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Abstract. We use the derived moduli of sections RSecMpZ{Cq to give derived

enhancements of various moduli spaces, including stable maps and stable quasi-

maps, which are compatible with their usual perfect obstruction theories. As
an application, we prove that G-theoretic stable map and quasi-map invariants

of projective spaces are equal.
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Introduction

Statements of the main results. This work suggests a new approach to
virtual push-forward formulae via derived geometry. In the first part we explain how
to obtain quasi-smooth derived enhancement for certain moduli spaces of curves.
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These enhancements encode both the classical and the virtual geometry of many
well-studied moduli spaces, such as moduli of stable maps and quasi-maps (see
Section 2); in the second part we use these derived moduli spaces to give a novel
geometric proof of the following theorem.

Theorem 0.0.1. Let g, n, r and d be positive integers and let RMg,npPr, dq and

RQg,npPr, dq denote the derived moduli space of genus g, degree d stable maps,
respectively quasi-maps to a projective space Pr.

(1) We have a derived morphism

c : RMg,npPr, dq Ñ RQg,npPr, dq

and an isomorphism

c˚ORMg,npPr,dq
» ORQg,npPr,dq

in Db
CohpRQpPr, dqq.

(2) There is an equality of virtual structure sheaves

(1) t0pcq˚Ovir
Mg,npPr,dq

“ Ovir
Qg,npPr,dq

in G0pQg,npPr, dqq.

Consequently, G-theoretic stable map and quasi-map invariants are the
same (See Corollary 5.2.3).

The second part of the theorem generalises the already known cohomological
result (see [CFK10], [MOP11, Theorem 3] and [Man12b, Proposition 5.19]):

(2) t0pcq˚rMg,npPr, dqsvir “ rQg,npPr, dqsvir in A˚pQg,npPr, dqq.

This shows that our statement is a categorification of (2).
The equality above is part of a family of results on wall-crossing formulae on

moduli spaces of quasi-maps. In [CFK20] Ciocan-Fontanine and Kim provide a wall-
crossing formula for complete intersections in projective spaces and Zhou generalises
this to (certain) GIT quotients [Zho22]. Recently, Zhang and Zhou proved the
analogue statement in G-theory [ZZ20]. These proofs rely on the construction of a
clever master space and localisation on this space.

Our strategy is new, since endowing the moduli spaces with a derived structure
allows us to give local geometric arguments while still carrying the information
about the virtual structures of these spaces. We first construct a contraction mor-
phism c (see Theorem 0.0.1.(1)) at the derived level. Then, it is enough to prove
the isomorphism of the structure sheaves of the derived enhancement locally, which
is easier. As the virtual sheaves Ovir

Mg,npPr,dq
and Ovir

Qg,npPr,dq
are shadows (see (4))

of the structure sheaves ORMg,npPr,dq
and ORQg,npPr,dq

, our result implies the G-

theoretic statement. The main part of our local argument consists in constructing
compatible derived atlases on the space of stable maps and on the space of quasi-
maps.

The advantage over the classical situation is that local information can now be
used to obtain global statements: rather than having external information based
on choices of perfect obstruction theories, this data is now encoded in the geometry
of the derived moduli spaces. We hope that having a derived enhancement of the
quasimap moduli space will give a new perspective on wall-crossing and mirror
symmetry.

In the following we introduce the moduli of sections (see Chang–Li [CL12, §2]),
which is the central object of study in this paper. Consider an Artin stack M with
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a flat, nodal, projective curve C and a morphism of M-Artin stacks π : Z Ñ C. For
any test scheme S Ñ M the moduli of sections is defined as

SecMpZ{CqpS Ñ Mq “ tf : CS Ñ ZS |πS ˝ f “ idCS
u ,

for πS : ZS :“ ZˆM S Ñ CS :“ CˆM S. In order to obtain a representable derived
enhancement of this space, we additionally need to require that the Artin stack Z
is smooth relative to C.

If M “ Mpre
g,n is the moduli space of genus g, n-pointed prestable curves and C

is its universal curve, we can take π : Z Ñ C to be a trivial fibration Z :“ C ˆM X
where X is a smooth projective variety or DM stack. Then SecMpC ˆ X{Cq is the
moduli stack of prestable maps, containing as an open the usual moduli space of
stable maps to X (See Example 1.1.3). For nontrivial fibrations, this construction
recovers moduli of quasi-maps and twisted theories such as stable maps with fields
(see examples in §1.2).

In §1, we recall a construction of Lurie [Lur18, 19.1] which gives a natural derived
structure, denoted by RSecMpZ{Cq, on the moduli of sections. Its relative tangent
complex turns out to be compatible with the perfect obstruction theory defined by
[CL12] and vastly generalized by [Web22] (see 1.2). For a precise statement, see
Corollary 1.3.2.

The moduli space of curves on projective spaces (or more generally on toric
DM stacks) admits various compactifications, which are all substacks of a common
moduli of sections. As a map to the projective space Pr is a line bundle with
sections, the (underived) moduli of quasi-maps to Pr, denoted by Qg,npPr, dq, and

the moduli of stable maps, denoted by Mg,npPr, dq, are both open substacks of a
moduli of sections over Pic “ Picg,n,d — the moduli space of line bundles over
pre-stable curves. We thus obtain derived structures on the moduli space of stable
maps and quasi-maps, denoted by RMg,npPr, dq and RQg,npPr, dq respectively. In

[STV15] the authors define another derived structure on Mg,npPr, dq, which is
induced by a Hom-space over Mpre

g,n. In §2, we prove that the derived structure
in [STV15] and the derived structure described above are the same (see Theorem
2.3.2).
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Outline of the paper.
In §1 we review the natural derived structure on the moduli of sections and its

properties. We also investigate the case when Z is a bundle (see Proposition 1.2.3).
In §2 we study in detail the cases of the moduli of stable maps and quasi-

maps viewed inside the derived stacks of sections. We prove that the two derived
structures – the one coming from the moduli of sections and the one from maps –
are equivalent (see Theorem 2.3.2).

In §3 (see Theorem 3.3.10) we construct the derived morphisms

(3) c : RSecPicpL
‘r`1{Cq Ñ RSec

}Pic
pqL‘r`1{qCq,

where Pic denotes the stack parametrising pre-stable curves together with a line

bundle and }Pic denotes the stack parametrising pre-stable curves without rational
tails1 together with a line bundle. Over Pic we have a universal curve and a
universal line bundle:

L Ñ C Ñ Pic.

Similarly, over }Pic we have a universal family

qL Ñ qC Ñ }Pic.

The truncation of morphism (3) recovers the map

c : Mg,npPr, dq Ñ Qg,npPr, dq

defined in [CFK10], [MOP11, Theorem 3] and [Man12b, Proposition 5.19], which
contracts rational tails.

In §4 we prove that the pushforward by c of the derived structure sheaf of the
moduli space of stable maps is the structure sheaf of the space of quasi-maps (see
Theorem 5.2.1). The main idea is to find compatible derived atlases on the two
spaces. On RMg,npPr, dq each chart consists of a triple pW,F, θq, where W is a
smooth stack over Pic, F is a vector bundle over W and θ is a section of F such
that locally RMg,npPr, dq » Zhpθq. Here Zhpθq denotes the derived vanishing locus

of θ. We construct a similar atlas for RQg,npPr, dq.

Historical note on derived algebraic geometry applied to moduli spaces.
Moduli spaces appearing in Gromov–Witten theory and, more broadly, in enumer-
ative geometry, are usually singular and they may have irreducible components of
different dimensions. To extract information about enumerative problems, such as
various types of invariants, one needs to integrate over these moduli spaces. As
such spaces do not carry a fundamental class of pure dimension, various techniques
have been developed to construct an ersatz.

Historically, Li–Tian [LT98] and Behrend–Fantechi [BF97] have proposed solu-
tions to the integration problem by introducing virtual cycles, which allowed coho-
mological Gromov–Witten invariants to be formally mathematically defined. Using
similar techniques, Lee [Lee04] constructed a virtual structure sheaf, which is key
in defining K-theoretical (or in fact G-theoretical) invariants. These constructions
formalize the objects used by Kontsevich in [Kon95]. The definitions of these vir-
tual objects are not intrinsic; rather, they depend on the choice of a replacement
for the cotangent complex of the singular moduli space. The unworkable cotangent

1Rational tails are trees of P1 that do not have marked point. See Definition 3.3.4 for details.
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complex is replaced locally by a 2-term complex of vector bundles: this is the per-
fect obstruction theory. For many moduli spaces, the choice of this replacements
comes from the geometry of the original moduli problem.

In the seminal paper [Kon95], Kontsevich proposed a different approach to solve
this problem via the notion of differential graded manifolds (or schemes), in short,
dg-manifolds. This idea was developed by Kapranov and Ciocan-Fontanine in
[CFK01] and[CFK02].

In [STV15], Schürg-Toën-Vezzosi use derived algebraic geometry to give a more
geometric interpretation of these virtual objects. This idea is one of the numerous
applications of the field derived algebraic geometry developed by Toën–Vezzosi (eg.
[TV05] and [TV08], see [Toe14, §3.1] for a nice overview) and by Lurie in [Lur18].
The derived and dg approach are related, but they are not equivalent (see [Toe14]
for the difference).

On the side of differential geometry, Joyce has developed parallel theories of
d-manifolds and d-orbifolds and closely related theories of Kuranishi spaces (see
[Joy14] for a summary of d-manifolds, [Joy19] for Kuranishi spaces). Central to the
study of moduli spaces are the ideas of derived critical loci [Vez20], studied by Vez-
zosi, and the parallel concept of algebraic d-critical loci introduced by Joyce [Joy15],
as well as those of shifted symplectic structures [PTVV13] of Pantev–Toën–Vaquié–
Vezzosi, applied to the study of Donaldson–Thomas invariants by Brav–Bussi–Joyce
[BBJ19]. Nowadays, many works use derived algebraic geometry to study moduli
spaces amongst them we recall [MR18] [Ker20] [PY20] [BZCG`21] [Kha19] [AP19]
[AKL`22] [Kha21] [MTFJ19], [JS19]. Just as perfect obstruction theories, derived
structures on a scheme (or stacks) are not unique: they depend on a choice. In
many cases there are natural ones coming from the geometry.

Virtual structure sheaves via derived algebraic geometry. In this paper,
we use derived algebraic geometry to study the moduli space of sections. In the
following we sketch the way in which derived algebraic geometry recovers virtual
objects. For a derived stack RX, its truncation t0pRXq “ X has a closed embedding
or derived enhancement :

j : X ãÝÑ RX.
Informally, RX and X have the same underlying geometric space, but the derived
stack is akin to a nilpotent thickening. If the derived stack RX is quasi-smooth,
that is its cotangent complex is cohomologically supported in p´1,8s, its structural
sheaf ORX has only finite cohomology. We can define a sheaf class on X via

(4) Ovir,DAG
X :“ pj˚q´1ORX P G0pXq,

where j˚ is the induced map between G-theory groups, which by dévissage is
invertible.

