is empty, BL(w) must be contained in A, which implies
both condition (i) and (ii).

We have that V ~ V' = ﬂg,n(ﬂw, d) XE%CS():@T»JA/@) (U wa/).

Now the two maps ¥ — RSecq;.«(£L¥7+1/€) and RV — RSecq; (£ /) are
étale maps having the same truncation, so by [TV05 Corollary 2.2.2.9] V and RV
are equivalent. O

Lemma 4.2.5. We have that RV is a neighbourhood of & in Qyn(Pr.d).
Proof. This is similar to the proof of [£:2.4]



32 DAVID KERN, ETIENNE MANN, CRISTINA MANOLACHE, AND RENATA PICCIOTTO

Lemma 4.2.6. We have a homotopical cartesian diagram
erﬁ w
cl J{q
RV —— W.
Proof. We denote the restriction of (E, o) to W by (F,§). By Proposition we
had RU = RZ"(o). Since RV = RU xyy W, we have
(33) RV = RZ"(6).

By Lemma and Lemm 9| the restriction of (E,&) from U to W is

(¢*F,q*0). From Proposition 4.2.1] we had that RU = RZ"(5). Then by the
definition of RV we have

(34) RV = RZ"(¢*0).

5. MAIN THEOREM

We are now ready to prove our main theorem on the derived push-forward of the
structure sheaf of RM, ,,(P", d). Just recall that contracting rational tails gives a
morphism

¢:RM, (P, d) > RQ, (P, d)
To prove our main theorem (See Theorem [5.2.1)) that is
% Orxa, . er.a) = Orag, ., (#r.a)
it is enough to do 1t locally. That’s why §4] is useful as we have a local picture

for €. In Section [5.1] we w111 prove that g : W — W is proper and birational (See
Proposition 5.1.1 In we use the Zariski Main theorem to prove that

(35) q+Ow = OW

(see proof of Lemma [5.2.6)). Then by cohomology and base change, we prove our
main theorem (see Theorem [5.2.1]).

5.1. Properness of ¢. Recall that W is a smooth DM stack and W is smooth
affine scheme of finite type.

Proposition 5.1.1. The morphism q: W — W is proper and birational.

Proof. Birationality follows from the fact that §: W — W is birational and W, W
are open subsets of U and w respectively.

We use the valuative criterion to prove properness. Let R be a valuation ring
with K its field of fractions.

Consider the following diagram

SpecK L w

R
(36) l - J

SpecR - Ww.
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The morphism @ above is given by a family ¢ — SpecR, together with a line bundle
G and sections (wy,...,w,). We denote by C° the restriction of C to SpecK. The
morphism ¢° gives a family (C°,G°, wg, ..., w?) such that

q(C°,G° wg, ... wy) = (C°,G°, 05, ..., Wy).

Here, by abuse of notation we denoted by ¢ the map induced by ¢ : W — w.

In the following we show that there exists a unique morphism ¢ which extends
©° and makes diagram commute. In concrete terms, this amounts to finding
(C,G,wy,...,w,) a family over SpecR which extends (C°,G°,wg,...,w;) and such
that

Q(Cagaw(), .- 'awT) = (C7gaw03 v 71D?”)'

Existence.

By definition, W parameterlses tuples (C L( ) Wy, . . . Wy ), subject to the non-
degeneracy condition in This shows that W is a subset of Qyn(P",d+a).

Let W be the fibre product

— My, (P, d+ a)

1

W— Qyn(P,d+a).

In the following we construct a morphism W — W such that W — W factors
through W — W. The construction is the one in Theorem [3.3.10] with minor mod-

ifications. Let (€, ®) denote the universal curve and universal bundle on Pic®, ta-
We have

W < Secyes, ,, (671/€)
W c &micsd(S(A)@”l/@) =W < Secqics, (B9 /g)
W < Secgre (BO1/E) = oo (B Eava) ~ Seegm (B8 /Eura)

P

where édJra,Z)dJra are the universal curve and line bundle over &Bicsd o = Pic%,.
The isomorphism Pic®; — Pic®;, , is given by (C,L)—~ (C,L® O@(A))
Claim. Let (C,G, ) € W and let RT be a rational tail of C. We have
RT = RTL~ L RTA.

The claim follows from the fact that w = w outside the exceptional locus of
C — C and the fact that BL(w) = BL(w);, U BL(w) 4. We need to show that the
labelling on W lifts to a labelling of the rational tails of the universal curve of w.
We have that p : ¢ — ¢ contracts rational tails. Since the base loci of wy, and w4
are disjoint we get that the base loci of p~'wy, and p~'w4 are disjoint. Moreover,
since the base loci of wy;, and w4 form disconnected components, the same holds
about their inverse images. This proves the claim.

