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Chapter 1

Introduction

I.1 Outline

Enumerative geometry and Gromov—Witten theory

Enumerative geometry is a branch of mathematics which essentially deals with counting the number of
solutions to a geometrical problem. One of the first enumerative geometry problem one encounters is the
following: given two distinct points of the plane, how many lines going through these two points can we find?
This problem has a more difficult version: given five points of the plane in general position, how many conics
go through these five points?

Gromov-Witten theory gives tools to answer similar enumerative geometry problems. One of its feats was

to solve the generalisation of our two first problems:
Problem. LetdeZsg. Find the number Ny of rational curves of degree d in P(% going through 3d —1 points.

The answer to this problem was given in 1994 by M. Kontsevich and Y. Manin in [KM94]. They show
that the numbers Ny satisfy the recurrence relation (see Example I11.2.1.10)

3d-4\ 5 (3d—4)3 )
Ny = Ng, N, d2d2 - d3d
¢ dﬁ%:d @ d2((3d1—2) 127 \3q, - 1)1

d1,d2>0
This was a great step forward: before, we only knew the values Ny for d small, and no one could expect these
numbers to satisfy such a recursive relation.

Gromov—Witten theory is a branch of algebraic geometry. It first came to birth in theoretical physicists’
string theory. The mathematical community would then realise its potential when a group of four physicists,
P. Candelas, X. de la Ossa, P. Green and L. Parkes [CdIOGP91] announced a mean to compute similar
numbers Ny obtained by replacing IE”% by an arbitrary quintic X c ]P’é (Clemens’ conjecture). The next step

is to include these ideas in the context of geometry.

Gromov—Witten invariants and quantum differential equations

One major difficulty we encounter is the actual definition of the numbers N;. These numbers are examples

of Gromov—Witten invariants. We begin by giving only an intuition for their definition.
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Definition (sketch). Let X be a projective complex variety. Let g,n € Zsg, d € Hy(X;Z). Consider some
cycles Zy,...,Z, € Z,(X). The Gromov—Witten invariant associated to this data is the number

Z>0?

(2], [Za))S00 4 =

Number of curves C' ¢ X of genus g, and homological class d,
€
satisfying for all i,C'n Z; + @

To give this definition a true meaning, we have to realise this number as the degree of some intersection
product ([Ful98, Vis89]) on a moduli space parametrising this data - called the moduli space of stable maps.
The obstacle to defining and computing Gromov—Witten invariants comes from the geometry of this moduli
space. The construction of this space, due to M. Kontsevich, outputs not a scheme, but a Deligne-Mumford
stack which is not of pure dimension in general. The dimension issue was fixed by B. Fantechi and K.
Behrend’s intrinsic normal cone [BF97], which defines the virtual fundamental class [ﬂg,n(X , d)]m. This

virtual class allows us to define Gromov—Witten as an integral on the cycle of the correct dimension.

Definition (III.1.1.1). Let g,n,d as above, and let a; be the Poincaré dual of [Z;]. The associated Gromov—
Witten invariant is defined by
(nseandita= [ g Uevi(a) €@

Now, we would like to actually compute these integrals. We proceed to define some generating series, a
product and a bundle with connection. Properties of the moduli spaces above can be translated to properties
on these constructions (see e.g. Proposition I11.2.1.8).

We fix a basis of the cohomology H*(X;Q) = Span(T});cs, and we associate to T; a coordinate ¢;. Thus,
an arbitrary class in cohomology can be written as 7 = ¥, t;7;. We denote by g the metric on H*(X;C) given

by Poincaré duality: ¢(7;,T}) = [ x T3 0T;. We encode the Gromov-Witten invariants in the generating series

Definition (I11.2.1.1). The Gromov—Witten potential is the formal power series of variables ¢, ..., defined

by
1 coh
f(tz) = Z 7'(7""’7>0,n,d
n>0 n:
deHs (X;Z)
We assume from now on that there exists some open set U on which this series converges.

Ezample (111.2.1.4). For X = P2, the potential is expressed with the numbers N; defined above by
f(tl to t3) = 1(totz + If2t2) + i t’:’dtlj\fdt%d771
s g o = (3d-1)!
Definition (II1.2.1.5). The quantum product e, is a deformation of the classic product U on cohomology,
which depends on parameters (¢;). It is defined by the relation

g(TZ .T T]7 Tk) = ati atj atkf
We can now construct the quantum D-module, which is the data of a bundle with a connection (F,V)
(cf. [Dub96)).
Definition (I11.2.2.1). Let F be the trivial bundle on H*(X;C) x P! of fibre H*(X;C). We denote by z the
local coordinate P! at 0. Dubrovin’s connection V is defined by the following formula:
1
Vat.Tj=(3ti+*Ti°T)Tj, 0<i< N
i z

1 1 degz+
Vo.Tj = (az - SCe +Z’;(X>)T

J
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where € is some section of the bundle F', which will be made explicit in another chapter.
We define a new generating series of Gromov—Witten invariants

Definition (II1.2.3.15). Givental’s J-function is defined by J = S™'1, where S is a fundamental solution of
the quantum D-module and 1 is the constant section of the bundle F' whose value on the fibre is the unit of
cohomology 1 ¢ H°(X;C).

On one hand, it turns out that Givental’s J-function is the solution of some differential equation. In this

thesis, we will focus on the case X = PV. Under this condition, the equation satisfied by J is
[(20,)"" = e]T =0

On the other hand, we are able to build an explicit solution to this differential equation, called Givental’s

I-function. These functions are related by the
Theorem ([Giv96]). For X =PY the functions I and J satisfy I = J
Remark. There are two interpretations for the definition of I :

1. By mirror symmetry via the GKZ D-modules.

2. Via the localisation theorem applied to Givental’s equivariant J-function.

However, we will not mention anything else on the function I.

Quantum K-theory and ¢-difference equations

More recently in 2004, Y.P. Lee and A. Givental gave [Lee04, Giv00] defined new enumerative invariants
inspired by previous Gromov—Witten invariants. These invariants are defined by replacing cohomological
definitions by their K-theoretical analogues. Y.P. Lee constructed a virtual structure sheaf Ovﬂir. We define

the K-theoretical Gromov—Witten invariants by the following;:

Definition (IV.1.1.1). Let X be a projective complex variety. Let g,n € Zso, d € Ho(X;Z). Consider some
classes ¢1,...,¢0, € K(X). The K-theoretical Gromov—Witten invariant associated to this data is the number

Kth vl vir & *
<¢17 Y ¢n)g,:z,d =X (MQ," (X’ d) 5 Oﬂg‘n(X,d) gevi (¢1)) 3/

Questions. (Q1) Can we build the analogue in K-theory of the quantum product and the quantum D-
module?
(Q2) Can we relate together cohomological Gromov—Witten and K -theoretical Gromov—Witten invari-

ants ¢

To answer the first question (Q1), the naive analogue of the product using the classic metric g(L1, La) =
X(L1 ® Ls) is not associative. To fix this problem, Givental-Lee [Lee04, Giv00] introduce a modified metric
with the of K-theoretical Gromov-—Witten invariants. Omnce the metric is changed, we are more or less
back in the same situation: we can define a product, the operators Vp, and the J-function. However, we
observe something new: instead of the operator Vg, , Givental-Iritani-Milanov—Tonita [IMT15, GT14] obtain
g-difference operators.
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To answer the second question (Q2), there are two approaches.

The first approach is to look for an application of a Riemann—Roch theorem. Unfortunately, a Hirzebruch—
Riemann—Roch formula we could use for Deligne-Mumford stack, due to B. Toén [Toe99], only works when
these stacks are smooth - which our moduli spaces are not in general (though this is the case when the target
space X is a projective space). In 2011, A. Givental and V. Tonita [GT14] prove a theorem relating the two
Gromov—Witten theories. The statements are nonetheless quite technical.

The second approach is the aim of this thesis. It is inspired by the computations of the K-theoretical
J-function by Givental-Lee [GLO03]. In the case X = PV, the J-function can be linked to the g-hypergeometric
series ] ,

N+1

fal@) = %2) M, (1-q7)

which is solution not of a differential equation, but of a g-difference equation
N+1
[(1 —q@0e)" T - Q] JE(q,Q) =0
Given a g-difference equation, we are able to obtain a differential equation using a phenomenon called

confluence. We can therefore wonder if we can compare the confluence of g-difference equations in quantum

K-theory with the differential equations in quantum cohomology.

Confluence and Gromov—Witten theories

The confluence phenomenon for ¢-difference equations was studied first by J. Sauloy in 2000 [Sau00]. This
property says that a g¢-difference equation can admit a differential equation as a limit by doing "q — 1”.
Notice that for any k € Z we have

Q% _1d
q _
T.Qk = (1+q+q2+...+qk 1)Qk
Because of this, we have the formal limit
Q% —1d
lim &5 QF = kQ* = Qay - Q"
-1 q-1

This principle generalises to general g-difference equations, as long as we allow ourselves to specify further
what ”g — 1”7 means. A ¢-difference equation that has a well defined limit when ¢ tends to 1 is said to
be confluent (see Definition V.2.4.4). Then, the limit of this g-difference equation defines a differential
equation. It makes sense to compare the g-difference equation and its limit: for example, the solutions of the
g-difference equation give solutions to the differential equation by taking their limit when ¢ tends to 1 (see
Theorem V.2.4.7).

The main result of this thesis adapts the confluence of g-difference equation in the context of quantum

K-theory to obtain the theorem below.

Theorem (VI.2.1.1). For X = PN, let J® (resp. JE™) be the small cohomological (resp. K -theoretical)
J-function. Then,

1. The q-difference equation satisfied by J5™ will degenerate through confluence to the differential equation
satisfied by JN.

2. We denote by ch : K (]P’N) Q- H* (IP’N; (@) the Chern character. Let confluence (JKth) the result of

confluence applied to the solution JX™. Then, we have

ch (conﬂuence (JKth)) = Jeoh



L.2. PLAN OF THE THESIS 9

1.2 Plan of the thesis

In Chapter I1, we define the moduli space of stable maps and briefly expose some constructions and geometrical
properties needed for the later chapters.