On the other hand, the derived enhancement gives a perfect obstruction theory
for X, as long as RX is quasi-smooth and X is a Deligne–Mumford stack. The
differential of the inclusion j gives a morphism

dj : j˚LRX Ñ LX,

which, under our assumptions, is a perfect obstruction theory [STV15, Proposi-
tion 1.2]. Using this perfect obstruction theory, we can follow the recipe of Lee

[Lee04] to construct a virtual sheaf Ovir,POT
X for X. We get an a priori different
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sheaf on X. The equality of Ovir,POT
X and Ovir,DAG

X in the G-theory of X is a deep
statement, which was proved in [BZCG`21, MR, §5.4 and §5.5] (see also [PY20, §6]).

Historical note on quasi-map wall-crossing. The moduli of quasi-maps for
a toric variety was defined in 2010 by Ciocan-Fontanine and Kim in [CFK10]. These
moduli spaces carry enumerative information closely related to the one of moduli
of stable maps, but with an easier geometry. Previous related spaces appeared in
[MM07],[MOP11]. The definition of stable quasi-maps was generalised by many
authors in [Tod11], [CFKM14], [CCFK15]. One of the main uses of quasimaps is
in mirror symmetry (see [GT14], [Giv15a], [Giv15b], [RZ18], [CJR21], [ZZ20]). A
nice overview of the quasi-map theory can be found in [CFK14a].

Wall-crossing between quasi-map spaces has been extensively studied (see [CFK20],
[CFK14b], [CCFK15], [TY16], [CJR17], [CJR21],[Zho22]). Wall-crossing is trivial
for sufficiently Fano varieties and non-trivial in the non-Fano case. This translates
into no-mirror transformation in the first case and a non-trivial mirror transforma-
tion in the second. In the case of Grasmannians it is easy to obtain a statement
using virtual push-forwards, giving a good geometric understanding. For the more
general case, we do not have an analogous proof of the wall-crossing formula in
[CFK14b]. We hope that derived geometry will shed light on this case.

Further directions. We believe that our main theorem is part of a new strategy
to prove equalities between virtual objects. The strategy is:

(1) to construct a morphism at the derived level so that we have a morphism
between virtual structure sheaves, and

(2) to prove locally that this morphism is an isomorphism.

For more general statements, one needs to develop a more general machinery:
we expect situations in which we have a simple virtual push-forward theorem, but
a more complicated relation between derived structure sheaves.

In terms of applications of such a machinery, it is natural to consider stable maps
and quasi-maps to a general toric variety X and to try to derive a relation between
(derived) structure sheaves. This is not straight-forward, as for a general X there
is no morphism

c : RMg,npX, dq 99K RQg,npX, dq.

On the other hand, it is possible to get an easy local picture.
We will treat these problems in future works.
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Notation

‚ Everything is over C.
‚ For locally free sheaf E on a space X (a scheme, stack, or derived stack)
the vector bundle of E is VpEq :“ SpecXSymOX

E_.
‚ Let M be an Artin stack with a flat proper family π : C Ñ M of relative
dimension 1. For any morphism U Ñ M, we denote πU : CU Ñ U the
pullback of pπ,Cq. The most classical example would beM being the moduli
of prestable curves, denoted by Mg,n of genus g with n marked points and
Cg,n its universal curve.

‚ We use R to mean a derived structure on a geometric object (for example
RX), andR (respectively L) a right (resp. left) derived functor, for example
Rf˚ (resp Lf˚).

‚ For X,Y, Z non-derived stacks HomXpY, Zq are Hom-stacks (relative inter-
nal hom) whereas HomXpY, Zq are groupoids.

‚ For X,Y, Z derived (or non-derived) stacks RHomXpY,Zq are derived Hom-
stacks whereas RHomXpY,Zq are simplicial sets.

‚ For X a non-derived stack, F , G sheaves on X, HomOX´modpF ,Gq is the
global Hom of sheaves. For X a derived stack and F , G complexes of
sheaves, RHomOX´dgmpF ,Gq denotes the simplicial set associated by the

Dold–Kan correspondence to the complex Hom‚
pF ,Gq defined as Homi

pF ,Gq :“
Hom0

pF ,Grisq.
‚ Picg,n,d (or Pic for short) is the moduli space of prestable curves of genus g
with n marked points together with a degree d line bundle, more formally,
Picg,n,d :“ HomMg,n

pCg,n, BGm ˆ Mg,nq. When we impose some stability

conditions, we will write Pics (see Notation §3.1).
‚ Mg,npPr, dq and RMg,npPr, dq are the (derived) moduli of stable maps of
genus g with n marked points to projective space Pr.

‚ Qg,npPr, dq and RQg,npPr, dq are the (derived) moduli of quasi-maps of
genus g with n marked points to projective space Pr.

‚ We use the notations Mg,n,Cg,n,Pic,Pics,RU,RV,W, UU , ... for all the ob-
jects related to stable maps (for example prestable curve), that is objects
where the curve could have rational tails. We put a “check” on the same

kind of objects |Mg,n, qCg,n, }Pic, }Pics,RqU,RqV , |W, qUU , ... for all the objects
related to quasi-maps, that is without rational tails.

1. Background on the derived moduli of sections

In this section, we recall the definition and basic properties of the derived moduli
of sections, also known as Weil restriction, constructed by Lurie in [Lur18, 19.1]).

1.1. Derived structure of the moduli of sections. Let M be a (possibly de-
rived) Artin stack, π : C Ñ M a flat, proper morphism of relative dimension 1.
Let Z be a (possibly derived) Artin stack with a smooth morphism p : Z Ñ C.
We have an 8-functor π˚ called the Weil restriction of scalars, right adjoint to
the base-change 8-functor π˚ (and constructed for example in [Lur18, Construc-
tion 19.1.2.3]), that will be seen to preserve derived Artin stacks of locally finite
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presentation as stated in [TV22]:

dSt{M
π˚

,,
dSt{C.

π˚

mm K

Definition 1.1.1. [Lur18, §19.1] For a derived Artin stack Z
p

ÝÑ C, we denote

RSecMpZ{Cq :“ π˚Z.

Proposition 1.1.2. [Lur18, §19.1]
(1) The derived moduli of sections RSecMpZ{Cq is the homotopical cartesian

product

(5)

RSecMpZ{Cq M

RHomMpC,Zq RHomMpC,Cq.

xh
i

q

where q is induced by composition by p : Z Ñ C and i is given by the identity
morphism.

(2) If Z Ñ M is a locally almost finitely presented (relative) 1-Artin derived
stack with quasi-affine diagonal, then RSecMpZ{Cq Ñ M is a locally almost
finitely presented 1-Artin derived stack, with quasi-affine diagonal.

(3) If Z,C,M are classical (non derived) stacks, the truncation

SecMpZ{Cq :“ t0 pRSecMpZ{Cqq

is given by the functor SecMpZ{Cq : pSch{Mqop Ñ Gpoid taking sections
of Z over C, that is:

SecMpZ{CqpT Ñ Mq “ ts : CT :“ T ˆM C Ñ ZT :“ CT ˆC Z|pT ˝ s “ idCT
u

“ HomCT
pCT , ZT q

where pT : ZT Ñ CT is the projection induced by p.

Example 1.1.3 (Moduli of stable maps). Let C
π

ÝÑ M be the moduli space of pre-
stable genus g, n-pointed curves with its universal family. Let Z “ C ˆ X for a
smooth projective variety X. Then

SecMpC ˆ X{Cq “ HomMpC,M ˆ Xq.

For any choice of effective class β, the moduli space MpX,βq of stable maps to X
is then an open substack of the moduli of sections SecMpC ˆ X{Cq. Similarly,

RSecMpC ˆ X{Cq “ RHomMpC,M ˆ Xq.

The usual derived enhancement of the moduli of stable maps [STV15, Section 2],
denoted RMpX,βq, is the unique derived structure on MpX,βq which makes the
following diagram homotopy Cartesian

MpX,βq
� � //

� _

��

RMpX,βq� _

��

SecMpC ˆ X{Cq
� � // RSecMpC ˆ X{Cq.
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Remark 1.1.4. The stack RSecMpZ{Cq is in general a derived stack even if pM,C,Zq

is a triple of classical stacks.

We also record here the following functoriality result, which we will use in §2.
If we have stacks Z2 Ñ Z1 Ñ C Ñ M, we can take sections of Z2 Ñ C by passing
through sections of Z1 Ñ C first.

Proposition 1.1.5. Consider

(6)

Z2 Z1

C

M

q

p2 p1

π

with Z1,Z2 as in Definition 1.1.1. For i P t1, 2u, we form the moduli of sections

Si :“ RSecMpZi{Cq Ñ M

with their universal curves πi : CSi
Ñ Si and evaluations evi : CSi

Ñ Zi. We can
also form the moduli of sections over S1 of the morphism q:

rS2 :“ RSecS1
pCS1

ˆh
Z1

Z2{CS1
q.

Then S2 and rS2 are derived equivalent as derived stacks over M.

Proof. To fix ideas and notation, consider the following diagram

Z2

Z2 ˆZ1
CS1

Z1

C
ĄS2

CS1
C CS2

rS2 S1 “ RSecMpZ1{Cq M S2.

q
pr1

p1

Ăπ2

Ăev ev1

π1 π π2

ev2

r

The composition pr1 ˝ rev gives an evaluation map C
rS2

Ñ Z2 over C, which in turn

defines a morphism f : rS2 Ñ S2. For simplicity, we consider f a morphism over
S1, where the map r : S2 Ñ S1 is that corresponding to the evaluation ev2 ˝ q.
The classical truncation of this morphism is an isomorphism, as proved in [CJW21,
Lemma A.1.2]. Moreover, the differential of f induces an equivalence of tangent
complexes (we anticipate here the formulae of 1.3). We have a distinguished triangle

TS2{S1
Ñ TS2{M “ R‚π2,˚ev

˚
2TZ2{C Ñ r˚TS1{M “ R‚π2,˚ev

˚
2 q

˚TZ1{C

which we can use to identify TS2{S1
with R‚π2,˚ev

˚
2TZ2{Z1

. On the other hand,

T
rS2{S1

“ R‚
rπ2,˚ rev˚TZ2ˆh

Z1
CS1

{CS1
“ R‚

rπ2,˚ rev˚pr˚
1TZ2{Z1
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So the result follows by identifying r ˝ f : rS2 Ñ S1 with the structure morphism

of rS2 “ RSecS1
pCS1

ˆh
Z1

Z2{CS1
q Ñ S1, which is simply the observation that the

square

Z2 Z1

C
rS2

CS1

q

pr1˝Ăev ev1

of the big diagram is commutative. □

1.2. The linear case: Z is a vector bundle. We will now consider the important
special case where Z is a linear stack. As we will see, this case covers many disparate
constructions: moduli of stable maps to projective spaces (see Section 2.3), and
more generally to varieties which are GIT quotients by linear groups, as well as
moduli spaces of quasi-maps (see Section 2.4) and moduli of stable maps with
fields (Example 1.2.5). In this case, the derived moduli of sections is an affine stack
over its base.

We start with a review of the classical (non derived) construction. Let Z “

VpEq :“ SpecCSympE_q for E a locally-free sheaf over C. As proved in [CL12],
sections of VpEq over M are an affine scheme, in fact an abelian cone:

SecMpVpEq{Cq “ SpecMSympR1π˚E_ b ωπq.

