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These notes are the results of some talks between Friedrich Hirzebruch, Claus
Hertling and Etienne Mann in the Max Planck Institute of Mathematics during
december 2002 and january 2003.

The second section is devoted to compute the determinant of a matrix com-
posed of Catalan numbers. In order to compute it, we see this matrix as an
intersection matrix in the cohomology ring of the Grassmannian G(2,n+ 1) and
then we compute this matrix in another base of the cohomology where the de-
terminant might be easier to compute. This part is based on an old article of
Schubert [2] and on a more modern approach in the book [1]. Section 3 is based
on the quantum cohomology of the complex projective space. In this part, we
show that the WDVV equations for degree 1 are equivalent to the fundamental
relations of the first part. Moreover we prove some new formulas.

1 Cohomology of the Grassmannian G(2,n+ 1)

In this section, we express the matrix of the intersection form in a suitable base
of the cohomology ring of the Grassmannian G(2,n + 1).

1.1 Definitions and notations

We consider the Grassmannian G(2,n + 1), which has the complex dimension
2n — 2. We denote the cohomology ring of G(2,n + 1) with coefficients in Z as
A* e, A= H*(G(2,n+1),Z).

Definition 1.1. 1. Let a and b be two integers such that 0 < b < a < n.
Let L; C Ly C C™! be two hyperplanes of complex codimension a and b.
We denote by (a,b) the cohomology class in A* which corresponds to the
subvariety {A € G(2,n + 1) such that AN Ly # 0 and A C Ly}. We call it
a Schubert cocycle.

2. If a and b satisfy the condition 0 < a < b < n then (a,b) := —(b,a).
3. IfaorbeZ—{0,...,n} or a=>bthen (a,b) :=0.

4. We define (a) := (a,0).

The following is well known.

Proposition 1.2 (e.g. [1] p.196). (a,b) € A*™*"Y and A* is a free Z-module
with base the Schubert cocycles (a,b) with 0 <b < a < n.

Remark 1.3. (1) (resp. (n,n — 1)) generates A° (resp. A*"~2).



1.2 The product and the intersection form on the coho-
mology ring

Proposition 1.4 (Pieri’s formula, [1] p 203). Let a,b, 3 € {0,...,n} with
b> (. Then

b—p-1

B
By= > (a+b—1—kB+k) (1)

k=

Corollary 1.5 (Giambelli’s formula, [1] p 205). Let a,b € {0,...,n}.Then

(a,0) = (a)(b+1) — (a +1)(b) (2)

Proof. 1t is an obvious consequence of the formula (1) :

o

b

(=

—1
a+b—1—kk) = (a+b—kk)
0

(@)(0+1) = (a+1)(b) =

£
I

(

k=
= (a’ b)
]

Finally we get the formula which is the main general result in Schubert’s
article [2] (§4).

Corollary 1.6 (Schubert’s formula, [2] §2). Let a,b, o, € {0,...,n} with
b> (3. We have :

b—p—1
(a,a)(b,B) = Z (a+b—1—k,a+8+k) (3)
k=0

Remark 1.7. As special cases we obtain the following formulas. In fact, they
hold for all b, 8 € Z>.

e fora=0and a=2:
2)(6,8)=(0+1,8)+(b,8+1) (4)
e Fora=2anda=1:

2,1(6,8) =0+1L5+1) ()



Proof. By using (2) and (1), one has :

(@, ) (b, B) = ga(a+1) (a+1)(a))(b. )

O

The next proposition explains what happens when the product of two Schu-
bert cocycles is in the top cohomology group.