In Chapter 111, we define Gromov—Witten invariants of a target space X and list their properties. Then, we
use these invariants to define a deformation of the cohomology ring of the target space X, called quantum
cohomology. The remaining of this chapter is dedicated to the definition and the study of the quantum
D-module, from which we construct Givental’s J-function.

In Chapter IV, we construct the K-theoretic analogues of the previous chapter. More precisely, we define
K-theoretic Gromov—Witten invariants and quantum K-theory as a deformation of K-theory of the target
space. Then, we try to construct the analogue of the quantum D-module. Lastly, we explicit the g-difference
operators acting on quantum K-theory.

In Chapter V, we give the necessary background on ¢-difference equations to be able to state our main
theorem. We explain how to construct the fundamental solution of a regular singular g-difference equation.
Then, we explain the confluence of these systems.

In Chapter VI, we state and prove our main theorem, which uses confluence of g-difference equation to relate
quantum K-theory with quantum cohomology.

We recommend the reader familiar with Gromov—Witten to focus on Chapters V and VI. The construction
of the ¢-difference module in quantum K-theory, is recalled in Subsection 1V.2.3.

We suggest the reader unacquainted with Gromov—Witten theory to skip the technical details of the
three first chapters in a first lecture. In Chapter III, this reader should focus instead on the properties of
the quantum D-module as a meromorphic connection (Section II1.2) while keeping the examples in mind.
The construction of Givental’s J-function will also be important. In Chapter IV, we suggest to focus on
the construction of the J-function (Definition IV.2.2.16). The construction of the g-difference module in
Subsection IV.2.3 can be skipped, and we refer instead to the g-difference equations exposed in the Chapter
VI, starting with Proposition VI.1.1.4.
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Chapter 11
Moduli space of stable maps

In this introductory chapter we review the construction of the moduli space of stable maps, which is an
essential ingredient to the define Gromov—Witten invariants. Then, we define the evaluation maps and the

tautological cotangent line bundles which will also be useful for defining Gromov—Witten invariants.

II.1 Stable maps and their moduli

II.1.1 Stable maps

Definition I1.1.1.1 ([Kon95]). Let n € Zyo and X be a complex projective variety with even cohomology. A
stable map is the data of a connected proper curve C' with n markings py,...,p, and a morphism f:C - X
such that

(i) The singularities of C' are of nodal type at worst
(ii) The markings p1,...,p, € C are distinct smooth points of the curve.

(iii) If C has an irreducible component Cy, such that Cy is of genus 0 and f is constant on Cp, then Cj
must contain three points which are either singularities or markings. If C' has genus 1 and there are no

marking, then f must not be constant.

Definition ILI.1.1.2. Let (f:(C;p) » X) and (g: (C’,p') - X) be two stable maps. An isomorphism of
stable maps @ : (f: (C;p) X) - (g: (c',p') - X) is the data of an isomorphism ¢ : C' - C’ such that for

all i e {1,...,n},o(p;) = p; and the triangle below is commutative:
(Cip1y---spn)
\
e |~ X
i
(Cspl, - pn)

The condition (iii) in the Definition I1.1.1.1 is equivalent to the condition that the stable map (f:C - X)
has a finite amount of automorphisms. We will thus refer to these conditions as stability conditions.

11
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Definition I1.1.1.3. Let d € Hy(X,Z). We say that the stable map (f :(Csp) X) has class d if the
fundamental class [C'] € Hy(C;Z) satisfies f.([C]) =d.

Example 11.1.1.4. Let us give an example of a stable map to P? of genus 1 and degree 3. We consider the
curve C' with three irreducible components Cy,Cs, Cs, with g(C1) = g(Cs) = 0,9(C3) = 1. We consider the

maps

And we take fic,, fic, to be constant equal to [0:0:1] € P2.
To make the map f stable, we need C5 to contain one marking since it has already two nodal points of

C, and we need C5 to contain one marking.

I1.1.2 Moduli space of stable maps

Definition II.1.2.1. Let S be a scheme over C. A family of stable maps over S is a flat proper morphism
7 :C — S with n sections s1,...,5, and a map f:C — X such that for all point ¢ € S, denoting C; = 7~1(t),
the map [f|ct 1 (Cry81(t), ..., 8n(t)) = X] is a stable map.

Definition I1.1.2.2 (Moduli space of stable curves). Let X be a complex projective variety and fix the
parameters g,n € Zso,d € H2(X,Z). We denote by M, ,(X,d) the contravariant functor Mg, (X,d) :
(Schemes over C) - (Groupoids) which sends the C-scheme S to the isomorphism class [ : C - S] of family
of stable maps over S of genus g, with n markings and of degree d. This functor is called the moduli space

of stable maps.

Theorem I1.1.2.3 ([Kon95]). Let X be a complex projective variety and fix the parameters g,n € Zso,d €
Hy(X,Z). The functor ﬂgm(X, d) is an algebraic Deligne—Mumford stack over C which is proper.

In general, this space is not equidimensional, nonetheless, these moduli spaces have a virtual fundamental
class [Mg (X, d)]Vllr (see [BF97, BM96]) and a virtual structure sheaf O™ (see [Lee04]). These two virtual
objects satisfy a collection of properties called the Behrend-Manin axioms, see [BM96] for the virtual class,
[Lee04] for the virtual sheaf.

Remark 11.1.2.4. The Deligne-Mumford stack M, ,,(X,d) has virtual dimension

vdimg (My (X, d)) = (1 - g)(dim(X) - 3) +n - fX 1 (TX)

This number can be reobtained by checking the deformation theory of a stable map and using the Hirzebruch—
Riemann—Roch formula, see [CK99], 7.14.

Let us give a class of varieties X for which the genus 0 moduli spaces are well behaved.

Proposition I1.1.2.5 ([FP97], Theorem 2). If X is a homogeneous space (e.g. for X =P ) then the moduli
spaces Mo n(X,d) are smooth stacks.
I1.2 Towards Gromov—Witten classes

In this section we will give some additional constructions on the moduli of stable maps to construct Gromov—

Witten invariants. Our main objective is to construct the evaluation maps ev; and some line bundles £;. For
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completeness, we also give some properties satisfied by the virtual fundamental class which we may use in
the next chapter.

11.2.1 Universal curve

Definition I1.2.1.1. Let ie {1,...,n}.

e The i*" evaluation map is the map (in the category of Deligne-Mumford stacks)

My (X,d) ———— X
[f:(C;pos---pn) = X]+—— f(pi)

ev;:

e We denote by m; the map which forgets the i marking then contracts the eventually unstable compo-
nents :

Mg,n(X7 d) ” Mg,nfl(Xa d)

[f:(Cipryeepn) = X]— [F: (Cip1y.e Bis. . pn) — X 2P
Where ~means that element is omitted. We explain what stabilised means below.

TG -

If a n-pointed morphism f : (C;p1,...,pn) — X satisfies the properties (i) and (ii) but not (iii), it is
possible to stabilise this morphism into a stable map by contracting the irreducible components of C' on
which f fails the stability conditions, eventually killing some markings. We refer to the resulting stable map

as the stabilised map.

Proposition 11.2.1.2. (i)  The forget map mps1 : My ne1(X,d) = Myn(X,d) is the universal moduli

space, i.e. for any family of stable C over a scheme S, we have the cartesian diagram

C —— Myn1(X,d)

|l

S ——— Myn(X,d)

In particular, if f: (C;p1,...,pn) = X is a stable map, let C = C , S = pt and the bottom map is pt —
[f:(C;p1,...,pn) = X] the fibres of w11 satisfy

Toe1 ([ (Cip1,- -, pa) = X]) = O/Aut(f)

(ii)  The virtual fundamental class satisfies

vir

[mg,nJrl(Xa d)] = 7r2+1 [ﬂg,rﬁl(Xv d)]”"

Definition I1.2.1.3. Let i € {1,...,n}. The i’ tautological section s;: Mgy, (X,d) = Mgy ns1(X,d) is the
section of the universal moduli space which takes a a stable map [f :(Cip) X] € My, (X,d) and sends
it to the class in ﬂg7n+1(X ,d) defined by replacing the i*® marked point p; with an irreducible component
C; ~ P! with two markings p, p],,;, and defining fic, := f(p:).

Definition I1.2.1.4. Let ¢ € {1,...,n}. Let wy41 be the relative dualizing sheaf of the universal curve
Tr+l :ngml(X, d) —» MM(X, d). The cotangent line bundle at the i™ marking L£; — ﬂgm(X7 d) is the
line bundle defined by s wp1.

The fibres of this bundle at the point [f : (C;p1,...,pn) > X] € My, (X,d) is given by the cotangent
space at the i marked point 1,.C.
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I1.2.2 Gluing stable maps

In this subsection, we detail what happens when we try to glue two stable maps together. This leads us to
a technical property satisfied by the virtual fundamental class. We suggest to the reader that is unfamiliar
with the quantum D-module to skip this subsection in a first lecture and assume instead that the quantum
product is associative (cf. Proposition I11.2.1.8).

First, we give a scheme theoretic heuristic to construct a gluing map
2 MthlJrl(X? dl) Xx m!J2,7“L2+1(‘X7 d2) - ngn(Xv d)

This map takes two stable maps [f1 : (C1;P1,---,Pny»a) = X € Mg, ny+1(X,d1), [fo: (Co3b,p%, .-, py,) =
X] € My, ny+1(X,da) and sends them to the stabilised map given by the gluing together the markings
a € C1,b e Cy. This results in a new stable map of genus g; + g2, with ny + no markings and of degree d; + ds.