Indeed, let f : T Ñ M and pf : CT Ñ C, by Serre’s duality and flat base change we
have

SecMpVpEq{CqpT Ñ Mq “ HomCT
pCT , pf˚Eq

“ HomOT ´modpR1πT˚
pf˚E_ b ωπT

,OT q

“ HomOT ´modpR1πT˚
pf˚pE_ b ωπq,OT q

“ HomOT ´modpf˚R1π˚E_ b ωπ,OT q

“ SpecMSympR1π˚E_ b ωπqpT Ñ Mq.

Example 1.2.1 (Hodge bundle). For M “ Mpre
g,n, the moduli of pre-stable curves,

the Hodge bundle H is the cone of sections

SecMpVpωπq{Cq “ SpecMSympR1π˚OCq.

This is a vector bundle of rank g, since R0π˚OC – OM.

Example 1.2.2 (Stable maps with fields). Let X “ Mg,npX,βq with its universal
family

pπX, evXq : CX Ñ X ˆ X.

Let E be a locally-free sheaf over X. The moduli space of stable maps with fields
in E “ VpEq Ñ X (see [CL12, CJW21, Pic21]) denoted XE can be seen as

XE “ SecXpVpev˚
XE_ b ωCX{Xq{CXq “ SpecXSympR1πX˚ev

˚
XEq.

We will now cover the general case where Z is a derived vector bundle, that is

Z “ VpEq :“ RSpecC pSympE_qq

for E P Perfě0
pOCq.

In this specific case, the derived space of section is itself a derived vector bundle.
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Proposition 1.2.3. Let Z “ VpEq for E as above. Then

RSecMpVpEq{Cq “ RSpecMSymppRπX˚Eq_q.

Proof. Let f : T “ RSpecA‚ Ñ M be an affine derived scheme over M with
pf : CT :“ T ˆh

M C Ñ C the induced map and πT : CT Ñ T the induced projection.
From Definition 1.1.1, we have

RSecMpVpEq{CqpT Ñ Mq “ RHomT pCT ,VpL pf˚Eqq ˆh
RHomT pCT ,CT q T

“ RHomCT
pCT ,VpL pf˚Eqq

“ RHomOCT
´dgmpOCT

,L pf˚Eq.

The second line follows by [Lur09, 5.5.5.12]. On the other hand,

RSpecXSymppRπX˚Eq_qpT Ñ Mq “ RHomOM´cdgapSymppRπX˚Eq_,Rf˚OT q

“ RHomOT ´dgmppLf˚RπX˚Eq_,OT q.

By flat base-change,

RHomOT ´dgmppLf˚RπX˚Eq_,OT q “ RHomOT ´dgmppRπT˚L pf˚Eq_,OT q.

By the sheafified Grothendieck duality statement of [Nee10, Corollary 4.4.2],

RHomOT ´dgmppRπT˚L pf˚Eq_,OT q “ RHomOT ´dgmpRπT˚RHomCT
pL pf˚E , ωπT

q,OT q

“ RHomOT ´dgmpRπT˚pL pf˚E_ b ωπT
q,OT q.

By the global duality statement of [Nee10, Theorem 4.1.1],

RHomOT ´dgmpRπT˚pL pf˚E_ bωπT
q,OT q “ RHomOCT

´dgmpL pf˚E_ bωπT
, π!

TOT q.

So finally,

RHomOCT
´dgmpL pf˚E_ b ωπT

, π!
TOT q “ RHomOCT

´dgmpL pf˚E_ b ωπT
, ωπT

q

“ RHomOCT
´dgmpOCT

,L pf˚Eq.

□

Example 1.2.4 (Derived Hodge bundle). The derived version of the Hodge bundle
of Example 1.2.1 is

RH “ RSecMpVpωπq{Cq.

In Theorem 5.4.2 [BZCG`21] (see also [PY20] §8.1), we have a deformation from
this derived bundle to

H ˆM A1
Mr´1s

The latter consists of the usual Hodge bundle in degree 0 and a trivial line bundle
in degree 1.

Example 1.2.5 (Derived stable maps with fields). Keeping the notation from Ex-
ample 1.2.2, we define the derived version of the moduli space of stable maps with
fields. We have from Example 1.1.3 a derived enhancement of the moduli of stable
maps to X, RX :“ RMg,n with a universal family πRX, evRX : CRX Ñ RXˆX. The
derived enhancement of the moduli of stable maps can be constructed as

RXE “ RSecRXpVpev˚
RXE_ b ωCRX{RXq{CRXq “ RSpecRXSympRπRX˚

ev˚
RXEr1sq,

the second equality coming from Proposition 1.2.3 and Grothendieck duality.
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Remark 1.2.6. The formation of the derived definition of the moduli of sections
commutes with flat base-change, so for a flat morphism U Ñ M we have

RSecUpVpEUq{CUq » U ˆM RSecMpVpEq{Cq.

1.3. Tangent complex and perfect obstruction theory. Recall that for a de-
rived Hom-stack H :“ RHomXpY,Zq we have a universal family

H ˆh
X Y

evH //

πH

��

Z

H

and the relative tangent complex TH{X is given by the following simple expression
(see [CFK02, Thm 5.4.8] or [STV15, p.13] or the proof of [MR18, Prop.4.3.1] or
[CHS22, Proposition B.10.21]):

(7) TH{X “ RπH˚Lev
˚
HTZ{X .

Applying this fact to the diagram in Definition 1.1.1 allows us to compute
TRSecMpZ{Cq{M. The cotangent complex of a Weil restriction is also computed in

[Lur18, §19.1.4].

Theorem 1.3.1. [Lur18, §19.1.4] Let RS :“ RSecMpZ{Cq, as per our convention
we have πRS : CRS “ RS ˆh

M C Ñ RS and evRS : CRS Ñ Z.

TRSecMpZ{Cq{M “ RπRS˚Lev
˚
RSTZ{C.

Using the well-established relationship between quasi-smooth derived enhance-
ments and perfect obstruction theories, we obtain the following.

Corollary 1.3.2. (c.f. [STV15, §2.2]) If Z Ñ C is a smooth Deligne–Mumford (not
derived) stack,

S :“ SecMpZ{Cq “ t0pRSecMpZ{Cqq

has a relative perfect obstruction theory in the sense of [BF97] given by

TS{M Ñ ES{M :“ RπS˚ev
˚
STZ{C.

2. Derived structure on stable maps and quasi-maps

There are several ways of constructing derived moduli spaces of maps to a quo-
tient. The rest of the paper is concerned with maps to projective space Pr. Below
we describe the construction of the stacks of prestable curves with line bundles,
stable maps and quasi-maps to projective spaces as particular cases of the moduli
space of sections.

2.1. Background on the classifying stack BGm. We first recall the follow-
ing algebro-geometric description of the classifying space of line bundles, which is
representable by a smooth algebraic stack of locally finite type by [LMB00]. The
classifying stack of line bundles, or equivalently Gm-torsors, is the quotient stack
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BGm “ r‚{Gms. By definition a morphism T Ñ BGm is given by Cartesian dia-
gram

P ‚

T BGm

x

where the vertical morphisms are Gm-torsors. The universal Gm-torsor over the
classifying stack BGm is the quotient morphism ‚ Ñ BGm. The associated univer-
sal line bundle is rA1{Gms “ A1 ˆGm

‚ Ñ BGm, so that a line bundle L Ñ T is a
pullback

L rA1{Gms

T BGm

x
.

Finally, as first observed by Lafforgue, and shown in the derived setting in [KR19,
Proposition 3.2.6], rA1{Gms is the classifying stack of line bundles together with a
global section, since given T Ñ BGm, the dashed arrow in the following Cartesian
diagram is equivalent to specifying a section of L:

L rA1{Gms

T BGm

x
.

By the same token, rAr{Gms is the stack classifying a line bundle together with r
global sections.

2.2. Prestable curves with a line bundle. The stack parametrizing prestable
curves with a line bundle can be viewed as an example of a derived moduli of sec-
tions. We require line bundles to be sufficiently ample when restricted to unmarked
components, this slight modification simplifies the arguments of §3.

Let M “ Mpre
g,n be the moduli space of pre-stable genus g, n-pointed curves with

universal curve C. Consider the moduli space Picsd :“ Picsg,n,d parametrizing
pairs pC,Lq of a pre-stable curve and a line bundle of degree d with the additional
“stability” conditions

(1)

ωlog
C b Lb3 ą 0

where ωlog
C is the canonical bundle of the curve twisted by the sum of the

n marked points.
(2)

degpLq|Ci
ě 0

on all components Ci of C.

This is an open substack of the usual stack of curves with a degree d line bundle,
denoted by Picsd.

Then Picsd and an open substack of the derived moduli of sections of CˆBGm,
that is

Picsd Ă RSecMpC ˆ BGm{Cq.
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The pullback of the universal curve over Picsd is denoted as usual by πPicsd :
CPicsd Ñ Picsd. The universal section induces an evaluation ℓd : CPicsd Ñ BGm.
By Theorem 1.3.1, the relative tangent of the morphism Picsd Ñ M is

TPicsd{M “ RπPicsd˚Lℓ
˚
dTBGm

“ RπPicsd˚OCPicsd
r1s.

Picsd Ñ M is a smooth Artin stack of relative dimension g ´ 1.

2.3. Stable maps to Pr as sections. From example 1.1.3, we can construct
RMg,npPr, dq as an open substack of RSecMpCˆPr{Cq. Then theorem 1.3.1 recovers
the usual formula

TRMg,npPr,dq{M “ RπRMg,npPr,dq˚
f˚TPr

where f : CRMg,npPr,dq
Ñ Pr is the second component of the universal evaluation

evRMg,npPr,dq
.

On the other hand, we may view degree d maps into Pr as (an open substack of)
sections of r`1 degree d line bundles over a curve. With notation from example 2.2
we can define the universal bundle of Picsd as the pullback of the universal bundle
rA1{Gms over the classifying space BGm “ r‚{Gms:

Ld

“

A1{Gm

‰

CPicsd BGm.

x

ℓd

The corresponding locally-free sheaf is denoted by Ld. In the non-derived setting,
this is indeed well-known that we can think of stable maps to projective space as
an open substack of the moduli of sections of line bundles:

Mg,npPr, dq Ă SecPicsd
pL‘r`1

d {CPicsdq.

This description gives rise to a perfect obstruction theory relative toPicsd which has
been proved to be compatible with the usual one (see for example [CL12, CFK10]).
In the discussion below, we strengthen previous results by proving a derived state-
ment (our Theorem 2.3.2) which easily implies the classical one (Corollary 2.3.4).

Lemma 2.3.1. The derived stack of sections RSecMpCˆPr{Cq is an open substack
of RSecPicsd

pL‘r`1
d {CPicsdq, the derived stack of pr ` 1q-tuples of sections of the

universal bundle of Picsd.