Proposition 1.8. Let a,a,b,3 € {0,...,n} such thata > a, b> (3 and a+ a +
b+ B8 =2n. Then the product (a,a)(b, 3) is in A*" 2 and we have :

(a,a)(b,ﬂ):{ én,n—l) Zsi+ﬁ:b+a:”

Proof. We will use the formula (3) :

(a,0)(b,8)=(a+b—1,a+8)+(a+b—-2,a+F—-1)+...+(a+ G, a+b—1)
As a+ b+ a—+ B = 2n, there are three possibilities :

e cither a + [ > n, then (a, a)(b, ) = 0 because the terms on the right hand
side all vanish (see definition 1.1).

e or a+b>n, then (a,a)(b, ) = 0 for the same reason.

e or a+ 3 = a+0b=n. Then the only term which does not vanish is the last
one, i.e. (n,n—1).

O

Now we will compute the intersection form in the cohomology ring in a suitable
base e.

We denote by [z] the integer part of z € R.

Let d € {0,...,n—1}. Let e := (ep, ..., €1g) a) a base of A” where ¢; := (d+1—

i,i). Let B = (Eq, ..., B ) a base of A*"*~% where E; := (n—j,n—1—d+7j).
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We consider the intersection form :

J: Adx A2n—2-d __, 7
((a,0),(c,d)) +— (a,b)(e,d)

(n,n—1)

Corollary 1.9. The matriz of the intersection form in the bases e and E is the
identity matriz of rank [2] + 1.

Remark 1.10. If d =n — 1, we have e = E. So the intersection matrix for e is
the identity matrix.

Proof. The matrix of the intersection form is the matrix of coefficients e;.F; for
i,7€{0,..., [g]} Then we apply the proposition 1.8, so e;.E; = (d+1—1,i)(n—
j,n—l—d—i—j):@-,j. I

2 About determinants of Catalan matrices

2.1 A Catalan triangle

In this section, first we will describe a Catalan triangle and then we will show
where these numbers appear in the cohomology ring of the Grassmannian.
We start with a description of a Catalan triangle :

N 01 2 3 4 5 6
0 1 0

1110
212 2 0
3135 5 0
414 9 14 14 0
515 14 28 42 42 0

For j —i < 1, we denote ¢(i, j) the number in the ith line and in the jth row.
Proposition 2.1. Let ¢ and j be two integers such that j —1 < 1.

e This triangle is characterized by the following relations :

c(i,j)=c(i—1,j)+c(i,j—1), ci,i+1) =0 and c(:,0) =1

.. i\ G—id1 itd i
o We have c(i,j) = (er])w]r—T _ (jﬂ) _ (Jt]l)
Remark 2.2. e The number ¢(i,7) = c(i,7 — 1) is the ith Catalan number,

that is (22’) Z.J%l, and we denote it by C;.



e Schubert proved in his article [2] in §5 the following relation :

(0,5)2)*" " =e(n—j—Ln—1)(n,n—1) (6)

It is a consequence of formula (4) and of the definition of the Catalan
triangle numbers. So if 7 = 0, one has :

n—1—1\i—-1
n—1

D@ (nn— 1) = e(n— 1n— i) = ( )

n
And if 7 = 1, one has :
(2)>"72/(n,n—1) =c(n —1,n) = c(n,n) = C,,.

The next lemma shows where these numbers appear in the computation of
2)* in the cohomology ring.
gy ring

Lemma 2.3. For any k € N, we have the following formula :

(2 = c(k,O)(k:+1)+c(k—1,1)(k:,1)+...+{ Eg—%)(;j(’%)%) A
= ek 0)(k+ 1) +elk— 11k D) + .+ e B D))

Proof. We will write the proof only for £ even. The proof is based on formula
(4) and on theorem 2.1. By an induction, it is obvious that :

L (2 = apo(k + 1) + ara(k, 1) + ...+ ap e (5 +1.5)
2. ar.o0 = 1.

3. Ap kg = 0.

4. ap; = ap_1,; + ap_1,i—1

This implies that ay ; = c(k — 7, ). O

2.2 The matrix of the intersection form

We will use a different base of the cohomology ring and compare the matrices of
the intersection form.
Let (a,b) € A1, We can prove the following theorem.