For this application to be well defined, the last point a € Cy of the first stable map and the first point
b € Cy of the second stable map to satisfy fi(a) = f2(b) € X. Therefore, the maps to the base X in the fibre

product are the maps evy, 41 : Mg, n,+1(X,d1) > X and evy : Mg, ,41(X,d2) » X, as in the diagram

m!]l,nﬁ'l(Xv dl) X£M927n2+1(X7 d2) e M917n1+1(X7 dl)

l levn1+1

ﬂgg,n2+1(Xa dg) o > X

There is also a second Cartesian diagram we should consider, which is obtained by using the gluing of
stable curves instead of trying to glue stable maps. We denote by g : Mg17n1+1 X Mg27n2+1 - Mg,n the map

which glues two stable curves as described above. We have

Zy ——MMMM Mg,n (X,d)

l lStab
_ _ g __
Mg i1 X Mgy g1 —— Mg

Proposition 11.2.2.1 ([LT98], Theorem 5.2). Let 24, 4, = Mg, ny+1(X,d1)xx Mg, ny41(X,d2). There exists

a canonical morphism

A U Zdl,dz g Zd
d1+d2=d

which is proper, finite and dominant. Furthermore, we have the Cartesian diagram

Zdhdz — mglﬂhﬂ(Xv dl) X Mgmnzﬂ(‘xv d2)

l levnﬂ xevy

» X x X

We define the class

vir vir

[ U Zd17d2:| = Z A! [m917n1+1(x7d1)]

d1+d2=d d1+d2=d

® [mgg,ng-#l (X7 d2)]

It satisfies the identity

v, [ U Zd17d2:| = g! [Mg,n(Xv d)]wr
d1+d2=d
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Cohomological Gromov—Witten

Invariants

In this chapter, we recall the definition of Gromov-Witten invariants and their main properties in Section
II1.1. The next section is dedicated to how these invariants are encoded in a differential module. We define
the quantum D-module and study its properties. Then, we construct a fundamental solution and define

Givental’s J-function.

II1.1 Cohomological Gromov—Witten invariants

I11.1.1 Definitions

Notation. We will denote by 1 € H°(X;Q) the unit in the cohomology ring of X. We also recall that the
virtual cycle [ﬂg)n(X, d)]Vlr has homological degree 2(1 - ¢)(dim(X) -3)+2n+2 [, 1 (TX).

Definition IT1.1.1.1. Let g,n € Zsg, d € Hy(X;Z). Let k1, ..., k, € Zso be some integers, and let a, ..., €
H*(X;Q). We also introduce the cohomological class ; = ¢; (£;) € H? (Mg, (X,d); Q). The associated
Gromov—Witten invariant is defined by the following intersection formula in the moduli space of stable maps
k k coh k *
10‘17"'71/]”"(177, n :fi vir ¢i1'UeVi(Oéi) EQ
{1 Yo My, (X.d)] LZJ( )

We extend this definition to k; € Zy by setting the invariant to be equal to zero if one of the k; is negative.

For intersection on algebraic stacks, we refer to [Vis89]. Note that in the left hand side, the expression
1/Jlk «; should not be considered as a product but merely as a notation, since these two classes live on different
spaces - which are respectively H* (M, ,(X,d); Q) and H*(X;Q).

If one integer k; is zero, we will replace ¥, ; by a;. We may also shorten the insertion ¢y, 1,k; # 0 by
P,

The assertion that the invariant (wlflozl, ooy pkn an);‘ﬁ 4 is only a rational and not an integer is a con-
sequence that the moduli space M, ,,(X,d) is a Deligne-Mumford stack and not always a scheme (e.g. in
[CK99], Example 10.1.3.3.). The choice of taking the cohomology with rational coefficients is also the trace
of the use of orbifold cohomology. We will give an example of a non integer, non positive Gromov—Witten

invariant below. We also point that the cohomological class inside the integral has degree ¥, 2k; + deg(«;).

15
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II1.1.2 Properties of cohomological Gromov—Witten invariants

In this subsection we give a list of some important properties of the Gromov—Witten invariants. We recom-
mend to the reader mainly interested in the construction of the quantum D-module to skip this subsection
on the first read.

We refer to [Gat03, CK99, Sections 7.3 and 10.1.2] for detailed proofs of these statements. We begin by

giving some properties useful for computations.

Proposition IT1.1.2.1 (Degree Axiom). The Gromov-Witten invariant (¥ o, ..., kn an)';‘y’;‘yd is zero un-

less the following integer condition is verified:
S 2k; + deg(a) = 2(1 — g) (dim(X) - 3) + 2n - 2 fX 1 (TX)

Proposition II1.1.2.2 (Fundamental Class Axiom, [Gat03], 1.3.3). This property can also be referred to as
the String Equation. Let g,n,d such thatn+2g >4 orn>1,d+ 0. If one of the insertions in a Gromov—Witten
ivariant 1s the unit in cohomology, we have
( k1 wkn,l ]l)COh _ nz_:1< k1 ,(/}ki—l . 1/)’67171 >coh
1 Alyenny n-1 An-1, g,n,d_ 2 1 Alyeeny h (67NN -1 A1 g,n,d
i

Proposition II1.1.2.3 (Dilaton Axiom, [Gat03], 1.3.4). If one insertion in a Gromov-Witten invariant is
Y1, we have

coh coh

<1/”1c10417 v ,1/)511_110[”_1, 1/1%)97”@ = (29 -2+ TL) <w’1ﬁa17 v #’Zj_llan—l)g’n,lﬁd

Proposition I11.1.2.4 (Point Mapping Axiom, [CK99], 7.35). In this proposition, we assume that both the

genus and the degree of the stable curve are zero. We have

[ aiUasUag ifn=3
X

0 otherwise.

Proposition IT1.1.2.5 (Divisor Axiom, [Gat03], 1.3.4). Let g,n,d such that n+2g >4 orn>1,d+0. If one

of the insertions in a Gromov-Witten invariant is the class of a divisor D € H*(X;Q), then

& . coh k K- coh
( 110417 . 7,(#”_110[”717 D)g,n,d = (/d D) < llah . ,wn_llan—l)g’n_l’d

n-1
+ YW, LT (DU ), e ) g
7=1

II1.2 Quantum cohomology and the quantum D-module

I11.2.1 Quantum cohomology

In this subsection, we will follow [CK99], Section 8.2. We recall that X denotes a complex projective variety

with even cohomology.
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Notation. Let N be the dimension of H*(X;Q) and 1 <r < N. We will use the following notation:

Ty,...Tn A basis of H*(X;Q), so that T1,...,T, span H*(X;Q) and T}y, ..., Ty € H*(X;Q)

g the pairing on H*(X;Q) given by Poincaré duality , g;; := ¢(T3,T}) = f T, uT;
b's

(9")i the inverse of the Gram matrix of the metric g
T the metric dual of T} with respect to the metric g, T := ZgijTj

J
t; the coordinate associated to T
T an arbitrary point in H*(X;Q), 7:= Y ¢,T;
72(d) for d € Hy(X:Z), 7 € HX(X;Q) the integral m(d) == sz

d

Q1,...,Q, Novikov variables associated to T1,...,T,. If d e Hy(X;Z), we also define Q< := QlTl(d)~~.QfT(d)

If a definition depends on the coordinates tg,...,tx, we may say it depends on the symbol 7 instead, e.g.
we will denote the ring H*(X;Q) ® C[to,...,tn] by H*(X;Q) ® C[7].
The Novikov ring C[[Q]] is defined by the ring of formal series in Q1, ..., Q.

deC}

Definition I11.2.1.1. The genus zero Gromov—Witten potential F is the formal power series defined by

(C[[Q]]:{ > faQ?

deH,(X;Z)

Fr@= Y lnoonihQ el e cle]
deHZ?g(;Z) .

Remark T11.2.1.2. Let 7" =tqTo+ 3,5, t:T; and 15 = Z§=1 t;T;. Because of the Divisor Axiom (see Proposition
I11.1.2.5), we have
1
F(rQ)= 3

h d) Hd

d.m>0 nl<T’ "’T,>8?n,dem( 'Q

When looking at Definition II1.2.1.1, we may be tempted to see the genus zero potential as some local formal
data defined near t = 0. Through this new identity, we see that the potential also defined near the point

7' =0,%Re(m2(d)) - —oo. This point is called the large radius limit.
Remark 111.2.1.3. By the linearity of the Gromov-Witten invariants, we have

1 h d

7|<T747 T, - )80n dQ

deHo(Xx;2) v
n>0

atif(T7 Q) =

Ezample 111.2.1.4. For X = P2 let H = ¢;(O(1)) € H*(P?;Q) be the hyperplane class and [I] € Ho(X;7Z) be
the class of a line. Consider the Gromov—Witten invariant

2 9\ coh

Ng=(H? ....H )0,3d_17dm

Notice that the class H? € H*(IP?;Q) corresponds the Poincaré dual of the class of a point [pt] € Ho(X;Q).
We are going to show that the Gromov-Witten potential of P? is given by
t3d—l

dt1 d
(3d-1)1° @

F(to,t1,t2,Q) = = (t0t2+tot2) ZNd
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In the expression above, the right hand side is written in two parts: first we have a degree 3 polynomial,
then we get a power series in e’* Q. The first part will be obtained by the Point Mapping Axiom, while the
second comes from Divisor Axiom. We follow the strategy of [CK99], Subsection 8.3.2.

Proof. To make our expressions more compact, we will be denoting the Gromov—Written invariant whose
coh

entries are the classes Ty, Th, T» appearing respectively ag, aq, oo times by (TO(QO), Tl(al),TQ(a2)> )
O,a0+a1+a2,d[l]

Since the classes d[I] are effective if and only if d > 0, we have

(e 7)) (e5] (o))
tO tl t2 coh

S (a0) par) plaz)
F(to,t1,t2,Q) = el VAN Pl B
( o Q) dZZEJnZ::anJralZJraz:n Cko! 0[1! a2! ( 0 ! 2 >O,n,d[l]
Let us compute the zero degree d = 0 part of the potential. Using the Point Mapping Axiom (see II1.1.2.4),
the degree d = 0 part is given by

tOO t22 2 1 2 2
H +2a

" * ! 5 1 2 = (t0t1 +t0t2)

ao+ar+as=3 Qp- Qo JP 2

For the positive degree d > 0 part of the potential, by String Equation (see I11.1.2.2) we immediately set

ag = 0. Using the Divisor Axiom (see II1.1.2.5), we have

coh coh

N ()

0,0c1+042,d[l] O,QQ,d[l]

By the Degree Axiom (III1.1.2.1), the invariant in the right hand side is non zero if and only if ay = 3d - 1.