By possibly shrinking W and changing the basis of P, we have a divisor Z ()
on C, which we denote by A. Let £ denote G @ O(—A).

Let S be a scheme. In the following we contract rational tails of Cs which
intersect A. Let D 4 be the divisor of CNS, which consists of rational tails RT'; and
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let 04 be the degree of ES restricted to the tails. We have that L = Es(éADA)
is trivial along the exceptional locus D 4 and base point free. Let us define

C = Proj y  H(Cs, (Ls)®").

Let  : Cg — Cg and let Lg = ks« L. Since LY is trivial along D4, Lemma 7.1
in [PRO3] implies that Lg is a line bundle. In the same way as we did in the
proof of Theorem [3.3.10} we construct (wy, ..., w,) sections of £. We thus obtain
a surjective morphism W — W. It can be seen that W — W factors through
W—-Ww.
Since W — W is surjective, there exists a (non unique) family of maps
(C°,G°, @, ..., 00) e W
such that
0g(C°, g%, g, ..., w,) =(C°,G°,wg, ..., wy).
Equivalently, we have a family ¢° : SpecK — W which commutes with ©°. Hence
we have the following diagram

SN
7 W —— My (P",d + a)
L N
// q
/ (po
/ SpecK —— W z

S

>~ SpecR —— W —— Qyn(P",d+ a).

Since ﬂg,n(w, d) is proper, we have that ¢ is proper. This implies that W—W
is proper. This shows that ¢° extends (uniquely) to ¢ : SpecR — W, and thus the
morphism ¢ o @ : SpecR — W proves the existence.

we consider the image of (5, Z, W, ... W) in W.

Uniqueness. In notations as before, we have morphisms W—W-—W. We
have that W — W is separated, because by construction it is proper. The map
W —Wis surjective and proper by the discussion above. With this, we are under
the assumptions of [Sta22l Tag 09MQ)]. This shows that W — W is separated.

O

As W is a smooth DM stacks, we denote its coarse moduli space by |[W]. Recall
that W is a smooth scheme and that we have a morphism ¢ : W — w.

Lemma 5.1.2. The morphism |q| : |W| — W is projective.

Proof. In the following we show that |W| is projective. This implies that the
morphism |g| : |[W| — W is projective.

Recall that W is open in a DM stack 7, £(A) defined by the following stability
conditions, for a point (C, L(A), wo, ... w,)
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(1) the bundle wS® ® L3 is ample
(2) The base locus BL(w) = ();_, Z(w;) has dimension 0 and is distinct from
marked points and nodes.

To show projectivity, we can follow the proof of [Cor95]. We sketch here the neces-
sary modifications, trying to adhere to the notation of the original proof as much
as possible.

A family F': S — W consists of a pre-stable curve mg : Cs — S with n marked
points (21,...x,) : S — Cg, a distinguished divisor Ag of degree a, a line bundle
Lg of degree d and sections (wo,...w,) of Lg(Ag). We can define define a line
bundle on S by

Vi = <w1¢05g ® Ls(As)®?, wiﬁ’f ® Ls(A5)%?)
using Deligne’s bilinear pairing, explicitly for Vp = wleo % ® Ls(Ag)®?, we have
Vi = det Rg4Os ® (det Ry V)72 ® det Ry (Ve @ Vir).

We want to show this bundle Vg is ample. Following Cornalba’s approach, which
relies on Seshadri’s criterion, it suffices to show that there exists a constant o =
a(g,n,r,d) > 0 such that for any non-isotrivial family F' over an integral complete
curve S, since we have already proved that |q| : |[W| — W is proper.

(37) (Vi - VE) = am(S)

where m(S) denotes the maximum multiplicity of points in S.

Since the number of nodes of the curve Cg is bounded in terms of (g, n,d,r) for
any family, we may reduce to the case of a family I’ whose generic curve is smooth,
as in the original proof. Now the idea is to add marked points to Cs to obtain a
stable domain curve. Since we do not have a well-defined map to P”, we can use
the sections to add 3(d + a) marked points. Indeed, by taking linear combinations
of the sections (wo,...,w,) we may assume that we have a linearly independent
set (wg, w1, ws) such that for ¢ € {0, 1,2} the following conditions hold (c.f. [Cor95]
Lemma 2] note that our condition (iii) is equivalent to (ii), (iii) and (v)):

(i) Z(w;) does not contain components of the fiber of g

(ii) Z(w;) does not contain x; for j =1,...,n

(iii) Z(w;) consists of d + a distinct, non-special points on all the fibers of 7g
which are singular or lie over singular points of S.