Theorem 2.4. Let d be an integer in {0,...,n — 1}.

(i) f = (fo,...,f[%]) where f; == (2)47%(2,1)" is a base of A? and we have
the relation that f = eB.



i) F = (Fy,..., Fa) where F; = (2)%2(2, 1)"»1=J js q base of A*—21
(5] J
and we have the relation that FF = EB.

Here B is the following lower triangular matriz :

c(d,0) 0
cd—1,1)  ¢(d—2,0)

where € = [T — [2], i.e. € € {0,1} and e = d mod 2.
Remark 2.5. The matrix B has only 1 on its diagonal.

Proof. We will just write the proof for d even.

In order to prove (i) and (ii), we will use the same strategy. First, we will
express f; (resp. F}) in terms of e; (resp. Ej;); then we will see that the passing
matrix is invertible which proves that f (resp. I') is a basis.

(i) Leti € {0,...,2}. By using the lemma 2.3 and the formula (5), we obtain:

fi = (Z)d_?i@vl)i
= (2,1)(c(d—24,0)(d—2i+1)+e(d—2i —1,1)(d—2i,1) +...
te(g =i 5 =5 —i+ 1,5 1)
= c(d—2i,0)(d—i+1, )+c(d 2 —1,1)(d—i,1+1)+...
+c<——ﬂ—z>%+ )

(
= ¢(d—2i,0)e; + c(d LDeyr+...+c(d—1, 4 —i)e%

(ii) Let j € {0,...,4}. By using the lemma 2.3 and the formula (5), one has:

Fyo= (2722, 1)t
= (1) (e(d = 25, 0)(d = 2+ 1) o+ efd = 2 = 1, 1)(d = 24, 1)
tooted =58 -NE-i+1L4-9)
= ¢(d—25,0)(n—j,n—1—d+j)+
cd—2j—1,)(n—j+1ln—d+j)+
be(d =4 - )n—4+1n—g 1)
= c(d—2j,0)Ej+C(d—2j—1,1)Ej+1+...+c(g—j,%—j)E%

In both cases, we have that i =eB and F = EB where B is an invertible
matrix.

O

Corollary 2.6. Consider the base [ of A and the base F of A*=274,
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(i) The intersection form A% x A*=*~4 — 7, has in these bases the matriz :

C, Coa o Cyyg
Ca1 :
Catgy Cagyy -+ G

We call this matriz the Catalan matriz which ends with C..
(ii) The intersection form can also be expressed as B'B.

Remark 2.7. For d = n — 1, we have e = I, f = I, and B is invertible with
integer coefficients. Then this corollary proves that such a Catalan matrix is
equivalent, in the meaning of quadratic forms, over the integers to the identity
matrix.

Proof. (i) We use the formulas (5) and (6) and compute the intersection form
in these bases :

fi-l5 = (2)" 2Z( 71) (2)H(2, )T

( ) )(2 1)n 1—d+i+j

(2)24= 2(’+])(n—d+z+j,n—1—d+@+])
cn—(n—-1—-d+i+j)—1l,n—(n—d+i+7)))(n,n—1)
cd—i—j,d—i—j)(n,n—1)
= Ciqij(n,n—1).

(ii) We just apply the base change from e to f and from E to F.
]

The last result shows that all determinants of Catalan matrices which end
with Cy or C; are equal to 1 whatever the size.

Question :

What can we say about the determinant of a Catalan matrix which ends with
C, (whatever the size)?

We will give some results in the next section.

2.3 About the determinant of a Catalan matrix

Let r be in the set {0,...,n — 1}. We generalize the intersection form in the
following way :

I - An—l—rXAn_l_r .7
(a,0), (c,d) —s leddedr

(n,n—1)

This comes from the Lefschtz’s theorem because (2) corresponds to the first
Chern class of a line bundle.