Therefore, recalling that Ny = (T2(3d_1))8°§1d_1 app We get

(tot? +t2t)+ 33 % N(dtl)al 5" Q*
orL T om ol (3d-1)!

d>0n2>0 a1 +3d-1=n

DN | =

F(to,t1,t2,Q) =

Rearranging the sums, the variable n being mute, we make an exponential appear and obtain

t%d_l

1 oo
Fto, t1,t2,Q) = = (tot> + 3t N,—2 ¢t d
(to,t1,12,Q) 2(01+ o2)+d2::1 By Q

O

Definition IT1.2.1.5. The quantum product e is a product on H*(X;Q)[[7]][[Q]] defined on basis elements
by
Ti o Tj = 301,01, 00, F (1, Q)T
%

We then extend bilinearly this product to H*(X;Q) ® C[[to,...,tn,Q1,--,Qr]]-
The ring (H*(X;Q) 9 C[[T]][Q]], ®~) formed by this product will be called quantum cohomology, denoted
by QH*(X).

Remark 111.2.1.6. The quantum product e, satisfies a compatibility relation with the metric g
g(T; 0, T}, Ty) = (T3, T o7 Ty,) = 01,01, 04, F (7,Q)

Notice also that the relation ¢(T;,T; o, T) = Oy, 04, Oy, F(7,Q) can be taken as a definition of the quantum
product.
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Remark 111.2.1.7. The quantum product e. can be seen as a deformation of the usual product U on the
cohomology, indexed by the parameters tg,...,tx. Notice that if we set @ =0, in the power series F remains
only the terms corresponding to d = 0. Then, by the Point Mapping Axiom (see Proposition II1.1.2.4),

(Tlt (. Tj)‘on = E UTj

Proposition IT1.2.1.8. The product e is unitary, commutative and associative. The unit of this product is
the unit in cohomology, 1 € H*(X;Q) @ C[[7]|[[Q]]-

Before giving a proof, we mention that the associativity of the quantum product can be translated into a

property satisfied by the Gromov-Witten potential, which appears in the theorem below.

Theorem IT1.2.1.9 ([KM94], Theorem-Definition 4.5). The genus zero Gromov—Witten potential F satisfies
the set of differential equations, called WDVV equations (Witten—Dijkgraaf-Verlinde—Verlinde), indexed by
1,7,k,1€{0,...,N}:
NoOOF L, OF N OF 4 BPF
;0 DLOL 0t Dttt o 0L 00t Ob,OL:0t

M

O

Proof of Proposition I111.2.1.8. (i) The quantum product is unitary. We are going to show that the unit
in cohomology 1 € H°(X;Q) is also the unit of the quantum product. Let j € {0,..., N}. We have

N
1 o, er = Z atoatj atkf(Ta Q)Tk Z Z Tk7 . )807}7,1 diQd
k=0 k=0d,n>0 T
By the String Equation (see I11.1.2.2), all the Gromov-Witten invariants in the rightmost expression are
zero unless d = 0. In this case, we can apply the Point Mapping Axiom (see I11.1.2.4), which means we only
consider the invariants with parameters d = 0,7 = 3. Finally, since the classes T* and T}, are dual with respect

to the Poincaré pairing, we get
&k i k
Lo Tj=3T f TjuTy =2, 91" =T,
k=0 X k=0

(ii) The quantum product is commutative. This follows from the definition of the quantum product.
We have T; e, T; = 3, f)tﬁtj@tk]:(T,Q)Tk. Since the derivatives commute, we have 0;,0;, 0, F(7,Q) =
atiatjatk-']:(77Q)~

(iii) The quantum product is associative. Using 7% = ¥, ¢*°Tj,, we get

(Tl or Tj) or Tk = Z 8tiatj8ta*7:(7—)gabatbatkatzj:(T)Tl

a,b,l
Ti o (T] o Tk) = Z 6tj 8tk6ta,7-'(7')g“b8tb8tiatlf(T)Tl
a,b,l
Using Theorem I11.2.1.9, the two series on the right hand sides are equal. O

Continuing the example of X = P2, the WDVV equations allow us to recursively compute the coefficients
of the Gromov-Witten potential.



20 CHAPTER III. COHOMOLOGICAL GROMOV-WITTEN INVARIANTS

Example 111.2.1.10. Let X = P2, In Example 111.2.1.4, we had showed that the Gromov-Witten potential is
given by

F(to,t1,t2,Q) 1(t 12 +t2ty) + iN B dt yd

9 y U2y =3 o 1€

0,061,802 2 (5} 0'2 P d(3d—1)!

For simplicity, we will set ) = 1. We can do this because, if we consider the potential as a power series in @,
the ratio test implies it has infinite convergent ray. By the Theorem I11.2.1.9, we have

2 35.7: b 83f 2 8df X
O ot t) g —C T (o tita) = S — Lty tn) g™ — T (tg. bt
a%;(, atiatjata( 0.t t2)g" G g, (o o) aéo Sttt o129 atbatjatk( 0,11, 12)

We recall that the matrices (g;;),(g") are given by

0
(9:5)=(g”) =0
1

o = O

1
0
0
Using String Equation and Point Mapping Axiom, we also have (see proof of Proposition 111.2.1.8)

atoataatb]:(t(h t17t27 Q) = Yab

We choose to compute the values in the WDVV equations for a quadruplet (i, 7, k, 1) such that the sums have
non zero terms. We choose (4,7, k,1) = (1,1,2,2). The corresponding WDVV equation reduces to

3 3 3 3 2
O0F 07 0F _(OF (I11.2.1.11)
ot3 o3 ot0t3  \ 9t30t,
We have 5
»F _ i N, et 1 43d—4
= (3d-4)!"?
Therefore, in (I11.2.1.11), we look for the coefficient in front of e?/1¢39~4. For the left hand side, we find
1 1 1

—— _Ng+ Ny, Ny, d3d
(3d-4)"? dﬁ%zd G B 1) (3ds - 3)!

And for the right hand side, we find

1 1
Ny Ny, d>d>
dﬁ%:d B2 B39 (3d, - 2)!
Using (II1.2.1.11), we thus get
1 1 1 1
Ny =(3d-4)! Ny Ny, | -d3d +d2d?
a=( )dﬁ%:d h dz( 12 (3d, - 1)l (3da-3)! "% (3d; - 2)! (3dz - 2)!

Using ds = d — d, this can be rewritten as

3d-4 3d-4
Ny - Nu, N, (( )d2d2 - ( )d3d2)
dﬁgﬁd 3d, -2)1% \3¢y -1

This allows us to compute the values of Ny recursively. The first values of the sequence (IN;) are (see OEIS’
sequence A013587)

1,1,12, 620, 87304, 26312976, 14616808192, 13525751027392, . ..


http://oeis.org/A013587
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Since we know the value of the Gromov-Witten potential for X = P2, we can also give the value of the

quantum product.

Example 111.2.1.12. Let X =P? and T; = H® for i € {0,1,2}. For simplicity, we set @ = 1 again. We know
that Ty is the unit of the quantum product. The other values of this product are given by

—~ 2 a, B2 — s ar, B!
Tye Ty = S Nya2e® 2 1+ (S NydBe 21,47
Ler i (le @€ (3d—2)!) 0 (dzl aae (3d—1)!) 12

= a, B33 = 2 a, B2
Tie To=(S Nyde® 2|15+ Nya2ed 2|
e (dzl e (3d—3)!) 0 (dzl e (3d—2)!) '

— a, B = a, B8
Tye Th = N, = T+ Nyde®™ ——— | T
202 (dZQ ae (3d—4)!) 0 (dz1 aae (3d—3)!) !

As seen as the formulas above, the (big) quantum product e, can be hard to compute. We introduce a

second product, which is easier to compute and depends on less variables.

Definition IT1.2.1.13. Let 7" = toTp + X5, t:1; and 7 = Z;zl t;T;. The small quantum product o,
product on H*(X;Q) [t1,...,t-][[Q]] defined by

is a
Tior, Tj = (T 0- Tj)
We denote by SQH*(X) the ring (H*(X; Q)[[7]][Q]]; o), called small quantum cohomology.
Ezample 111.2.1.14. For X =PV let H = ¢; (O(1)) € H? (]P’N) be the hyperplane class. We have
H*(PY;Q) = Q[H] [(HN™)
Set T; = H', so that T = HY~%. We have

SQH* (PV) ~Q[H,e" Q] /(HN*' - e Q)

111.2.2 The quantum D-module
Big quantum D-module
The references for this subsection are [CK99], Section 10.2 and [Iri09], Section 2.2.

Assumption. We can recall that following Remark I11.2.1.2, the quantum product T} e, T; can be seen as a
formal power series in the parameters 7 and €™ (). From now on, we assume that the potential F is convergent
on some open set U, neighbourhood of the large radius limit. On this open set U, we can now replace the
expression e(DQ% by (@ to drop the Novikov variables. We will still denote T} o T;=(T;e- Tj)\Q:l'

Definition II1.2.2.1. Let z be a local coordinate on P! at 0 € A'. The quantum D-module is the bundle
with connection QDM (X) = (F,V) where F is the trivial bundle

UxP'x H(X) - U x P!

Since F' is a trivial bundle, the space of its sections is spanned as a Oy p:-module by the constant sections
of value T; on the fibres for i € {0,..., N}. We will also denote by F the space of sections of F, and by (T3)

the basis of sections of F'.



22 CHAPTER III. COHOMOLOGICAL GROMOV-WITTEN INVARIANTS

We denote by ¢; the local coordinates on the open set U. The connection V on the bundle F' is called the

Dubrovin connection, and is defined by
1
vat,ﬂ:(ati'*'*ﬂ.T)Tj, 0<1<N
i z
1 1
Vo, T = (62 - EG o +;,u) T}
Where the Euler field & is the section of the bundle F' defined by

1
¢= C1(TX) + Z (1 - §degH*(X)(Ti))tiTi

K3

and the Hodge grading operator is the endomorphism p € End(H* (X)) given by

(degH*(X) (13) - dimC(X)) T;

N | =

w(Ty) =

Proposition II11.2.2.2. The quantum D-module (F,V) is a cyclic D-module, generated by the constant

section 1. In other words, if we denote by F' the space of sections of the bundle F', and consider the application

Clto,---,tn,z]{z0tg,...,20tN) > I
P(to,...,tn,2,20t0,...,20tN) —— P(to, ..., tN, 2, Vatgs---» Vaoty ) - 1

Then, the application ¢ is surjective.