Proof. By definition, L‘r`1
d “ CPicsdˆr‚{GmsrAr`1{Gms. Since Pr “ rAr`1zt0u{Gms

is open in the global quotient stack rAr`1{Gms, then at the level of derived moduli
of sections we obtain an open immersion:

(8) RSecPicsd
pCPicsd ˆr‚{Gms Pr{CPicsdq Ă RSecPicsd

pL‘r`1
d {CPicsdq.

Finally, can identify the derived stacks of sections RSecPicsd
pCPicsdˆr‚{GmsPr{CPicsdq

and RSecMpC ˆ Pr{Cq by applying Proposition 1.1.5 with Z1 “ C ˆ BGm, Z2 “

C ˆ Pr. □

So far, we have two ways of obtaining a derived enhancement of Mg,npPr, dq:

‚ RMg,npPr, dq obtained from the open immersion Mg,npPr, dq Ă SecMpC ˆ

Pr{Cq and the enhancement SecMpC ˆ Pr{Cq ãÝÑ RSecMpC ˆ Pr{Cq, or
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‚ R1Mg,npPr, dq obtained from the open immersionMg,npPr, dq Ă SecPicsd
pL‘r`1

d {CPicsdq

and the derived enhancement SecPicsd
pL‘r`1

d {CPicsdq ãÝÑ RSecPicsd
pL‘r`1{CPicsdq.

We will see below that these two enhancements are equivalent, thus we use the
notation RMg,npPr, dq freely for either of them.

Theorem 2.3.2. The derived enhancement RMg,npPr, dq and R1Mg,npPr, dq of

Mg,npPr, dq described above are equivalent derived stacks.

Proof. The proof easily follows from Lemma 2.3.1 and the fact that given an open

substack i : X Ñ Y and a derived enhancement rY of Y, there exists a unique (up

to derived equivalence) derived open substack ri : rX Ñ rY enhancing i.
More explicitly, observe that the open immersion

Mg,npPr, dq Ă SecPicsd
pL‘r`1

d {CPicsdq

factors as

Mg,npPr, dq Ă SecPicsd
pCPicsd ˆr‚{Gms Pr{CPicsdq Ă SecPicsd

pL‘r`1{CPicsq

and by the proof of Lemma 2.3.1 the middle space has equivalent derived en-
hancements RSecPicsd

pCPicsd ˆr‚{Gms Pr{CPicsdq and RSecMpC ˆ Pr{Cq. Moreover,

RSecPicsd
pCPicsd ˆr‚{Gms Pr{CPicsdq is also equivalent to the enhancement of its

classical truncation coming from

SecPicsd
pCPicsdˆr‚{GmsPr{CPicsdq Ă SecPicsd

pL‘r`1{CPicsq ãÝÑ RSecPicsd
pL‘r`1{CPicsq

by Equation (8). This shows that there is a unique derived enhancement RMg,npPr, dq

of Mg,npPr, dq that is open in both RSecMpCˆPr{Cq and RSecPicsd
pL‘r`1{CPicsq.

□

From this discussion, we can write a point in RMg,npPr, dq as pC,L, s0, . . . , srq

where C is a genus g, n-marked prestable curve (we suppress the notation for the
marked points), L is a degree d line bundle on C and s0, . . . , sr are sections. In this
notation, the stability conditions of stable maps translate to the following.

Definition 2.3.3. [Stability conditions of stable maps as sections]

(1) The bundle ωlog
C b Lb3 is ample, which is a condition on the pair pC,Lq

already present in Pics,
(2) The sections ps0, . . . , srq have no common zeros.

Corollary 2.3.4. There is a forgetful morphism Mg,npPr, dq Ñ Picsd sending

pC,L, s0, . . . , srq ÞÑ pC,Lq.

The morphism is quasi-smooth with dual perfect obstruction theory

TMg,npPr,dq{Picsd
Ñ EMg,npPr,dq{Picsd

“ R‚πMg,npPr,dq˚
L‘r`1

Mg,npPr,dq

where LMg,npPr,dq
is the locally-free sheaf on CMg,npPr,dq

obtained from the map

into Picsd. This perfect obstruction theory is compatible with the usual perfect
obstruction theory of stable maps in the sense of [Man12a].

Proof. This follows from the discussion above and Corollary 1.3.2. □
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2.4. Quasi-maps to Pr as sections. We have another way of understanding
maps of curves to Pr, by relaxing the concept of map and allowing a linear system
pL, s0, . . . , srq on a curve C to develop some base points. Consider Picd “ Picg,n,d
the usual stack parametrizing genus g, n-marked pre-stable curves with a degree d
bundle without stability conditions. Let CPicd ,Ld denote the universal curve and
universal bundle respectively.

Definition 2.4.1 (Stable quasi-maps[CFK10, Definition 3.1.1]).

Qg,npPr, dq Ă SecPicd
pL‘r`1

d {CPicdq

is the open substack defined by imposing following conditions on each geometric
fiber

(1) (non-degeneracy )The linear system pL, s0, . . . , srq has finitely many base
points away from the nodes and the markings of C.

(2) (stability) The line bundle ωlog
C b Lbϵ ą 0 for any ϵ P Qą0.

The derived enhancement SecPicd
pL‘r`1

d {CPicdq ãÝÑ RSecPicd
pL‘r`1

d {CPicdq gives

a derived enhancement Qg,npPr, dq
j

ãÝÑ RQg,npPr, dq. The usual perfect obstruction
for the moduli of quasi-maps (eg. [CFK10]) comes from this derived extension.
Indeed, the computation in Theorem 1.3.1 shows that

TQg,npPr,dq{Pic Ñ j˚TRQg,npPr,dq{Pic “ Rπ˚f
˚OPr p1q,

where as usual π and f are the universal projection and evaluation respectively
from CRQg,npPr,dq

. We will see in the next section a slightly different construction

of Qg,npPr, dq that yields an equivalent derived enhancement.

3. Stable maps and quasi-maps to Pr

In this section, we construct a morphism between the derived enhancement of
the moduli space of stable maps to Pr and of quasi maps that is

c : RMg,npPr, dq Ñ RQg,npPr, dq.

We prove that

c˚ORMg,npPr,dq
“ ORQg,npPr,dq

in Db
CohpRQg,npPr, dqq.

3.1. Revised notation. From here, we will adopt a slightly different notation from
that of the preceding sections in the interest of clarity. Let M :“ Mg,n denote the
moduli space of genus g pre-stable curves with n marked points and let π : C Ñ M
denote its universal curve. Let Pics :“ Picsg,n,d denote the moduli space defined
in Example 2.2 and let π : C Ñ Pics denote its universal curve. Recall, that Pics

parametrizes pairs pC,Lq, with C a prestable curve in M and L is a line bundle of
fixed degree d over C subject to the stability conditions in 2.2. Then we define C
by the following cartesian diagram

C C

Pics M.

π
x

π
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Notice that C Ñ M is flat so that the stack fiber product is also the homotopical
fiber product. Let L over C denote the universal bundle so we have

(9) L C Pics M.π

Definition 3.1.1. Let C be a point in M. A rational tail Γ in C is a maximal tree
of rational components without marked points and such that Γ X CzΓ is a point.

Let |M denote the moduli space of pre-stable curves of genus g with n marked

points without rational tails. Let π : qC Ñ |M denote the universal curve. In

[CFK10, p.12], the authors prove that |M is an open substack of finite type in M,

with universal curve isomorphic to the restriction of C to |M.

Let }Pic denote the Cartesian product

}Pic Pic

|M M.

x

A closed point in }Pic is a pair p qC, qLq of a marked pre-stable curve with no rational
tails and a line bundle.

Definition 3.1.2. As in the case of Pics let }Pics denote the substack of }Pic with
the additional stability conditions:

(1) for any ϵ P Qą0, we have

ωlog
qC

b qLbϵ ą 0,

Here ωlog
qC

denotes the dualizing sheaf of the curve twisted by the sum of

the n marked points.

(2) on all components qCi of qC, we have

degpqLq|
qCi

ě 0.

We have that }Pics is an open substack of }Pic.

We define qC as the following fiber product

qC qC

}Pics |M.

qπ
x

qπ

We have a universal line bundle, denoted by qL over qC. As in (9), we have the
following morphisms.

(10) qL qC }Pics |M.qπ

3.2. Quasi-maps are defined over }Pics. In Section 2.4 we defined

(11) RQg,npPr, dq Ă RSecPicpL
‘r`1{CPicq.

Given the definitions of this sections, we have a new substack }Pics Ă Pic. The
stability conditions of quasi-maps imply that the source curve cannot have rational
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tails. So the morphism RQg,npPr, dq Ñ Pic factors through }Pic. Moreover, the

stability conditions of RQg,npPr, dq imply those of Definition 3.1.2, so we obtain a

morphism RQg,npPr, dq Ñ }Pics Ă Pic.
By Remark 1.2.6, we have that

RSec
~Pics

pqL‘r`1{qCq “ }Pics ˆh
Pic RSecPicpL

‘r`1{CPicq.

So the open embedding in (11) factors through an open embedding RQg,npPr, dq Ă

RSec
~Pics

pqL‘r`1{qCq. We state the implications of this below.

Proposition 3.2.1. The moduli space of quasi-maps Qg,npPr, dq has a forgetful

morphism to the stack }Pics of pre-stable curves with no rational tails with a stable

line bundle (Definition 3.1.2). Over }Pics it admits an open embedding into the de-

rived stack of sections RSec
~Pics

pqL‘r`1{qCq. This endows Qg,npPr, dq with a derived

enhancement RQg,npPr, dq which is compatible with the derived enhancement from
Section 2.4.

In particular, this derived enhancement recovers the canonical perfect obstruction
theory of the moduli space of quasi-maps.

3.3. Derived morphism between stable maps and quasi-maps. In this sub-
section, we want to construct the following.

(1) A commutative diagram

(12)

L qL

C qC

Pics }Pics

M |M

k

π qπ

c

c

which relates (9) and (10).
(2) A morphism (see Proposition 3.3.10 below)

c : RSecPicspL
‘r`1{Cq Ñ RSec

~Pics
pqL‘r`1{qCq

that restricts to a morphism RMpPr, dq Ñ RQpPr, dq.

3.3.1. Construction of contraction morphism c : M Ñ |M. Recall that in [PR03,
proof of Thm 7.1] or [Man14, Prop 2.3]) one can construct a non separated2 mor-
phism

c : M Ñ |M

which contracts the rational tails. For S Ñ M,

2This morphism is not separated because, the trivial family P1 ˆ A1zt0u Ñ A1zt0u can be
completed at t0u by P1 or the blowup of the trivial family in any number of points in the special

fibre.
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c : M Ñ |M

pCS , Sq ÞÑ p qCS , Sq

where qCS is the family CS with rational tails contracted in each fiber. Recall that C

(resp. qC) is the universal curve of M (resp. |M). Moreover, we have a commutative
diagram which is not Cartesian

(13)

C qC

M |M.

π

k

qπ

c

Notice that c is a birational morphism.

3.3.2. Construction of contraction of tails morphism c : Pics Ñ }Pics. Recall that
we have (9),

L C Pics M.π

Let Mrt be the divisor in M where the curve has rational tails. We obtain a
divisor D on C by pulling back Mrt to C and taking the irreducible components of
each fiber which correspond to rational tails.