We take

Z(wo) = Tnt1" " Tn+d+a

Z(w1) = Tpydtat1 *Tp42(d+a)

Z(W2) = Tyyo(dta)+1 """ Tn+3(d+a)
where we may assume, up to some finite base change of bounded degree, that
(Tpg1s- - Tpysd+a)) are distinct as sections of mg and distinct from the original
sections (1, ...,xy,). Now, on smooth fibers of g, some of the x;’s may still meet,

indeed they will if the w’s defined a linear system with non-empty base-locus. We
may proceed to resolve them as in [Cor95, Proof of Lemma 2| and obtain a family
of stable curves

F' = {C — 8,21, Thsana |
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with
(38) (Vr - VF) = (wes (D) - wes (D)) = (woy (D) - wey (D).

3(d 3(d :
where D = Z?:l( +) 4 and D' = Z?:l( +a) zi. We may assume F’ is a non-

isotrivial family, otherwise we proceed as in [Cor95, Lemma 3]. Now, (S,C%,D’)

is a non-isotrivial stable family, so k1 = 74 (wer, (D')®?) is ample on S, thus by

Seshadri’s criterion and we have the required « to conclude that holds.
[l

5.2. Derived push-forward. In this subsection, we will prove the main theorem
of this paper that is:

Theorem 5.2.1. For any, g,n and d, we have that
&Oxxa, . #ra) = Oxg, . (or.a) " Deon(RO(P", d)).
Remark 5.2.2. At the level of virtual classes, we have that
Cx [ﬂgm(PTv d)]Vir = [@g,n(Pra d)]Vir-
This was proven in [CEFK10], [MOP11] and [Mani4].
We deduce the following corollary.

Corollary 5.2.3. The G-theoretic Gromov-Witten invariants and the G-theoretic
quasimaps nvariants are equal.

Remark 5.2.4. Let X be a Noetherian derived Artin stack. Recall that by definition
(cf. [Kha22] for this definition for derived stacks)
K(X) := K(Perf(X)) and G(X) := K(D2,,(X)).

If X is smooth, D, (X) and Perf(X) coincide. When X is a scheme, Lee (see
[Lee04]) denotes them respectively K°(X) and K,(X). Our G-theoretic Gromov—
Witten invariants are often called K-theoretic invariants by other authors.

We prove the theorem by using the étale neighborhoods RV and RV constructed
in the previous section. With Lemma in mind, we first want to study the
morphism g : W — W.

Proposition 5.2.5. We have

(39) R’ Ow = Oy in Do (W)

(40) Riq,.Ow = 0 fori> 0.

Proof of Proposition[5.2.5 Recall that W is a smooth DM stack. Denote its coarse

moduli space by W > |[W|. The scheme |W| is normal with rational singularities
(see [Vie77], Proposition 1), since it is locally the quotient of a smooth scheme by a

~

finite group. Since W is a (smooth) scheme, g factors as W —*— |W]| al w,

with « a finite morphism and |g| a projective birational morphism. As |[W] is also
a good moduli space (see [Alp13] or [AOVO0S]), we have

(41) R0, Ow = Oy in D, (IW])
Ria,Ow =0 for i > 0.
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Now |W| admits, by Hironaka’s work [Hir64], a projective resolution of singularities
and since the singularities were rational we have that

p:A—|W|
with
(42) R%p.O4 = Oy in Dy, (W)
Rip,O4 =0 for i > 0.
The composite map
AL w9 W
is a projective birational map between smooth schemes, then by [CR15L Theorem
1.1] we have

(43) R[04 = O in Dy, (W)
Rif,O4 =0 for i > 0.
The relative Leray spectral sequence, defined by
E;j = Ri|q|*(ij*OA)
converges to R/ f,O4. By eq. (42)), the spectral sequence degenerates on the
second page and
R' .04 = R'|q[+(R"p+04) = R'|q|+Opw|
and the result follows from combining this with eq. and eq. . O

Recall from Lemma [4.2.6] we have the homotopically Cartesian diagram

RV —t 5 W

rh
(44) EJ{ lq
RV *;> w.
Lemma 5.2.6. We have Rc,Ory = Oy
Proof. This follows from derived base change, which works by Lemma A.1.3 in
[HLP23] as ¢ is of finite Tor amplitude thanks to Proposition and Oy is
cohomologically bounded below as W is smooth. We thus get:

Re,.Ory = REy L:* Ow

= Li*RqsOw
= Li*Oy by (B9) and
= Oy

(]
Proof of Theorem [5.2-1. The morphism ¢ : RM, ,(P",d) — RQ, ,(P",d). Gives a

morphism of structure sheaves
c: ORﬂg,n(PT,d) - 6*011@@%” (Pr,d)*
To prove that it is an isomorphism, it is enough to prove it étale locally. That’s

exactly what we have done in §4 Hence we are in the situation of diagram ,
the Lemma finishes the proof. [l
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