Proof. The space of sections F is spanned by the constant sections Ty,...,Tn. Using the definition of

Dubrovin’s connection, we have for any i € {0,..., N},
Voo, 1 =20, 1+T,0, 1=0+T;0.1
According to Proposition I11.2.1.8, the cohomological class 1 is the unit of the quantum product, so we get
Vo 1 =T;
So the application ¢ is surjective. O
Proposition 111.2.2.3 ([Dub96]). Dubrovin’s connection V is flat, i.e. its curvature satisfies V2 =0

We now define a metric on the bundle F.

Definition IT1.2.2.4. Let ¢ : U x P' - U x P! be the involution given by z = —z. We define a pairing g on
F by
: C(F, V) x (F, V) —— Opxpr
(s1,82) ——— [ s1(t,—2) Usa(t, 2)
Proposition 111.2.2.5. This pairing is V-flat, i.e. if s1,s2 are sections of F', and & is a vector field on
U x P, then
Jeg(s1,82) = g(Vesi, s2) + g(s1, Vesa)

Proof. We have for all i,5,k € {0,..., N},

1 1
g(vatkTng) + g(/11’u Vatij) = jzg(Tk‘az-’Z L4 T]) + ;g(Tlaz-’j L4 1-’]) = 0 = atkg(TZ;E)



I11.2. QUANTUM COHOMOLOGY AND THE QUANTUM D-MODULE 23

Where we used the Remark I11.2.1.6 in the second equality.
For the derivative with respect to coordinate z, recall that g(7;,7;) = 0 unless T; and 7 are Poincaré

dual, i.e. Tj =T", and then deg T; + deg T = 2dimc(X). As a consequence, we have

g(Vzasz', T) + g(,T% Vzi?sz)

deg T; d
7g((’3 T, T;) + —o—t eg (T, T)) + —g(T), € e T)) + eg 8291y, Ty) - dime (X)g(T3, 7))
-z
=0= zf)zg(Tl,TJ)
Where we used the Remark I11.2.1.6 again in the second equality. O

Small quantum D-module

The small analogue of the quantum D-module is obtained by replacing the quantum product e, with the

small quantum product o,, and restricting the directions for which we define V to variables ¢; of degree 2.

Definition IT11.2.2.6. Let 7" = t¢Tp + X5, t:T;, T2 = Z;ZI t;T; and Uy = U n H*(X;C). The small quantum
D-module is the bundle with connection obtained by restriction of the quantum D-module (F, V) to Us x PL.

j*(F,V) — (F,V)

L

Uy xP! L U x P!
Keeping the same notations, we obtain a connection V defined by
1 )
vathk:(atj+7TZ-072)T;€7 1<5<r
z
1 1 1.
Vo.Ti = (az ~ L (TX) o, +2 (1 - fdlm(X))) T
z 1 2

Remark 111.2.2.7. In general, Dubrovin’s connection V has a regular singularity at z = co and an irregular
singularity at z = 0. If X is Calabi—Yau, then ¢;(TX) = 0 and the small quantum D-module’s singularity
z =0 becomes regular.

While the big quantum D-module was cyclic spanned by the section 1 (cf Proposition II1.2.2.2), it is not
necessarily the case for the small quantum D-module. Although, it is cyclic if, for example, we can generate
the cohomology ring H*(X;Q) from the unit 1 and products with elements of H?(X;Q). This is true for
smooth toric varieties, see [Ful93|, Proposition p.106.

Ezample 111.2.2.8. For X =PV let H = ¢, (O(1)) € H* (P") be the hyperplane class, and set T; = H'.
Using the Euler sequence ([Har77], Theorem 8.13),

0 s Opn > Opn (1)® ——— TP —— 0

We obtain ¢; (TPV) = (N +1)H.

The small quantum connection is the connection on the bundle

H? (PV) x P x H* (PV) > H* (V) , | xP(,,
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Given by
Vzatl = z@tl + I{OT2

1 N+l
V.o, =20, - ~(N +1)Hos, +(1— hl )
z

Considering only the first direction, we get a module SQDM (IP’N) on C[ty,z,e" (20, ). We have
Clt1,2,e" |20, ) [((20:, )N =€) =~ SQDM (PV)
This isomorphism is given by
P(ty,z,e",20;,) = P(t1,2,€", V29, ) - 1 € SQDM (PV)

Thus SQDM (]P’N ) is cyclic, its unique generator is the constant section 1.

I11.2.3 Fundamental solution and Givental’s J-function

The aim of this subsection is to build a formal fundamental solution to the quantum D-module. This
fundamental solution is related to a cohomological function, called Givental’s J-function, which plays an
essential role: this function can be used to compute Gromov—Witten invariants and obtain relations in

quantum cohomology.

Fundamental solution

We will follow [Iri09], Section 2.2. We begin by introducing a formal function which will be our main tool to

construct a fundamental solution.

Definition ITI.2.3.1. We define the formal function S°" by the expression, for o€ H(X)

N1
coh —-To/z
57, 2)(a) = e ™/ - > Zﬁ Ty, 7'\, T
deHy(X;72)-{0} k=0
10

, 6—7‘2/za

Tz

coh
) TFe™(D ¢ QH(X) ® C((2))
0,+2,d

. . . ~ra/z,, \COD . .
Where the Gromov—Witten invariant (Tk7 P wo‘ )0 l is actually a shortcut for the expression
b + 9
h
—72/z | © ( n+m
e @ -1) h
’ / _ / / n m co
Ty, 1,7, y ) = W(Tk,77-~-,7a¢1+27'2 Ua)o,l+2,d

z 0l+2,d nm20 %

Now we can construct the fundamental solution. This is done in essentially two parts: first we show that
the formal function S is a fundamental solution for the directions d;,, then we modify S" to obtain a

full solution.

Theorem II1.2.3.2 ([Ixi09], Proposition 2.4). We recall that u denoted the Hodge grading operator, was
defined by

p(T3) = 5 (degyy (1)) ~ dime(X))

We also denote by p the endormorphism of H*(X),p=c1(TX)u.
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(i) Let e H*(X) be a section of F. For all i € {0,...,NY}, we have
Vor, S (,2)a =0
V0, 50 (7, 2)a = 5 (1,2) (1) - Zp(@)
(ii)  We define the endomorphism z7#2° ¢ End(QH (X) ® C((2))) by
2 2P (T;) = exp(—plog(z)) exp(plog(z)) - T;

Then, the function SP(7,2)z7# 2" is a fundamental solution of the quantum D-module.
(iii)  The function S (7, 2) is an isometry, i.e. for alli,j€{0,...,N}

g(S°°(7,2)(T;), 5" (7, 2)(Ty)) = 9(T:, T))

The proof of the first equality in (i) is adapted from [CK99], Propositions 10.2.1 and 10.2.3. For the other
results, we refer to [Iri09], Proposition 2.4. Before giving the proof, we introduce a few lemmas. The first

two lemmas are intermediary steps to prove that V¢, S (7, 2) = 0.

Notation. We will use the compact expression

k k coh 1, & k h d
« 11041,...,1#,1"(1”»0’”# = Z ﬁ< 11041,...,w,b*"an,T,...,T)S?n+l7d
>0 . —
deH>(X;Z) | times

Lemma II1.2.3.3 (Topological Recursion Relations). For all ki, ks, k3 >0
and 0 < j17j27j3 < r,

N
((1/}(111+1Tj1 ) ¢S2Tj2 ) ’(/}?CfsTja »0731.,- = Z «will le ’ T(I»OQJ «Ta? 77[}327}27 ¢g37}3 »01377

a=0
O
For a proof of this lemma, see [CK99], Lemma 10.2.2.
Lemma II1.2.3.4. The fundamental solution S can be written as the compact expression
N o
St (r,2)(a)=a - > T <<7,Tj>> (I11.2.3.5)
j=0 zZ+ 0,2,7

Proof. We start from the right hand side. By writing 7 = 75 + 7’ inside the Gromov—Witten invariants in
«ﬁ, T; »07 we can make a careful use of the linearity of the invariants and the Divisor Axiom. By linearity,

we have

coh k! coh

<wnTa’Tj7T(k))o,k+2,d: 2. 7.<wnTa7TjaTz(u),7’l(v)>

wily ulv! 0,k+2,d

Where we recall that the notation 7(*) means the entry 7 appears k times. Before applying the Divisor
Axiom, we notice that we have to separate two cases: either d # 0 and we can apply the axiom u times, or
d =0 and we can apply the axiom u — 1 times. When d # 0, we have

n &)\ coh k! z — v)\coh
( 1Ta’Tj’T( )>0,k+2,d: 2 W(T2(d)) (1/)1 y(TaUTg)7E>TI( ))o,v+2,d

T+y=u
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Therefore, in the right hand side of (I11.2.3.5), the coefficient in front of @Q?,d > 0 is given by the sum on the
following parameters

je{0,...N} parameters that runs the basis in cohomology
1
nez from developing ——
>0 ping )
k€ Zsq from developing the expression (¢y"T,,T; ))0 o7
U,V € Zsg from using the linearity axiom
x,1y € Lo from using the divisor axiom

Moreover, we have the relations u+v =k and z+y =u =k — v, so u is a mute parameter. The general term
of this whole sum is given by
)™ 1 1 1 coh .
COPLLL @y (T o), Ty, @) 1

zn+1 vl T 0,v+2,d

Let I =n — vy, the general term becomes

z y y coh
;((Tz(d)) ) (-1)! <¢z((—1) (12) )uTa,Tj,T’(”)> T

| I+1 | Yy
z: z yooz 0,v+2,d

The series in the parameters x and y can now be identified with the Taylor series of an exponential, while
the series in the parameter [ can be identified with the expansion of ﬁ The coefficient in front of Q¢,d > 0
in the right hand side of of (II1.2.3.5) is finally given by

1 efTQ/z coh

%ZeTz(d)<Z+w,Tk7(T,)U) 7

, !
j=0120 V* 0,1+2,d

which is precisely the coefficient in front of Q¢,d > 0 in the left hand side of of (I11.2.3.5).

Now we move to the d =0 case. In that case, we have by the Divisor Axiom

coh k!

(U170, T 7 )0k+20 > X

u+v=k r+y=u-1

coh

(0)" (U1~ T T Ty, T )o,y+3,0

vlzly!