Example 3.3.3. Consider a trivial family of smooth curves C ˆ A1 Ñ A1, and
let p P C a closed point. We can obtain a family of curves with rational tails
C “ Blpˆt0upCˆA1q Ñ A1. Then the divisor of rational tails on C is the exceptional

divisor E, which is an irreducible component of the pullback of the divisor 0 P A1.

Definition 3.3.4. Let denoteD be the divisor in C described above. By considering
the restriction of the universal bundle L on D we can split the divisor into

D “

d
ğ

i“1

Di

such that L|Di
has degree δi. We write δD for

ř

i δiD.

We first define c : Pics Ñ }Pics at the level of points (see [Man14, §2.2]). Let
pC,Lq P Pics. Let Ti be the rational tails of C and let δi denote the total degree

of L on Ti. Notice that
ř

i δi “ degpL|\iTiq. Let
qC be the closure of Cz

Ť

i Ti. Let

Qi denote the point Ti X qC. We define

qL :“ L|
qCp

ÿ

i

δiQiq.

In families we proceed similarly: let S Ñ Pics with a family of curves CS Ñ S and

a line bundle LS . We define qCS :“ cpCSq contracting rational tails. We put

qLS :“ L|
}CS

pδDq ,

and we obtain a morphism

c : Pics Ñ }Pics

pCS ,LSq ÞÑ p qCS , qLSq.
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To show it factors as the required morphism

c : Pics Ñ }Pics

we need to check that the following are true:

(1) If L has non-negative degree on each component of C, then qL has non-

negative degree on each component of qC.

(2) If ωlog
C b Lb3 ą 0, then ωlog

qC
b qLbϵ ą 0 for all ϵ P Qą0.

The first statement is clear. The only case where the first condition does not
immediately imply the second is that of a genus 0 component Ci with less than two
marked points. The first condition then requires that the degree of L|Ci

is at least

1. Note that any component of qC has at least one marked point, so the degree of

ωlog
qC

is greater or equal than ´1. This shows that the degree of qL|cpCiq is at least 1

and thus the claim.
We thus get the following commutative diagram

(14)

Pics }Pics

M |M.

c

c

3.3.5. Construction of the morphism k : C Ñ qC. As C :“ C ˆM Pics (resp. qC :“
qC ˆ

|M
}Pics) and the Cartesian diagram (13), writing all the diagrams, we get the

morphism k : C Ñ qC such that the following diagram is commutative

(15)

C qC

Pics }Pics

M |M.

k

π qπ

c

c

3.3.6. Construction of the morphism L Ñ qL. We can decompose the morphism k
as ℓ ˝ κ as in the following diagram:

(16)

L ℓ˚
qL qL

C c˚
qC qC

Pics }Pics

M |M.

x

κ

π
c˚

qπ

ℓ

x
qπ

c

c

Notice that qπ, π and c˚
qπ are projective, so κ is projective. As κ is birational and

LpδDq is trivial on rational tails, we have that

R1κ˚LpδDq “ 0.
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Then R0κ˚LpδDq is a line bundle on c˚
qC. (See [PR03, Lemma 7.1 and p.652-654].

Claim 3.3.7. We have that

R0κ˚LpδDq “ ℓ˚
qL.

Proof of the claim 3.3.7. As κ is birational, the two sheaves are isomorphic away

from the tails. On the tails, both are trivial. On a smooth atlas of c˚
qC, they are

isomorphic away from the locus where the tails are attached to the curve which is
of codimension 2. We deduce the statement. □

Remark 3.3.8. At the level of sheaves we have :

L Ñ LpδDq and by adjunction κ˚κ˚LpδDq Ñ LpδDq.

Notice that κ˚κ˚LpδDq “ LpδDq because both are isomorphic outside tails and
trivial on tails. Finally, we get a morphism from

L Ñ LpδDq “ κ˚κ˚LpδDq “ κ˚ℓ˚
qL,

which leads to a morphism L Ñ κ˚LpδDq “ ℓ˚
qL that fills the diagram (16).

3.3.9. Construction of the morphism c : RSecPicspL
‘r`1{Cq Ñ RSec

~Pics
pqL‘r`1{qCq.

Theorem 3.3.10. We have a morphism

c : RSecPicspL
‘r`1{Cq Ñ RSec

~Pics
pqL‘r`1{qCq.

Moreover, the restriction of c to RMg,npPr, dq factors through

RQg,npPr, dq Ă RSec
~Pics

pqL‘r`1{qCq,

giving a morphism, denoted by the same name,

c : RMg,npPr, dq Ñ RQg,npPr, dq.

Proof. Multiplication by the canonical section gives a morphism a : L Ñ LpδDq.
We have the divisor exact sequence

(17) 0 Ñ L Ñ LpδDq Ñ LpδDq|δD Ñ 0

over Pics.
The morphism a of sheaves induces a morphism L Ñ LpδDq of total spaces,

which induces

(18) RSecPicspL{Cq Ñ RSecPicspLpδDq{Cq.

Now recall the locally-free sheaves

LpδDq R0κ˚LpδDq “ ℓ˚
qL

C c˚
qC

Pics

κ

π
c˚

qπ
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and let κ˚LpδDq denote the total space of R0κ˚LpδDq. There is an equivalence

RSecPicspLpδDq{Cq “ SpecPicsSymppRπ˚LpδDqq_q

» SpecPicsSymppRpc˚
qπq˚κ˚LpδDqq_q

“ RSecPicspκ˚LpδDq{c˚
qCq.(19)

This equivalence is simply a restatement of the fact that the sections of the push-
forward of a sheaf on an open are sections of the original sheaf on the preimage.
Then by claim 3.3.7 and (19), we have

(20) RSecPicspLpδDq{Cq » RSecPicspκ˚LpδDq{c˚
qCq » RSecPicspℓ

˚
qL{c˚

qCq.

Now we just have to construct a morphism

RSecPicspℓ
˚

qL{c˚
qCq Ñ RSec

~Pics
pqL{qCq.

Let us consider the cartesian diagram

c˚
qC qC

Pics }Pics.

ℓ

ρ“c˚
qπ qπ

c

By cohomology and base change, we get an isomorphism

Rρ˚ℓ
˚

qL Ñ c˚Rqπ˚
qL,

that is we deduce that at the level of spaces, we have

RSecPics pL pδDq {Cq » c˚RSec
~Pics

pqL{qCq “ RSecPicspℓ
˚

qL{c˚
qCq.

By composing, we deduce a morphism

(21) RSecPicspLpδDq{Cq » c˚RSec
~Pics

pqL{qCq Ñ RSec
~Pics

pqL{qCq.

Composing (18) with (21) we get a morphism

RSecPicspL{Cq Ñ RSecPicspLpδDq{CqÑRSec
~Pics

pqL{qCq.

By applying the same argument to L‘r`1, we deduce the desired morphism c

(22) RSecPicspL
‘r`1{Cq

c //

��

RSec
~Pics

pqL‘r`1{qCq

��

Pics
c // }Pics.

Now we are left to check that the restriction of c to RMg,npPr, dq takes image in

RQg,npPr, dq. We can check this on points, let pC,L, s0, . . . , srq P RMg,npPr, dq.
We need to see that stability conditions of stable maps on pC,L, s0, . . . , srq imply
those of quasi-maps on cpC,L, s0, . . . , srq. The conditions about the ampleness of

the bundles, are already checked at the level of c : Pics Ñ }Pics. We only need to

show that if pL, s0, . . . , srq has no base points, then pqL, qs0, . . . , qsrq has finitely many
base points away from markings and nodes. Let Qi be the attaching nodes of the
rational tail Ti on C. The only base points that are acquired by applying c are on

the images of the Qis in qC, but these are smooth and unmarked points of qC.
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Thus we have a well-defined map given by the restriction of 22, which we will
still denote by the same name:

c : RMg,npPr, dq Ñ RQg,npPr, dq.

□

4. Local embeddings

The idea of this section is to control the map c locally. In this section, by a slight
abuse of notation we also denote by c the restriction/ base-change of c to various
charts of RMg,npPr, dq.

For any point ξ P RMg,npPr, dq we construct

(1) RV Ñ RMg,npPr, dq an étale neighbourhood of ξ,

(2) RqV Ñ RQg,npPr, dq an étale neighbourhood of qξ :“ cpξq, where the map

c : RV Ñ RqV is the base change of c : RMg,npPr, dq Ñ RQg,npPr, dq,

(3) A smooth Deligne–Mumford stack W and a smooth scheme |W with a mor-

phism q : W Ñ |W which is proper and birational,

(4) a vector bundle qF on |W together with a section θ such that

‚ the homotopical zero locus of θ is RqV ,
‚ the homotopical zero locus of q˚θ is RV .

Let us sum up the situation in the following diagram, where each square is
Cartesian.

(23)

RV W

RqV |W

|W qF

W q˚
qF

xhxh
c

q

0

yh

xh
0

θ

zh

q

q˚θ

Practically, we have that

RqV “ Zhpθq and RV “ Zhpq˚θq.

Notice that the right and bottom squares are homotopically Cartesian by [Sta22,
Lemma 08I6].

We will construct a different collection of open stacks: RU Ă RSecPicspL
‘r`1{Cq,

and RqU Ă RSec
~Pics

pqL‘r`1{qCq. We will also construct UU , qUU smooth stacks such

that RU and RqU sit inside them as a derived vanishing locus. These are all moduli
of sections with a minor stability condition. Later, by imposing the full stability
conditions for stable maps and quasi-maps respectively, we will obtain schemes RV ,

W and RqV , |W .



24 DAVID KERN, ÉTIENNE MANN, CRISTINA MANOLACHE, AND RENATA PICCIOTTO

4.1. Constructions. For any point p qC, qL, qs0 . . . , qsrq P RQg,npPr, dq, let BLpqsq “

Xr
i“0Zpqsiq be the base locus of pqs0, . . . , qsrq. By construction, RQg,npPr, dq comes

with a universal curve, a universal line bundle over it and a universal pr ` 1q-tuple
of sections qσ. We have that BLpqσq Ñ RQg,npPr, dq is a finite morphism.

Fix a closed point ξ P RMg,npPr, dq and qξ “ p qC 1, qL1, qs1q its image in RQg,npPr, dq.
We construct here some open substacks of the moduli of sections RSecPicspL

‘r`1{Cq

and RSec
~Pics

pqL‘r`1{qCq containing ξ and qξ in respectively. Later on, we will impose

stability conditions on these opens.

Construction 4.1.1 (Construction of the DM stacks UU , RU and qUU , RqU). The first

step will be to choose an open substack qU Ă }Pics containing the point p qC 1, qL1q and

a divisor qA on the universal curve qC that behaves nicely over qU. These choices will

depend on the choice of the quasi-map qξ and not just on its source curve.

By the stability conditions on }Pics, the line bundle ω
qπ b qL is qπ-relatively ample.