Proposition 2.8. The matriz of I" in the base f := (fo,...,f[nféfr]); where
fi == (2,1)42)" 2= depends on the parity of n — 1 —r, namely :

1. If n — 1 —r is even the matrix of I" is the Catalan matrix of size %H
which ends with C, i.e.

Cn_]_ Cn—2 s Onflﬁ—r
2
Cn_Q On+1+r
2
Cn—l—H" Cn+1+r L CT‘
2 2

2. If n — 1 —r is odd the matriz of I" is the Catalan matriz of size "5+ which
ends with Cyyq i.e.

Cnfl Cnfg Cn;r

Cn_Q Cn+2+r

Cn_—H“ Cn+2+r ce Cr+1
2 2

Proof. In both cases, it is enough to compute f;f;(2)*. We just obtain these
numbers by (6).

ffi2 = (21222, i)
(27 1)1—1—3 (2)211—21—2]_2

= c¢n—i—j—1ln—i—j—1)(n,n—1)
On—i—j—l(nan_ 1)

O
Now we will compute the matrix of I” in the base e := (ey, . . . ,e[n_;_r]) where
e; := (n—r—1,7). But first we state the following lemma.
Lemma 2.9. For all k, we have :
[k
(2)*(a,0) =) (l)(a+k— 1,b+1)
1=0
Proof. 1t is obvious by an induction on k O

Remark 2.10. Later, we will only use the formula for & := 2r, namely :

l+7r

(Z)QT(a,b):Z(ZT )(a+r—l,b+l+r) (8)

I=—r



Proposition 2.11. The coefficient in position (i,7) of the matriz of I" in the

base e is :
2r 2r
r—i+j n—1—7J

for alli,j in {0,... [2=="]}.

2
We denote thzs matrzx by B(n,r).

Remark 2.12. We use now the same argument as in corollary 2.6. If n — 1 —r
is even (resp. odd) then the determinant of the Catalan matrix which ends with
C, (resp. C,11) is the same as the determinant of the matrix B(n,r).

Moreover, if n —r — 1 is even (resp. odd) then the proposition 2.8 implies
that the derminant of B(n,r) is equal to the determinant of B(n,r — 1) (resp.
B(n,r +1)).

Proof.

(2)%eie; = (2)*(n—r—i,i)(n—r—j,j)

n—r—2—1
= (2% ) @n-2r—i-j—k-1i+j+k)
k=0

= (2)*@2n—2r—i—j—k—1,i+j+k)

k=0
= 2n—r—i—j—k—-Il—-1,r+i+j+k+I
2 ;([—I—T’) n—r—i—j r+i+j )

If one looks at the terms in front of (n,n — 1) and (n — 1,n), they cancel each
other except : (Tfi’"_j) in front of (n,n —1) and ( 2:—]') in front of (n — 1,n). So
this sum is equal to the difference between these two coefficients. O

Corollary 2.13. The determinant of the Catalan matriz of size k which ends
with Co =2 is k+ 1.

Proof. Let r =1 and n := 2k + 1. The propositions 2.8 and 2.11 imply that the
determinant of the Catalan matrix of size k which ends with Cy; = 2 is equal to
the determinant of the following matrix which is well known from the root system
of type Ag.

21 0 -0
1 2 1 '
0 .0
' 1 2 1
0 0o 1 2
Its determinant is obviously k + 1. O
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Corollary 2.14. The determinant of the Catalan matriz of size k which ends
with Cy = 5 s $FDEF2)k+3)

6

Proof. Let r =2 and n := 2k + 1. The propositions 2.8 and 2.11 imply that the
determinant of the Catalan matrix of size k which ends with C5 = 5 is equal to
the determinant of the following matrix :

[ e

0

4 1 0
6 4
4 6

0

6

4
1

0
0
4 1
6 4
4 5

We can prove that this determinant satisfies a recursive formula which is also
satisfied by (+1)(k+2)(2k+3)
6 .