When d = 0, we have Mg, (X,0) ~ Mo, x X. Therefore, the line bundle £; is trivial and its first Chern

class is zero. Consequently, <¢" vii(T,urd™), T 5, 7o, 7'V ) are zero unless n —y +1 = 0. So the non

0,v+3,0

zero Gromov—Witten invariants are of the form (Ta uty, Tj, 72, (")) Since there no psi classes, we

0,0+3,0°
can apply the Point Mapping Axiom. The remaining non zero invariants are

Touty),T;,12,) COh T uT;ur "+1
2 0,3,0 -

Finally, in the right hand side of (I11.2.3.5), the coefficient in front of Q is given by

e S T ELS (] ot i
(n+1)! z"+1

0y

This completes the proof of the identity (II1.2.3.5). O

The next result will be helpful for the computation of V.5, S (7, 2).
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Notation. We are going to associate to the Euler field € a vector field €y by replacing the generator
T; € H*(X;Q) in the expression of the section € by the differential operator 9;,. The motivation for
introducing this operator is that once we have shown that Vg, S"(7, 2) = 0, then we have € e, S©(7 2) =
—2€ ) - S (7, 2), which is easier to compute. Explicitly, if ¢;(TX) = ¥,_; w; T}, then

deg Ty,

N
@(a) = sz({ﬂt + Z (

tk) 8tk

Notice that the expression of &gy consists of two sums, the first acting on the variables of cohomological

degree two (72), the second acting on the other variables (7').

Lemma II1.2.3.6. Recall that u is the Hodge grading operator and p = ¢ (TX)u. Let o € H*(X;Q). The

fundamental solution S satisfies the following commutativity property:
(20 + €y + 1) 0 SV (T, 2) (€)= SN (7,2) 0 €77 4 (202 + €y + p) ()
Proof. We introduce in this proof the notation S(t, z)(a) := S(t, 2)(e™/*a). Therefore, we have

@ >C°h Tk p72(d)

31
S(t,z)(a) =a— > Z*'(Tkﬁ',mﬁ/am

deHs (X32)-{0} k=0 I! 0,1+2,d
120

We begin by computing the right hand side in the identity we want to prove. We have

S(t,2)(20z + €y + p)a = S(t, 2) (deg(a) _ dime(X) ) Q= (deg a _ dimc(X)

2 2 2 2 )S(t’ 2)(@)

Thus, we want to show that

deg(a)  dimg(X)
2 2

(20: + €9 + 1)S(1, 2)(a) = ( ) S(t,2)(@)

We have the expansion

«

-1)" u ’
= Z (Zu+)1 ("/} a7Tka (T )l>0,l+2,d

z+ )o,z+2,d u>0

(7 (7'

We are going to evaluate the action of the operators z0., i1, € () individually on S(%,2)(a). We have

w 1 " ’ coh o
28, - S(t, 2) () = Z dz(:)( 1) sl (u+1)zu+1 (1/) a7Tk,T(l))0,l+27die (d)
luiO
deg(a) dimc(X w1 (deg T%)/2 -
80t )(a) - (S5 - ) 3 57 et CETI v 13, (), 57
d#0

l,u>0

Next, we will compute €5y -S(t,2)(). In a first time, we have

Epye™@ = (Zwiaﬁ) e = 3 0, Ty (d)e™ @ (I11.2.3.7)
=1

i=1



28 CHAPTER III. COHOMOLOGICAL GROMOV-WITTEN INVARIANTS

coh

In a second time, for a fixed [ € Zsq, we develop the Gromov—Witten invariant (wua,Tk,( L )0 Le2.d For a

multi-index a’ = (ag, @pi1,...,an) € (Zso) V17", we introduce the following notations:
|a7,| =agt+ary1 +o-tan

fL’ = tao ta7‘+1 "'t(]l\fN

[ o

0;,! = (ag!)-(an!)

Using this notation, we have

’

L D O] e T
VOt o 0.0 "oz )Nﬂfra' @k 0,1+2,d
a €(4xo0 -
lal=l

We can compute the action of €y on this function. For k € Zo, we set by convention ay = 0 if deg(T}) = 2.

’

1, . N X deg(T%) L (a@)\°"
o oo T, S GY) 2 el n T s
lal=t

Plugging (I11.2.3.7) and (I11.2.3.8) together, we obtain

1 coh N d Ty " s
€a) - il (v a, Ty, (T,)Z)OVHM e = > (Z (1 - ng k) ) a; +JZ=: w; T; (d)) (%/1 a, Ty, T )> (@

lal= \i=0 0,l+2,d
However, applying the Degree Axiom (see I11.1.2.1) to the Gromov—Witten invariant here gives the relation

deg T}, N deg o
2

+u+1

ZZV: (1 - deg(m)(h + inTJ(d) = —dlmC(X) +

i=0 2 j=1

Which means we can use the linearity of Gromov—Witten invariants to get rid of the sum on multi-indices a’

and obtain

deg T} N deg
2

N
€St () =3 T (—dimc(X)+ )

k=0 d#0
l,u>0

tu+ 1)( l)u (w a Tk,T(a )>O Lo die'rg(d)

At last, we have that (20, + €y + 11)oS(t, z) () is equal to

(deg(a) d1mc(X)) Z D (—(u+1)—dimC(X) . deg Ty . deg o fuals deg(T") —di][mc(X))><

2 k=0 d+0 2 2 2

l,u>0

( l)u coh T2 (d
) W’ T, (7)) )0,1+2,d6 2D

Using deg(T*) = 2dim¢ (X) - deg(Tk), we obtain

deg(a)  dimg(X)
2 2

(20. + €py + 11)oS(t, 2) () = ( )S(t,z)(a)
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Lemma I11.2.3.9. Let a € H*(X;Q) be a section of F. We have
(zaz + €y + u) s A =g lE (zaz + &gy + - g)
Proof. Let T, € H*(X;Q) be a section of F. The right hand side gives
Tl (za F o) - 7) (T,) = e ™/ ( g) (T.)
For the left hand side, (z@z + €& + u) o (e’TQ/ZTa)7 we have
20, e I*T, = Be_TQ/ZTa

z

(€T, = (-2) (1)

o2l deg T,) - dim(X s s
i kzzoklzk( : )2 : ))TéeUTa:_ZBZ(e 2 T,) +e 2/ up(Ta)

Therefore,
(20. + €@y + 1) o (e_T’-’/zTa) = e/ (—g + M) (T,)

We finish by giving a lemma for the computation of V.g,S5%" (7, 2)27# 2.

Lemma I11.2.3.10. Let o« € H*(X). We have

0
(z— + - B) (z7#2°a) =0
0z z

Proof. First, notice that we have

deg(T )+ deg(Ty, )

[1,p) () = 2 ()~ ( ) o(T2)
Thus [p, p] = p.
We will now show that

Pow_ 2 Fp
z

We have

1
i eadwogz)g = 32 gy (ad(ulog )2

= % o8 2)* Ll I L [ 1) = 2 o) o=
k times

This concludes the proof of the identity 227 = 27#p.
We have

0
z—(z7M2Pa) = —pz M2l + 27 pf
0z
Thus

(z2 - B) (z7HzPa) =2z7FpzPf - Pomzr =g
0z z z
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This concludes the listing of lemmas required for the proof Theorem I11.2.3.2.
Proof of Theorem II11.2.3.2. Let T, € H*(X) be a section of F. We begin by showing that
V.01, 5" (1,2)(T,) = 0

Using Lemma I11.2.3.4, we have

N .
Voon, S (r ) (T,) = 200, S (r ) (L) - T, T+ Thw, Y | Lo ) T
§=0 0,2,7

We compute every summand separately. We have

N
20, 5°°" (1, 2)(T,) Z Z (0T, T5, Tl o, T" (IT1.2.3.11)
k=0n2>0
N
Tior To= Y (Ti,Ta Tk s, T" (I11.2.3.12)
k=0
Next, we have
N Ta 7 N ( 1) n J k
Too o Too Y (Z2m)) 7= 8 8 CX it m)s, (17 1), T
oNz+Y 0,2,7 G k=0n>0 * "
We apply Lemma I11.2.3.3 to the right hand side. We obtain
S Ta j S ( 1)n 1 k
Tie-Ty+Tier Y. «—TJ» =% ot {(wr Ta,Ti,Tk»MTT (I11.2.3.13)
j=0 z+ 0,2,7 k=0n>0 "

Putting (I11.2.3.11), (II1.2.3.12) and (III.2.3.13) together, we obtain
Ve, S (7,2)(Ta) = 0

Next, we prove that

V.o, S )(T) = 501, 2) () - - p(T))
Using V.o, S (7, 2)(T,) = 0, we have
V20,8 (1, 2)(To) = (20. + € gy + 1) S (7, 2)(T0)
Using Lemma I11.2.3.6, we have
V20,8 (1, 2)(T,) = (S°™(7,2) 872/2) o (20.+ €y + 1) o PRl
Using Lemma I11.2.3.9, we obtain
Vo, S (r,2) (1) = (7. 2) (1= 2 (T2)

This conclude the proof of the assertion (i) of Theorem I11.2.3.2.
Next, we show that the function S (7, 2)27#2” is a fundamental solution of the quantum D-module. We
have to show that V.a¢, S©M(7,2)27#2” = 0 and V.9.S%"(1,2)27#2” = 0. The first identity is a consequence
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of V.o, Se°h = 0 which is contained in the assertion (i) of Theorem I11.2.3.2. Using the Lemmas I11.2.3.6 and
I11.2.3.9 again, we obtain

V20290 (1, 2)27H2P = S°N(7, 2) (232 - 8) 02 P2
z

Using Lemma II1.2.3.10, we obtain
VZaZSCOh(T, 2)z7H2" =0

Finally, we show that the function S is an isometry. For a,be {0,..., N}, we want to show that
g (SN (7,2)(T0), 5" (1,2)(Th)) = 9(Tas Ts)
Since V.o, 9" = 0 and the metric g is V-flat by Proposition I11.2.2.3, we have for any i € {0,..., N}
O, g (S (7,2)(Ta), 8 (7, 2)(Th)) = 0
So the expression g (S°"(7,2)(T,), 5" (7, 2)(1})) is constant in 7. At the large radius limit, we have

lim g (5" (r,2)(T,), S (7, 2)(Th)) = g (¢ 7/ *Tu, e T} = (T, T3)

Big J-function

Proposition I11.2.3.14. Let T, € H*(X;Q) be a section of F. The inverse of the fundamental solution

Seob s given by

coh

coh\-1 N L (€7 ' : K '
(S ) (T,Z)(Ta):Zg AT + Z 2762 e, 7' T T, T, | T’
j=0 etz (Xim)-{0y & U —Z+1 0,042,d
120

Proof. According to Theorem I11.2.3.2, (ii), the fundamental S is an isometry for the metric g on F. This
means that its inverse is given by its adjoint with respect to the metric g. This means that if T, € H*(X;Q)
is a section of F', we have
N .
SN (r,2) N (Ta) = Y. g (S5 (7, 2)(T5), T) T’
§=0

So we end up having

N 1 . 672/ZT* coh i ‘
S g|e™* T + 3 Zﬁeﬁ( ) L Tyt .7 T T, | 17
j=0 deHy(X:Z)-{0} k —Z+1 0,1+2,d

120

O

To motivate the definition of Givental’s J-function, recall also that the constant section 1 played a special

role in Proposition I11.2.2.2; as it was generating QDM (X) as a cyclic D-module.