After replacing ω
qπ b qL by an appropriate multiple, we may assume we have a very

ample line bundle with vanishing R1
qπ˚. The divisor qA is given by a choice of a

section of this very ample line bundle, i.e. a hyperplane on the projective space
of sections of this bundle. We can choose one such hyperplane that intersects the

image of p qC 1, qL1q transversally at non-special points, and we can restrict to the

complement qU of the closed substack where qA intersects the curves in the fiber at
special points or is ramified. We can moreover guarantee by a change of coordinates

that qAX qC 1 consists of points disjoint from BLpqs1q. Recall that BLpqs1q comes from

the choice of qξ. By construction,

(24) R1
qπ˚

qLp qAq “ 0

on all curves in this chosen neighborhood. To sum up, by our choice of hyperplane
we have that

(1) qA does not contain 1-dimensional fibers of the restriction of qC
qU Ñ qU and

(2) qA on the chosen curve qC 1 is disjoint from the base locus of qs1 of the fixed

quasi-map qξ.

(3) qA is disjoint from the special points of p qC, qLq (i.e. nodes and marked points)

for all points p qC, qLq P qU.

We fix the notation qU Ă }Pics for this substack, which depends on a choice of a
point ξ P RQg,npPr, dq.

Let U :“ c´1pqUq and A :“ k˚
qA. Since L has positive degree on rational tails (see

Section 2.2 for the definition of Pics), on U, we have

(25) R1π˚LpAq “ 0.

We define

RU :“ RSecUpL‘r`1
U {CUq UU :“ RSecUpLUpAq‘r`1{CUq

RqU :“ RSec
qUpqL‘r`1

qU
{qC

qUq qUU :“ RSec
qUpqL

qUp qAq‘r`1{C
qUq.
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Note that RU and RqU are open in RSecPicspL
‘r`1{Cq and RSec

~Pics
pqL‘r`1{qCq re-

spectively by Remark 1.2.6. Moreover, we have ξ P RU and cpξq P RqU . By (24)

and (25) we see that UU and qUU are smooth Artin stacks and have no derived struc-
ture. Multiplication by the defining equations of the divisor A gives a morphism
of sheaves LU Ñ LUpAq that gives a morphism RU Ñ UU . Similarly, we have

RqU Ñ qUU . As in Theorem 3.3.10 we have a morphism q̃ : UU Ñ qUU

Construction 4.1.2 (Labelling of base points). Fix ξ :“ pC 1, L1, s1
0, . . . , s

1
rq P RMg,npPr, dq

a closed point and qξ :“ cpξq “ p qC 1, qL1, qs1
0, . . . , qs1

rq P RQg,npPr, dq and construct the
neighborhoods described above.

Let qζ “ p qC 1, qL1, qw1
0, . . . , qw1

rq be the image of qξ in qUU . Let BLpqs1q be the base locus
of pqs1

0, . . . , qs1
rq, and BLp qw1q be the base locus of p qw1

0, . . . , qw1
rq.

By construction, we have that the base locus BLp qw1q “ BLpqs1q\ qA. This follows

because BLpqs1q and qA are disjoint by construction and for each i, qw1
i is obtained

by multiplying qs1
i by the local defining equation of qA. Then we have a labelling

BLp qw1q “ t qw1
0 “ ¨ ¨ ¨ “ qw1

r “ 0u X qA
l jh n

BLp|w1q
|A

\ tqs1
0 “ ¨ ¨ ¨ “ qs1

ru
l jh n

BLp qw1q
qL

.

By Section 4.1 we have that the pull-back of qA on the universal curve over qUU

is finite and étale over qUU . The chosen point qζ has the sections qsi generically non-

degenerate —i.e. they do not all vanish on any component of qC 1. By passing to the

open substack inside qUU where the sections are generically non-degenerate, we may

assume qUU is itself a Deligne–Mumford stack (see [CFK10, Lemma 3.1.6]).With this

assumption, qUU admits an étale chart, which is a scheme. On this chart we consider

a lift of qζ, which by abuse of notation we denote qζ. Passing to an étale cover of this

chart as in [Sta22, Lemma 04HL], we obtain an étale neighborhood |UU 1 of qζ, i.e. a
scheme, such that on this neighborhood we have that BLp qw1q

qA and BLp qw1q
qL lie

on different connected components. This shows that the base-change of BLp qwq to
|UU 1 can be written as a union of disconnected components BLp qwq

qA and BLp qwq
qL,

which contain BLp qw1q
qA and BLp qw1q

qL respectively.

This means that for a point p qC, qL, qw0, . . . , qwrq P |UU 1 the base points BLp qwq of

pqL, qw0, . . . , qwrq are labelled by the connected components of the base locus

BLp qwq “ BLp qwq
qA \ BLp qwq

qL.

We define the smooth Artin stack

UU 1 :“ |UU 1 ˆ
|UU

UU .

Now we define a smooth scheme |W Ă |UU 1 by imposing stability conditions.

Construction 4.1.3 (Construction of schemes |W and RqV ). Let

p qC, qL, qw0, . . . , qwrq P |UU 1 Ñ Sec
qUpqL

qUp qAq{qC
qUq.

This point is in |W if

(i) the base locus of qw0, . . . , qwr is discrete and disjoint from all the special

points of qC,
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(ii) for any ϵ P Qą0,

ωlog
qC

b qLp qAqbϵ ą 0.

Note that the base locus is labeled in the sense of construction 4.1.2, because we

are in |UU 1. Finally, we define

RqV :“ RqU ˆ
|UU

|W .

Remark 4.1.4. We have that |W is a smooth scheme as it is étale over an an open
substack of VpRπU˚LUpAqq and VpRπU˚LUpAqq is smooth as R1πU˚LUpAq “ 0.

By possibly shrinking |W we may assume it is an affine scheme.

Construction 4.1.5 (Construction of W and RV ). Let UU 1 “ |UU 1 ˆ
|UU

UU . It is a
smooth Artin stack. We have that UU 1 contains the point ζ, the image of ξ in UU . By

construction, we have a map q : UU 1 Ñ |UU 1 and an induced map between universal

curves k. If for any point pC,L,wq P UU 1, we denote its image under q by p qC, qL, qwq,

then we have that k maps BLpwq to BLp qwq. Since the base locus in |UU 1 is labelled,
we have that the base locus in UU 1 is labelled:

BLpwq “ BLpwqA \ BLpwqL.

Let

pC,L,w0, . . . , wrq P UU 1 Ă SecUpLUpAq{CUq.

This point is in W if

(i) the base locus BLpwq of w0, . . . , wr is discrete and disjoint from the special
points of C,

(ii) the subset BLpwqL of the base locus is empty and

(iii) the line bundle ωlog
C b Lb3 is ample.

Notice that by the definition of UU 1 we have that the base locus is labelled and thus
condition (ii) makes sense. Finally, we define

RV :“ RU ˆ UU W .

Remark 4.1.6. Notice that for any pC,L,w0, . . . , wrq P W , the choice of qA and the
stability condition imply that A |C does not intersect rational tails for any C.

This was not the case for points in UU 1 without the stability condition in (i) in
Construction 4.1.5.

Remark 4.1.7. The idea behind the construction is to define compatible atlases

on RMg,npPr, dq and RQg,npPr, dq, in the sense that we want charts RV and RqV
respectively such that

RV RMg,npPr, dq

RqV RQg,npPr, dq.

xh

c

In addition, we want RV and RqV to be derived vanishing loci of triples pW,F, θq

and p|W, qF , qθq where the first family is a pullback of the second. These are triples
of a smooth scheme, a vector bundle and a section. To achieve this, we start
by covering RMg,npPr, dq and RQg,npPr, dq by sets open in RSecPicspL

‘r`1{Cq

and RSec
~Pics

pqL‘r`1{qCq. These sets will be of the form RU “ RSecUpL‘r`1{CUq,
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RqU “ RSec
qUpqL‘r`1{qC

qUq. They are chosen so that it is possible to pick sufficiently

ample divisors on qA and A on qC
qU and CU which are away from the rational tails

and base points and give RU and RqU smooth embeddings (see Proposition 4.2.1
and Lemma 4.2.2 for more details).

We end up with a closed embedding mA : RU Ñ UU “ RSecUpLpAq‘r`1{CUq

and a similar one for RqU . Here, mApRUq is the space of pr ` 1q-tuples of sections
of LpAq which are all divisible by the local equation of A. Now we could define

RqV “ RqU X RQg,npPr, dq and RV “ RU X RMg,npPr, dq, but more care is needed
at this stage.

Here W and |W are necessary to define “non-degeneracy conditions” on UU that
will restrict to those of stable maps when restricted to the subvariety RU . This is
the reason we pass to different (étale) neighbourhoods in the construction.

•

RU RV

W

UU

Figure 1. The ambient space is UU which is an open in the moduli
of sections of LpAqr`1, RU is an open in the moduli of sections of
L, RV is RUXRMg,npPr, dq. We draw this picture for stable maps

(in UU and not qUU ) but we should imagine the same for quasi-maps
in a compatible way.

4.2. Properties. Recall that UU :“ RSecUpLUpAq‘r`1{CUq and qUU :“ RSec
qUpqL

qUp qAq‘r`1{C
qUq

are smooth (thus only trivially derived) Artin stacks.

Proposition 4.2.1. There exists a vector bundle E on UU and a section σ such
that RU is the derived zero locus of σ.

Similarly, there exists a vector bundle qE on qUU and a section qσ such that RqU is
the derived zero locus of qσ.

Proof. Recall from (25) and (26) that we have R1πU˚LUpAq “ R1
qπU˚

qLUp qAq “ 0.
Multiplying by a local equation of A and pushing forward gives a distinguished
triangle of sheaves on U.

(26) RπU˚LU Ñ RπU˚LUpAq
s

ÝÑ RπU˚LUpAq|A
`1

ÝÝÑ

Observe that RU “ VpRπU˚LUq, and

UU “ VpRπU˚LUpAqq “ VpπU˚LUpAqq.

We also haveR1πU˚LUpAq|A “ 0, forced by the long exact sequence of (26) and (25).
Then E :“ VpπU˚LUpAq|Aq is a non-derived vector bundle on U. The distinguished
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triangle in (26) can be thus written as a fibered and cofibered diagram of derived
complexes

RπU˚LU πU˚LUpAq

0 πU˚LUpAq|A.

x
s

{

Taking the total space Vp´q “ RSpecUSym
‚
p´q_ functor gives us a homotopical

fibered product

(27)

RU UU

U E.

xh
s

0

Let E be the pullback of the bundle E by the projection UU Ñ U, and σ be the
section induced by s. We claim that the homotopical fibered square above implies
that the square below is also homotopically fibered

(28) RU //

��

UU

σ

��

UU
0 // E.

To see this, consider

(29) UU
0 //

��

E

��

U
0 // E

which is obviously fibered. Stacking (28) and (29) yields (27). Since (29) and (27)
are homotopical fibered products, (28) must also be a homotopical fibered product.

The second part of the statement is proved in the same way, with qE and qσ

coming from the following triangle over qU:

(30) Rqπ
qU˚

qL
qU Ñ qπ

qU˚
qL

qUp qAq
qs

ÝÑ qπ
qU˚

qL
qUp qAq|

qA

`1
ÝÝÑ .