Conjecture 2.15. The determinant of the Catalan matrixz of size k which ends

with C, is :

3 Formulas from quantum cohomology

1 2k +i+j

1<i<j<r—1

i1+

O

In this section, after some reminiscences about quantum cohomology, we will
explain some links between the article of Schubert [2] and this new approach. Fi-

nally, we will use this modern approach to compute some terms of type (a)(b)(2)

2n—a—>b

For b = 2 we recover the same formula (7) that Schubert proved in [2] §5.

3.1 Some reminiscences about quantum cohomology of
the complex projective space

To define properly the Gromov Witten invariants, we refer to [3] chap III. Here
we just give an interpretation of these numbers.

Let d > 1 and i, ..

.yi, > 0 be integers. We denote by aj, ..

(7
., ayf some

hyperplanes of P" of codimension k in generic position. The Gromov-Witten
invariant N(d, is, ..., 1,) is the number of rational curves in P" of degree d which

intersect all hyperplanes @i, if this number is finite. This requires

n

» (k=1 =(n+1)d+n -3

k=2

11
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If (9) does not hold we set N(d,is,...,1,) := 0. In the notation of the first part,
we have that N(d, iy, ...,1,)(n,n —1) = (2)2...(n)".
The Gromov-Witten potential is defined as follows:

tg ot
P =+ E N(d,ig, ... ip)= ... e
1o! i)
d>1,ig,...,in >0 n

()

where

1
Do = ¢ >ttty

%,5,k>0
i+j+k=n

Let us consider the cohomology of P". We have H := H*(P",C) := Y ;_,CAy

where A, is the dual class of P"* C P". Let to,...,t, be the coordinates of H
corresponding to this base and let 0; := a% be the coordinate vector fields. We
define a bilinear form on this cohomology by :

9(9;, 0;) = ijn—;
This form is nondegenerate (it is the Poincaré form). We call it the metric.

Then we define a product o by the formula :

Pd

9(&' Oajaak) = m =
iUj

D

Let (a,b,c,d) € {0,...,n}*. We denote by (a,b,c,d)-WDVV the following
equation :

Z q)abk(p(n—k)cd - Z (I)a,ckq)(n—k)bd
k=0 k=0

The product o is associative if and only if the Gromov-Witten potential satisfy
the (a, b, c,d)-WDVV equations for all a, b, ¢, d.

Theorem 3.1 ([3]). The product o is associative.

In the rest of the notes, we will only care about Gromov Witten invariants of
degree 1.

Proposition 3.2. The coefficients in front ofg e %etl in the (a, b, c,d)-WDVV
equation satisfy :

Na,b(c+d) (L ;) + ch(a-l—b) (17 ;) = Nac(b+d) (17 5) + Nbd(a+c) (17 ;) (10)

where Noperay(1,7) := N(1,da, .. ig+ 1o yip+ 1o depa + 1,y dn).
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3.2 Relations from quantum cohomology

Here, in the two next propositions, we give an equivalence between the formula
(3) and WDVV equation with Giambelli’s formula.
If we look at the formula (10) with Schubert notations we have :

(@)(0)(c +d) + (e)(d)(a + b) = (a)(c)(b + d) + (b)(d)(a + ¢) (11)

Question :
The equations (10), are they equivalent to the equations (11) ?

Remark 3.3. The formula (11) can be seen as the WDVV equations for degree
one in Schubert notations.

If a =1 then we have :
(b+ 1)(e)(d) = (b)(c +1)(d) = (c)(b+d) — (b)(c+ d) (12)
If a = b =1 then we have :
(2)(e)(d) = (e)(L+d) + (d) (1 +¢) — (c+d) (13)
If a=b=1 and ¢ = 2 then we have :
(2)(2)(d) = (2)(1 +d) + (d)(3) — (2 + d) (14)
Proposition 3.4. 1. All these equations are equivalent.
2. Schubert’s relation (3) implies (11)

Proof. 1. e Show that (12) implies (11). We multiply by (a) the equation
(12) :