Definition II1.2.3.15. Givental’s J-function J" is given by the expression

JON (7, 2) = 8N (1, 2) M e QH(X) ® C((2))
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Proposition 111.2.3.16 ([CK99], Lemma 10.3.3). Givental’s J-function J" is given by

. / Tl coh ()i
JOM T, z) =™ 1+ ( LT ) e\
%”Z(:) Iz z=1 0,l+2,d
+

Proof. Using Proposition I11.2.3.14, we have

coh
JCOh(T Z) _ (Scoh) (7_ Z)(IL) Zg eTz/ZT + Z Z Tz(d) 2/z T T / 7_/ Tk 1 Tj
) l' +’l)[} P )
d:tO k 0,l+2,d

We expand the expression in the sum using the 1inearity of the metric g. First, notice that for any class
a=Y,aT, € H*(X), we have

N
S g(a,Tj) = Y apge,; T = Zaka =
J=0 gk
In our setting, using the definition of the metric g, we obtain
S (e T )T = Y (e T = e
§=0 §=0
Next, we are going to compute
N T2z, coh )
Yel X % .e”(‘”< L T, 7 r) 1|1
=0 \(d,D)20 k 2 -z 0,1+2,d

Because 1 is the unit in cohomology, if deg(T*) # 2dim(X), we have

g(T* 1) = fXTk -0

The degree will match the dimension if and only if k = 0, therefore g(T*,1) = 6, 9. Plugging that in our

computation gives

]ZV: ( T oy (d)( att) o\ k) g IZV: > @ (S o)
g ~em i, T > Tk 1|79 = Lo < 1,7 ) T
520 \(dnwo 7! —z 41’ 0,l+2,d 320 (diyz0 U —z 4+’ 0,1+2,d

We are going to apply the String Equation (see I11.1.2.2) to the right hand side. There is no issue since we
have d # 0. We have

coh
T n (1) \coh
(_Z“”/”]LT 0,1+2,d Zz: Z)”+1 (¢1€ LT >0J+27d
e coh
_ ROl ( T f(z>>
507 an+l 0,l+1,d ~ P Z+ ¢ 0dsld
Doing a base change T e~/ *T} gives the desired formula. O
These definitions can be summed up in the diagram below.
Scoh
(F.d,g) = > (F,V,8)

U x P!
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Small J-function

The constructions of the fundamental solution S°°" and Givental’s J-function have their analogue in the

small quantum D-module by restricting to 7" = 0.

Definition IT1.2.3.17. We define the formal function s°°" by

SCOh(’TQ,Z) — (SCOh(T,Z))

|77=0

Proposition IT11.2.3.18. Denote by V the small Dubrovin connection and let i € {1,...,r}.

(i) The formal function s°®(a,2) satisfies
Vor, s (12,2) = 0
(ii) The formal function s°°" (79, 2)27H2 is a fundamental solution of the small quantum D-module (Fy, V)

Definition IT1.2.3.19. Givental’s small J-function j°! (7, 2) is given by
5N (2, 2) = 8% (12, 2) (1)

Note that (C*)V*! acts on PV by (Xg,...,An) - [20 1 2n] = [Mozo : -+~ : Ayzn]. Using Atiyah-Bott
fixed point localisation, it is possible [Giv96, BCFKO05] to find an explicit formula for the small J-function of

toric varieties.

Proposition I11.2.3.20 ([Giv96]). In the case X = PN, recall that H*(PY;Q) ~ Q[H]/(HN*'), where
H =¢1(0O(1)) is the hyperplane class. The small J-function is given by

Z e

450 Hil (H+rz)

t H ti1d

jCOh(ch) —e 2

N+1

The expression

H — should be understood as its power series expansions

1

H—rz_Eme( )m _1%( )m

Furthermore, the small J-function satisfies the differential equation

[(Zatl)N+1 _etl]jCOh(tl,Z) =0

Remark 111.2.3.21. This differential equation corresponds to the relation in the small quantum cohomology
of PV found in Example I11.2.1.14. Recall that we had seen

Hot (N1 _ ot ¢ SQH” (PN)

Since we have here V.p;, = 20;, + Hoy,, using that s°°" is a fundamental solution for the small quantum
D-module, we have
(Hotl(N-%—l) _etl)]l =0 [(zatl)N-H _ €t1]jCOh(t1,Z) -0

Remark 111.2.3.22. There is an alternative structure to the quantum D-module (used e.g. in [GT14]) called
Givental’s Lagrangian cone, denoted Eg?h, see [Giv04]. The tangent spaces to this cone carry a D-module
structure that is identified with the quantum D-module, see [CCIT09], Appendix B or [IMM16], Subsection
2.4.d.
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Chapter 1V

K-theoretical Gromov—Witten

invariants

We give the elements to describe quantum K-theory, by essentially building K-theoretic analogues to the
constructions of Chapter III. In the first section, this will result in the construction of a quantum ring
(QK(X), *,) that is a deformation of the K-theory ring of a projective variety X. However, the properties
satisfied by our constructions will be much more complicated than in the cohomological case.

The next section attempts to build a K-theoretical analogue of the quantum D-module. While we are able
to construct differential operators acting on quantum K-theory, we will not try to define a flat connection
analogous to Dubrovin’s connection.

The third section adds additional structure to quantum K-theory. Using Givental-Tonita’s quantum
Hirzebruch-Riemann—Roch theorem (see [GT14], Section 9, Theorem), we will build ¢-difference operators

acting on quantum K-theory.

IV.1 K-theoretical Gromov—Witten invariants

Our objective in this section is to define K-theoretic analogues to Gromov—Witten invariants and quantum

cohomology. The main references for this section are [Lee04] and [Giv00].

IV.1.1 Definitions

We recall that just as we used the virtual fundamental class [ﬂgyn (X, al)]m7 the moduli space of stable

maps also an analogous virtual structure sheaf Ovﬂir (X.d) constructed by Y.P Lee in [Lee04].
g,n )

Definition IV.1.1.1 ([Lee04]). Let g,n € Zso, d € Ho(X;Z). Let k1, ...,k € Zso be some integers, and let
D1, 0n € K(X). A K-theoretical Gromov—Witten invariant is given by the Euler characteristic

Kth

(£ on e onl, = (Mo (X.0): 03 @ bt () e2
i i=1

We precise that in the left hand side, the notation Efi ¢; should not be thought of as the tensor product
of two sheaves, as the cotangent line bundle £; € K (ﬂgyn (X, d)) and the input ¢; € K(X) are not sheaves

on the same space.

35
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Recall that a cohomological Gromov—Witten (wklal,...,wknan)in,d needed not be an integer. Here,
since we are taking the Euler characteristic of a sheaf, a K-theoretical Gromov—Witten is necessarily an

integer.

IV.1.2 Properties of K-theoretical Gromov—Witten invariants

The K-theoretic Gromov—Witten invariants satisfy properties similar to the cohomological Gromov—Witten
invariants (cf. IIL1.1.2). However, we should note that the ring K(X) does not come with a graduation,
therefore we cannot define a Degree Axiom nor a Divisor Axiom, and the Point Mapping Axiom will be
stated in a weaker form. We suggest that the reader mainly interested in the algebraic structure of K-
theoretical Gromov—Witten invariants should skip this section on a first lecture. For simplicity, we will only
state the axioms for the genus zero case. For the proof of these statements, we refer to [Lee04], Subsections
4.3 and 4.4 (see also [MR18], Theorem 5.4.2).

Proposition IV.1.2.1 (Fundamental class Axiom). This property can also be referred to as the String
Equation. Let n,d such that n >4 orn > 1,d # 0. Let mp1 : Mo ns1(X,d) - Mo (X,d) be the universal

curve and consider qi,...,q, be some formal variables. We have

. (Ovir ® (1—{ 1 _;ﬁi )) - (1 > lf_lq) (Ovir ® (q : —;Li )) e K (Mon(X,d))

Proposition IV.1.2.2 (Dilaton Axiom). Let n,d such that n>4 orn>1,d+0. Let 7,41 :ﬂ07n+1(X, d) -

MO,n(X, d) be the universal curve and consider qi,...,q, be some formal variables. We have

T (ovif@) (ﬁ) ®,cn_1) =0 e [(nzl - ! )ﬁc;lﬁ 1—2/:-] € K (Mo (X,d))

i=1 i=1 L~ 4qi ) =1

Proposition IV.1.2.3 (Point Mapping Axiom). Let ﬂgm be the moduli space of genus g n-pointed stable

curves, and 7 :C - Mg , be its universal curve. Consider the diagram

M,y.n(X,0) MygnxX
C - ev
Mg, X

We have
vir i % * * 4
OM,n(x0) = ;:)(—1) N (priR'm.0c ® ev'Tx)

IV.2 Quantum K-theory, differential and g-difference operators

Assumption. Since we had assumed that X is smooth, we will identify K,(X) ~ K°(X) =: K(X). Now, we
also assume that the K-theory K(X) admits a finite basis ¢y, ..., ¢n € K(X) satisfying ¢g = [Ox] and for
which there exists an integer r € Zsg such that ¢;(é1),...,c1(¢,) form an integral basis of A2(X)/(torsion)
and ch(¢,41),...,ch(gn) € AZ4(X)
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IV.2.1 Quantum K-theory

In this subsection, the main reference is [Lee04].