□

The contraction c : Pics Ñ }Pics restricts to c : U Ñ qU and induces maps

rc : RU Ñ RqU and rq : UU Ñ qUU by the same construction as 3.3.6, 3.3.10. All these
maps are in particular birational.

Lemma 4.2.2. We have a homotopically cartesian diagram

(31)

RU UU

RqU qUU .

i

rc
xh

rq

qi
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Proof. By Proposition 4.2.1, it suffices to show that E “ rq˚
qE and σ “ rq˚

qσ. Recall
that pE, σq is defined by the following diagram coming from (26).

E SpecUSympπU˚LUpAq|Aq

UU U.

x
s

σ

Similarly p qE, qσq is defined by the diagram below coming from (30).

qE Spec
qUSympqπ

qU˚
qL

qUp qAq|
qAq

qUU qU.

x
qs

qσ

For c : U Ñ qU the usual contraction, we need to show that c˚
qπ

qU˚
qL

qUp qAq|
qA –

πU˚LUpAq|A and that qs ˝ rq “ s.

To see these, start with the triangle (30) defining qE and qσ.

c˚Rqπ
qU˚

qL
qU c˚

qπ
qU˚

qL
qUp qAq c˚

qπ
qU˚

qL
qUp qAq|

qA

RπU˚pk˚
qLUq πU˚

´

pk˚
qLUq b OUpAq

¯

pπU˚

´

pk˚
qLUq b OUpAq

¯

|A

RπU˚pLUpδDqq πU˚pLUpδD ` Aqq πU˚pLUpAqq|A

–

c˚
qs

–

`1

–

– –

`1

–

`1

The first set of vertical isomorphisms are by cohomology and base-change and the

fact that k˚
qA “ A. The following are given by k˚

qL “ κ˚ℓ˚
qL “ κ˚κ˚LpδDq »

LpδDq (see Remark 3.3.8).
By the requirements of our construction, A does not meet D. Then for the last

term we have πU˚pLUpAqq|A – πU˚pLUpδD ` Aqq|A. We conclude that c˚(30) is
isomorphic to the following triangle:

(32) RπU˚pLUpδDqq Ñ πU˚pLUpδD ` Aqq
c˚

qs
ÝÝÑ πU˚pLUpδD ` Aqq|A

`1
ÝÝÑ .

Now we compare c˚(30) =(32) to (26). Twisting by δD induces a map between
them

RπU˚LU πU˚LUpAq πU˚LUpAq|A

RπU˚pLUpδDqq πU˚pLUpδD ` Aqq πU˚pLUpδD ` Aqq|A

RπU˚pLUpδDqq|δD πU˚pLUpδD ` Aqq|δD 0.

s

f

`1

–

c˚
qs `1

–
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The vertical map f above is as follows:

rq : UU
f

ÝÑ c˚
qUU Ñ qUU .

This shows that c˚
qπ

qU˚
qL

qUp qAq|
qA – πU˚LUpAq|A and that qs ˝ rq “ s, completing the

proof.
□

Recall that we have that W is a DM stack and UU 1 and UU are Artin stacks such
that

W UU 1 UU .
Zariski open étale

We also have

|W qUU
1

qUU
Zariski open étale

where qUU is a smooth Artin stacks and the étale map factors through an open

Deligne–Mumford substack. Also, |W and qUU
1
are smooth affine schemes.

From the definitions of W and |W we see that rq restricts to a map q : W Ñ |W .

Lemma 4.2.3. We have a commutative diagram

W UU

|W qUU .

q
rq

Proof. We only need to check that the image of W is contained in |W . This follows
by comparing the stability conditions in Construction 4.1.5 and Construction 4.1.3.

□

Lemma 4.2.4. We have that RV is an étale neighbourhood of ξ in RMg,npPr, dq.

Proof. Recall that RV is defined by

RV W

RU UU .

xh
étale

mA

The first observation is that W is étale over UU . Indeed, we have defined an étale
neighborhood UU 1 Ñ UU around ζ, the image of ξ under the morphism mA induced
by tensoring with OpAq. In this, W is cut out in Construction 4.1.5 by imposing
open stability conditions. Since the point ζ was the image of a stable point ξ, the
stability conditions hold for it. So W Ñ UU is an étale neighborhood of ζ.

Thus, RV Ñ RU is also étale, and ξ P RV . On the other hand, we have an open
subset V of RU “ RSecUpL‘r`1{CUq given by

V “ RMg,npPr, dq ˆRSecPics pL‘r`1{Cq

`

RU ˆ UU UU 1
˘

,



DERIVED MODULI OF SECTIONS AND PUSH-FORWARDS 31

that is fits in the cartesian diagram

RV W

V RU ˆ UU UU 1 UU 1

RU UU

RMg,npPr, dq RSecPicspL
‘r`1{Cq.

xh

ét.

xh
ét.

xh
ét.

We want to show that RV and V are equivalent. First, we show that their
truncations are isomorphic, that is t0pVq “: V 1 » t0pRV q “ V . It suffices to show
that the conditions of Construction 4.1.5 are equivalent to the stability conditions
of stable maps on points in the image of (the truncation of) mA. We recall them
here for the reader’s convenience. At any point pC,L, s0, . . . , srq of U ˆ UU UU 1

Definition 2.3.3 state it is in V 1 iff the following hold:

(1) the bundle ωlog
C b Lb3 is ample and

(2) the linear system pL, s0, . . . , srq has no base points.

On the other hand, at any point pC,LpAq, w0, . . . , wrq of UU 1, Construction 4.1.5
states it is in W iff:

(i) the base locus BLpwq of w0, . . . , wr is discrete and disjoint from the special
points of C,

(ii) the subset BLpwqL of the base locus is empty and

(iii) the line bundle ωlog
C b Lb3 is ample.

Conditions (1) and (iii) are clearly equivalent. We want to show that for points
in mApUq condition (ii) implies condition (2), and that (2) holding for points of U
implies (i) and (ii), that is: their image under mA lies in W .

Let pC,L, s0, . . . , srq be a point in U ,

mApC,L, s0, . . . , srq “ pC,LpAq, w0, . . . , wrq

where wi is the image of si under H
0pC,Lq Ñ H0pC,LpAqq. Condition (ii) implies

that the BLpwq Ă A. On the other hand, qA and qU were chosen so that BLpqsq does

not intersect qA on the open qU , then also BLpsq does not intersect A in U . Then
we see that BLpsq must be empty.

Conversely, if BLpsq is empty, BLpwq must be contained in A, which implies
both condition (i) and (ii).

We have that V » V 1 “ Mg,npPr, dq ˆSecPics pL‘r`1{Cq pU ˆ UU UU 1q.

Now the two maps V Ñ RSecPicspL
‘r`1{Cq and RV Ñ RSecPicspL

‘r`1{Cq are
étale maps having the same truncation, so by [TV05, Corollary 2.2.2.9] V and RV
are equivalent. □

Lemma 4.2.5. We have that RqV is a neighbourhood of qξ in Qg,npPr, dq.

Proof. This is similar to the proof of 4.2.4.
□
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Lemma 4.2.6. We have a homotopical cartesian diagram

RV W

RqV |W .

c
xh

q

Proof. We denote the restriction of pE, σq to W by pF, θq. By Proposition 4.2.1 we
had RU “ RZhpσq. Since RV “ RU ˆ UU W , we have

(33) RV “ RZhpθq.

By Lemma 4.2.3 and Lemma 4.2.2 the restriction of p qE, qσq from qUU to |W is

pq˚F, q˚θq. From Proposition 4.2.1 we had that RqU “ RZhpqσq. Then by the

definition of RqV we have

(34) RqV “ RZhpq˚θq.

□

5. Main theorem

We are now ready to prove our main theorem on the derived push-forward of the
structure sheaf of RMg,npPr, dq. Just recall that contracting rational tails gives a
morphism

c : RMg,npPr, dq Ñ RQg,npPr, dq

To prove our main theorem (See Theorem 5.2.1) that is

c˚ORMg,npPr,dq
“ ORQg,npPr,dq

.

it is enough to do it locally. That’s why §4 is useful as we have a local picture

for c. In Section 5.1, we will prove that q : W Ñ |W is proper and birational (See
Proposition 5.1.1. In 5.2, we use the Zariski Main theorem to prove that

q˚OW “ O
|W

(35)

(see proof of Lemma 5.2.6). Then by cohomology and base change, we prove our
main theorem (see Theorem 5.2.1).

5.1. Properness of q. Recall that W is a smooth DM stack and |W is smooth
affine scheme of finite type.

Proposition 5.1.1. The morphism q : W Ñ |W is proper and birational.

Proof. Birationality follows from the fact that rq : UU Ñ qUU is birational and W , |W

are open subsets of UU and qUU respectively.
We use the valuative criterion to prove properness. Let R be a valuation ring

with K its field of fractions.
Consider the following diagram

(36)

SpecK W

SpecR |W .

φ˝

q

qφ

D!
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The morphism qφ above is given by a family qC Ñ SpecR, together with a line bundle
qG and sections p qw0, . . . , qwrq. We denote by qC˝ the restriction of qC to SpecK. The
morphism φ˝ gives a family pC˝,G˝, w˝

0, . . . , w
˝
rq such that

qpC˝,G˝, w˝
0, . . . , w

˝
rq “ p qC˝, qG˝, qw˝

0, . . . , qw˝
rq.

Here, by abuse of notation we denoted by q the map induced by q : W Ñ |W .
In the following we show that there exists a unique morphism φ which extends

φ˝ and makes diagram (36) commute. In concrete terms, this amounts to finding
pC,G, w0, . . . , wrq a family over SpecR which extends pC˝,G˝, w˝

0, . . . , w
˝
rq and such

that

qpC,G, w0, . . . , wrq “ p qC, qG, qw0, . . . , qwrq.

Existence.
By definition, |W parameterises tuples p qC, qLp qAq, qw0, . . . qwrq, subject to the non-

degeneracy condition in 4.1.3. This shows that |W is a subset of Qg,npPr, d ` aq.

Let ĂW be the fibre product

ĂW Mg,npPr, d ` aq

|W Qg,npPr, d ` aq.

x

c

In the following we construct a morphism ĂW Ñ W such that ĂW Ñ |W factors

through ĂW Ñ W . The construction is the one in Theorem 3.3.10 with minor mod-

ifications. Let prC, rGq denote the universal curve and universal bundle on Picsd`a.
We have

ĂW Ă SecPicsd`a
prG‘r`1{rCq

W Ă SecPicsd
pLpAq‘r`1{Cq “ W Ă SecPicsd

pG‘r`1{Cq

|W Ă Sec
~Picsd

pqLp qAq‘r`1{qCq “ Sec
~Picsd`a

pqG‘r`1
d`a {qCd`aq » Sec

~Picsd`a
pqL‘r`1

d`a {qCd`aq

where qCd`a, qLd`a are the universal curve and line bundle over }Picsd`a – }Picsd.

The isomorphism }Picsd Ñ }Picsd`a is given by p qC, qLq ÞÑ p qC, qL b O
qCp qAqq.

Claim. Let p rC, rG, rwq P ĂW and let RT be a rational tail of rC. We have

RT “ RTL̃ \ RTÃ.