(@)(©)(b + d) = (a)(b)(c + d) = (a)(d)((b + 1)(c) = (b)(c+ 1))

We remark that the right hand side is symetric in @ and d. To conclude,
one can see that (11) means that the left hand side of the equation
above is symmetric in a and d.

e Show that (13) implies (12). We multiply by (b) the equation (13) :

(b)(c+d) = (D)(d)(c +1) = (b)(c)((d + 1) = (2)(d))

Again, we remark that the right hand side is symmetric in b and ¢. To
conclude, one can see that (12) means that the left hand side of the
equation above is symmetric in b and c.

13



e Show that (14) implies (13). We will proceed by an inductive proof
on c. For ¢ =2, it is just (14).
Suppose that for all d we have :

(2)(e)(d) = (e)(d+1) + (d)(c+ 1) = (c+ d) (15)
We will prove that
2)c+1)(d=1)=(c+1)(d)+ (d—1)(c+2)—(c+d)

We multiply (14) with d — 1 by (¢). Then we have :

2)(e)d) = 2)2)(e)(d=1) = (e)(d=1)(3) + (1 +d)(c)
Then we apply (14) with ¢ :

@)(e)d) = @)(d=1)(c+1)=(d=1)(c+2)+(c)(d+1)

Then we obtain :

2)(c+1(d—1) = (2)(c)(d) + (c+2)(d = 1) — (1 + d)(c)
Finally, we apply (15) with ¢ and d :

2)c+1)(d=1) = (c+1)(d)+(d—1)(c+2)—(c+d).

2. It is enough to prove that (3) implies (14) and this is easy to check.
U

Y

Proposition 3.5. If we consider Giambelli’s formula as a definition for (a,b)
then the equation (11) implies (3).
Remark 3.6. The propositions 3.4 and 3.5 show us that all the results in the

first section are implied by the equation (14) and the Giambelli’s formula.

Proof. 1t is enough to prove that equation (12) implies (1) because of the propo-
sition 1.4. On one hand Giambelli’s formula (2) shows that :

(a)(b, B) = (a)(b)(B + 1) — (a)(b+ 1)(B)
On the other hand, by using the formulas (2) and (12) again, we have :

b—B—1 b—p—1

d (at+b—k-1,8+k = > ((a+b—k—-1)(B+k+1)

—(a+b—k)(B+E))
= (a+p8)(0) - (a+b)(3)
= (@)(b)(B+1)—(a)(b+1)(B)

14



The last theorem is motivated by the next remark 3.8

Theorem 3.7. Every Gromov-Witten invariant of degree 1 can be calculated
inductively with formula (12) from (n)(n).

Proof. Let (2)2...(n)™ be a Gromov Witten invariant, i.e. we have >} ,(k —
1)iy = 2n—2. If we use the formula (12) many times, we can express this invariant
with a product of two conditions. But the only product of two conditions such
that >, _,(k — 1)ix = 2n — 2 is when i, = 2 and the other are zero. That is
exactly the condition (n)(n), i.e. the number of line through two points. O

Remark 3.8. 1. If one applies Giambelli’s formula to (n)(n), one sees:
(n)(n) = (n,n —1).

2. In Quantum Cohomology of the projective space P, Manin and Kontsevich
prove a much stronger result : any Gromov-Witten invariant of any degree
can be calculated inductively with the WDV V-equations from (n)(n)’.

3.3 Some other formulas

When we study the relation (10) we have the following diamond :

(2)(2)
The results are :

1. The numbers in the diamond above the line that is : (a)(b) with a+b > n
satisfy the binomial recursive formula. So we have :

@@ = (“ ) -1

a

2. If a =2 or b = 2 we have the same formula (7) as Schubert, namely :

(a)(2) ! = <2n —a- 1) 01

(n,n—1)

n—1 n

3. The other terms can be written as a sum of numbers in the Catalan triangle
but we do not have a closed formula.

15
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