The claim follows from the fact that rw “ qw outside the exceptional locus of
rC Ñ qC and the fact that BLpwq “ BLpwqL \ BLpwqA. We need to show that the

labelling on |W lifts to a labelling of the rational tails of the universal curve of ĂW .

We have that p : rC Ñ C contracts rational tails. Since the base loci of wL and wA

are disjoint we get that the base loci of p´1wL and p´1wA are disjoint. Moreover,
since the base loci of wL and wA form disconnected components, the same holds
about their inverse images. This proves the claim.

By possibly shrinking |W and changing the basis of Pr, we have a divisor Zpw̃q
rA

on C̃, which we denote by rA. Let L̃ denote G̃ b Op´ rAq.

Let S be a scheme. In the following we contract rational tails of rCS which

intersect rA. Let DA be the divisor of rCS , which consists of rational tails RT
rA and
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let δA be the degree of rLS restricted to the tails. We have that L1
S :“ rLSpδADAq

is trivial along the exceptional locus DA and base point free. Let us define

C “ Proj
ÿ

n

H0p rCS , pL1
Sqbnq.

Let κ : rCS Ñ CS and let LS :“ κ˚L1
S . Since L1

S is trivial along DA, Lemma 7.1
in [PR03] implies that LS is a line bundle. In the same way as we did in the
proof of Theorem 3.3.10, we construct pw0, . . . , wrq sections of L. We thus obtain

a surjective morphism ĂW Ñ W . It can be seen that ĂW Ñ |W factors through
ĂW Ñ W .

Since ĂW Ñ W is surjective, there exists a (non unique) family of maps

p rC˝, rG˝, rw˝
0, . . . , rw˝

rq P ĂW

such that

q ˝ rqp rC˝, rG˝, rw˝
0, . . . , w̃

˝
rq “ pC˝,G˝, w˝

0, . . . , w
˝
rq.

Equivalently, we have a family rφ˝ : SpecK Ñ ĂW which commutes with φ˝. Hence
we have the following diagram

ĂW Mg,npPr, d ` aq

SpecK W

SpecR |W Qg,npPr, d ` aq.

rq

c
φ˝

rφ˝

q

rφ

rφ

Since Mg,npPr, dq is proper, we have that c is proper. This implies that ĂW Ñ |W

is proper. This shows that rφ˝ extends (uniquely) to rφ : SpecR Ñ ĂW , and thus the
morphism rq ˝ rφ : SpecR Ñ W proves the existence.

we consider the image of p rC, rL, rw0, . . . rwrq in W .

Uniqueness. In notations as before, we have morphisms ĂW Ñ W Ñ |W . We

have that ĂW Ñ |W is separated, because by construction it is proper. The map
ĂW Ñ W is surjective and proper by the discussion above. With this, we are under

the assumptions of [Sta22, Tag 09MQ]. This shows that W Ñ |W is separated.
□

As W is a smooth DM stacks, we denote its coarse moduli space by |W |. Recall

that |W is a smooth scheme and that we have a morphism q : W Ñ |W .

Lemma 5.1.2. The morphism |q| : |W | Ñ |W is projective.

Proof. In the following we show that |W | is projective. This implies that the

morphism |q| : |W | Ñ |W is projective.
Recall that W is open in a DM stack π˚LpAq defined by the following stability

conditions, for a point pC,LpAq, w0, . . . wrq
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(1) the bundle ωlog
C b Lb3 is ample

(2) The base locus BLpwq “
Şr

i“0 Zpwiq has dimension 0 and is distinct from
marked points and nodes.

To show projectivity, we can follow the proof of [Cor95]. We sketch here the neces-
sary modifications, trying to adhere to the notation of the original proof as much
as possible.

A family F : S Ñ W consists of a pre-stable curve πS : CS Ñ S with n marked
points px1, . . . xnq : S Ñ CS , a distinguished divisor AS of degree a, a line bundle
LS of degree d and sections pw0, . . . wrq of LSpASq. We can define define a line
bundle on S by

VF “ xωlog
CS

b LSpASqb3, ωlog
CS

b LSpASqb3y

using Deligne’s bilinear pairing, explicitly for VF “ ωlog
CS

b LSpASqb3, we have

VF “ detRπS˚OS b pdetRπS˚VF qb´2 b detRπS˚pVF b VF q.

We want to show this bundle VF is ample. Following Cornalba’s approach, which
relies on Seshadri’s criterion, it suffices to show that there exists a constant α “

αpg, n, r, dq ą 0 such that for any non-isotrivial family F over an integral complete

curve S, since we have already proved that |q| : |W | Ñ |W is proper.

(37) pVF ¨ VF q ě αmpSq

where mpSq denotes the maximum multiplicity of points in S.
Since the number of nodes of the curve CS is bounded in terms of pg, n, d, rq for

any family, we may reduce to the case of a family F whose generic curve is smooth,
as in the original proof. Now the idea is to add marked points to CS to obtain a
stable domain curve. Since we do not have a well-defined map to Pr, we can use
the sections to add 3pd ` aq marked points. Indeed, by taking linear combinations
of the sections pw0, . . . , wrq we may assume that we have a linearly independent
set pw0, w1, w2q such that for i P t0, 1, 2u the following conditions hold (c.f. [Cor95,
Lemma 2] note that our condition (iii) is equivalent to (ii), (iii) and (v)):

(i) Zpwiq does not contain components of the fiber of πS

(ii) Zpwiq does not contain xj for j “ 1, . . . , n
(iii) Zpwiq consists of d ` a distinct, non-special points on all the fibers of πS

which are singular or lie over singular points of S.

We take

Zpw0q “ xn`1 ¨ ¨ ¨xn`d`a

Zpw1q “ xn`d`a`1 ¨ ¨ ¨xn`2pd`aq

Zpw2q “ xn`2pd`aq`1 ¨ ¨ ¨xn`3pd`aq

where we may assume, up to some finite base change of bounded degree, that
pxn`1, . . . , xn`3pd`aqq are distinct as sections of πS and distinct from the original
sections px1, . . . , xnq. Now, on smooth fibers of πS , some of the xi’s may still meet,
indeed they will if the w’s defined a linear system with non-empty base-locus. We
may proceed to resolve them as in [Cor95, Proof of Lemma 2] and obtain a family
of stable curves

F 1 “

!

C 1
S Ñ S, x1

1, . . . , x
1
n`3pd`aq

)



36 DAVID KERN, ÉTIENNE MANN, CRISTINA MANOLACHE, AND RENATA PICCIOTTO

with

(38) pVF ¨ VF q “ pωCS
pDq ¨ ωCS

pDqq ě pωC1
S

pD1q ¨ ωC1
S

pD1qq.

where D “
řn`3pd`aq

i“1 xi and D1 “
řn`3pd`aq

i“1 x1
i. We may assume F 1 is a non-

isotrivial family, otherwise we proceed as in [Cor95, Lemma 3]. Now, pS,C 1
S , D

1q

is a non-isotrivial stable family, so κ1 “ πS1˚pωC1
S

pD1qb2q is ample on S, thus by

Seshadri’s criterion and (38) we have the required α to conclude that (37) holds.
□

5.2. Derived push-forward. In this subsection, we will prove the main theorem
of this paper that is:

Theorem 5.2.1. For any, g, n and d, we have that

c˚ORMg,npPr,dq
“ ORQg,npPr,dq

in Db
CohpRQpPr, dqq.

Remark 5.2.2. At the level of virtual classes, we have that

c˚rMg,npPr, dqsvir “ rQg,npPr, dqsvir.

This was proven in [CFK10], [MOP11] and [Man14].

We deduce the following corollary.

Corollary 5.2.3. The G-theoretic Gromov-Witten invariants and the G-theoretic
quasimaps invariants are equal.

Remark 5.2.4. Let X be a Noetherian derived Artin stack. Recall that by definition
(cf. [Kha22] for this definition for derived stacks)

KpXq :“ KpPerfpXqq and GpXq :“ KpDb
CohpXqq.

If X is smooth, Db
CohpXq and PerfpXq coincide. When X is a scheme, Lee (see

[Lee04]) denotes them respectively K˝pXq and K˝pXq. Our G-theoretic Gromov–
Witten invariants are often called K-theoretic invariants by other authors.

We prove the theorem by using the étale neighborhoods RV and RqV constructed
in the previous section. With Lemma 4.2.6 in mind, we first want to study the

morphism q : W Ñ |W .

Proposition 5.2.5. We have

R0q˚OW “ O
|W

in Db
Cohp|W q(39)

Riq˚OW “ 0 for i ą 0.(40)

Proof of Proposition 5.2.5. Recall that W is a smooth DM stack. Denote its coarse
moduli space by W

α
ÝÑ |W |. The scheme |W | is normal with rational singularities

(see [Vie77], Proposition 1), since it is locally the quotient of a smooth scheme by a

finite group. Since |W is a (smooth) scheme, q factors as W |W | |W ,α |q|

with α a finite morphism and |q| a projective birational morphism. As |W | is also
a good moduli space (see [Alp13] or [AOV08]), we have

R0α˚OW “ O|W | in Db
Cohp|W |q(41)

Riα˚OW “ 0 for i ą 0.
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Now |W | admits, by Hironaka’s work [Hir64], a projective resolution of singularities
and since the singularities were rational we have that

p : A Ñ |W |

with

R0p˚OA “ O
|W

in Db
Cohp|W q(42)

Rip˚OA “ 0 for i ą 0.

The composite map

f : A
p

ÝÑ |W |
|q|

ÝÑ |W

is a projective birational map between smooth schemes, then by [CR15, Theorem
1.1] we have

R0f˚OA “ O
|W

in Db
Cohp|W q(43)

Rif˚OA “ 0 for i ą 0.

The relative Leray spectral sequence, defined by

Ei,j
2 “ Ri|q|˚pRjp˚OAq

converges to Ri`jf˚OA. By eq. (42), the spectral sequence degenerates on the
second page and

Rif˚OA “ Ri|q|˚pR0p˚OAq “ Ri|q|˚O|W |

and the result follows from combining this with eq. (43) and eq. (41). □

Recall from Lemma 4.2.6, we have the homotopically Cartesian diagram

(44)

RV W

RqV |W .

i

c
xh

q

qi

Lemma 5.2.6. We have Rc˚ORV “ OR qV .

Proof. This follows from derived base change, which works by Lemma A.1.3 in
[HLP23] as qi is of finite Tor amplitude thanks to Proposition 4.2.1 and OW is
cohomologically bounded below as W is smooth. We thus get:

Rc˚ORV “ Rc˚Li
˚OW

“ Lqi˚Rq˚OW

“ Lqi˚O
|W

by (39) and (40)

“ OR qV .

□

Proof of Theorem 5.2.1. The morphism c : RMg,npPr, dq Ñ RQg,npPr, dq. Gives a
morphism of structure sheaves

c : ORMg,npPr,dq
Ñ c˚ORQg,npPr,dq

.

To prove that it is an isomorphism, it is enough to prove it étale locally. That’s
exactly what we have done in §4. Hence we are in the situation of diagram (44),
the Lemma 5.2.6 finishes the proof. □
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Synthèses. Société Mathématique de France, Paris, 2021.
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