Notation. We keep the notation (¢;) for the basis as in the assumption above. We will also write :

1 The class of the structure sheaf, unit in K(X): [Ox] = ¢o;
9 Pairing on K (X) given by gij = g(¢i, ¢5) := x(¢: ® ¢5);
to, ... tn coordinates on K (X)), associated to ¢o, ..., Pn;
T an arbitrary point in K(X),7:= > t;¢; € K(X);
i=0
Q1,...,Q, Novikov variables associated to ¢q,...,¢.;
Q! shortcut for Qiclwl)xd)---@ﬁclw"))(d), where d € Hy(X;7Z).

We recall that (c1(¢:))(d) = [, c1(bs)-
The Novikov ring C[[Q]] is defined by the ring of formal series in Q1,...,Q, :

fde(c}

Again, if a definition depends on the formal variables tg,...,ty, we may say it depends on the symbol 7

clel :={ > faQ?

deH,(X;Z)

instead.

Big quantum K-theory

Definition IV.2.1.1 (Genus zero potential). The genus zero (K -theoretical) Gromov-Witten potential F is

the generating series

FrQ) =Y %(T,...,ﬂgfg}dcgdeZ[[to,...,tN]]m[[Q]]

d,n>0 """

Remark 1V.2.1.2. If we try from now on to reproduce the definition of the product as in quantum cohomology,
the resulting product would not be associative. To fix this issue, Lee-Givental introduce a new metric, which
we will call quantum metric. Once we replace the usual metric by the new metric, we use the formulas from

cohomology.

Definition IV.2.1.3. The quantum metric is the pairing G, defined on K(X) by
Gij = Gr(¢i, 05) = 01,04, 0, F € L[ 1o, ..., tn]] ® C[[Q]]

We also denote by (G%) the inverse matrix of the Gram matrix (G;;).

This metric is said to be a quantisation of the usual metric g because we have (Gij)\on = g;; from Point

Mapping Axiom.

Remark 1V.2.1.4. If we were to reproduce this definition for quantum cohomology, we would recover G = g

because of the Point Mapping Axiom (see Proposition I11.1.2.4).
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Theorem IV.2.1.5 ([Giv00],4, Theorem). The genus zero K -theoretical Gromov—Witten potential F satisfies
the set of differential equations, called WDV'V equations, indexed by i,7,k,l € {0,... ,N}:

i PF o OPF X PF ., PF
ooto 000ty OLOLOt 520 OOtk Oty Ot OLOt

Definition IV.2.1.6. The quantum product *, is a product on K(X)[[7]] ® C[[Q]] defined by

GT((rbl *r ¢]a¢k) = 8tiat] atkf(’ra Q)

The ring (K(X)[[7]] ® C[[Q]], *+) formed by this product will be called quantum K-theory, denoted by
QK (X).

We have
N
Gixr b= D (010,00, F) G g
B=

a,B=0

Proposition IV.2.1.7. The quantum product *. is commutative and associative. Its unit is the structure
sheaf 1. Furthermore, (K(X)[[7]]® C[[Q]], G, *+) is a Frobenius algebra, i.e.

G‘r(¢1 *r (rbj) (rbk) = G‘r(¢ia¢)j *r ¢k)

And we have

(0i 7 D)) g0 = ¢i ® &;
Proof. 1. Commutativity. This is a consequence of [0;,,0;,] = 0.

2. Associativity. Just like in cohomology, writing the expressions ¢; xo (¢; *e ¢) and (¢; *e @;) *e Ok
will give each side of the K-theoretic WDVV equations of Theorem IV.2.1.5.

3. Unit. Plugging i = 0 in the definition G, (¢; *+ ¢;, ¢x) = G- (i, ¢ *+ i) gives

GT(¢O *r d)jad)k) = atoatjatkf(’er) = GT(¢j7¢k)

4. Frobenius algebra. The compatibility relation between the quantum metric G, and the quantum

product *, comes from the definition of the quantum product and the symmetry of the pairing G.

5. Classical limit. Using Point Mapping Axiom, we obtain (¢; *, ¢j)|Q:0 =0; ® @;.

Small quantum K-theory

Definition IV.2.1.8. The small quantum product #¢ is a product on K(X) ® C[[Q]] defined by
TixQ Ty = (Ti %+ Tj)

We denote by SQK (X) the ring (K(X)®C[Q]],*q), called small quantum K -theory. This ring comes with

a pairing given by Gj.-o, called small quantum metric.
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Ezample IV.2.1.9. For X =PV let P = O(1) € K(PY) be the class of the anti-tautological bundle. We have
K@) ~zZ[P,P']/((1-P 1N

We choose therefore the basis given by ¢; = (1 — P7')?, which verifies ¢;(¢1) = H € H*(X;Z). The small
quantum K-theory is given by

SQK(PN)~C[P,P']/((1-P )N -Q)

For the pairings, let ¢; = (1 - P’l)i. We have

1 ifi+j<N
gij =
! 0 otherwise

(Gijly-o = 9is * 0

The computation of the small quantum product can be found in [BM11], Section 5. The computation for

small quantum metric relies on the small J-function; it can be found in [IMT15], Corollary 4.3.

1V.2.2 Differential operators on quantum K-theory
Big differential module in quantum K-theory

Assumption. We assume that the potential F is convergent on some open set U.

Definition IV.2.2.1. Let ¢ be a local coordinate on P at 1 € A! and denote by (¢;) the local coordinates
on U associated to the basis (¢;). We define the trivial bundle FXh by

FE U x P x K(X) - U x P!
The quantum connection is the differential operator V acting on the sections of FX by
Vi-ga, =1 =)0, + ¢ixr
As there is no definition for a derivative along the direction ¢, this is not exactly a connection. We will

still use the language of connections to describe these operators.

Remark IV.2.2.2. When comparing the formulas for the operators Vg, in quantum cohomology and quantum
K-theory, we can observe that the parameter z in quantum cohomology is replaced by the expression 1 - g
in K-theory. It is possible to give a geometric meaning to the variables ¢ in quantum K-theory and z in
quantum cohomology. The variable ¢ should be understood as a generator of the C*-equivariant K-theory of
a point K¢+ (pt). As for z, it is a generator of the C*-equivariant cohomology H¢. (pt). We have z = —¢1(g).
Writing ¢t for the total Chern class, these two variables are related through the formula cyot(q) = 1 - 2. For

more on this comparison, see [IMT15], Subsection 2.6.

Proposition IV.2.2.3 ([Giv00], Corollary 2). The quantum connection is flat, i.e. for q #1,

[V(l_Q)ati V(i-g)o,, ] =0
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Proof. We have to compute the three commutators [0;,, 0y, ], [0s,, #;*-] and [@i*r, ¢j*-].
We have [0;,,0;,] = 0 by definition. Next, for all k€ {0,..., N}, we have

ati¢j *r P = Z ((atiatj 8tk 3ta-7:(7'7 Q)) Gaﬂ + (816] atkataf(Tv Q)) 3tiGaﬁ) ¢/3

,8¢{0,....N}

The expression 0,0y, 0y, 0y, F(7,Q)G™™ is invariant by permutation of the inputs 4,7, k. Then, we have
(84, 0,0:. F(1,Q)) (8:,GP) = (84,04, 0. F(7,Q)) Zﬂ (8, Garpr) G GPP
Using String Equation, we have 0y, Gorgr = 8t,;ata/atﬁ/- Finally, we obtain
(84, 04,00, F(1,Q)) (8:,GYP) = (84, 04,0, F (1, Q)) Zﬂ (04,0r,0:, F(7.Q)) G G*¥

The WDVV equations (see IV.2.1.5) imply that the right hand side is invariant by permutation of the inputs
1,7, k, so we get

(04, j*r] b1 =0

Lastly, using Proposition IV.2.1.7, the associativity of the quantum product of Porposi gives

[(i*r, Pj*r] i =0

O

Proposition TV.2.2.4 ([Lee04], Proposition 12). Denote by v*©) the Levi-Civita of the metric G,. We

have
ZV(LC) — @*V|q:—1

In particular, the metric G, is flat.

Proof. We define the Christofell symbols I‘fj by vgf)t]— = Z,JCV:O I‘fjtk. The definition of the Livi-Civita metric

gives

N
1
I} = ;)G’“é (01,Git + 01,Gj1 - 9, G

Notice that by String Equation, we have 0y, Gy = Oy, 04,04, 0y F = 0, 0,04, F . Plugging that in the computation

of our Christoffel symbol gives
1 N
It = 52 G*0y,0,, 00, F
1=0

We have recovered the coefficients of the K-theoretical quantum product:

N
i xr 05 = 3 20
k=0

Therefore, we obtain 2v"C = ©*V|g=—1- Since the connections V are flat for all ¢ # 1, the Livi-Civita v (LO)

is flat, i.e. the metric G is flat. O

Remark 1V.2.2.5. The metric g on U is also flat, its Levi-Civita connection is the trivial connection d.
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Definition IV.2.2.6. We define the sesquilinear pairings g and G, are extended FX*" by setting, for any
sections ®1(q), P2(q) € QK (X) ® Cllg,q 1],

g(21(q), ®2(q)) = g(®1(q7"), ®2(q)) G, (®1(q), P2(q)) = G, (®1(q7"), @2(q))

The involution of P! given by ¢ + ¢~ corresponds to the involution ¢ : z = —z in quantum cohomology,
following the relation ch(g) = e™* of Remark I1V.2.2.2. This time, the fixed points of the involution are ¢ = 1
and ¢ =-1.

Proposition 1V.2.2.7 ([IMT15], Proposition 2.3). The endomorphism SK% : (FEth gy » (FE® Q) is an

isometry, i.e. for alli,j€{0,...,N}, we have

G, (S5 (4,), S5 (6,)) = g(61, ;) (IV.2.2.8)

Moreover, we have
TKth _ (SKth)—l

Proof. For all 4,5,k e {0,...,N}, O

We want to compare the Levi-Civita connection of the metric G, on U with the quantum connection.

Denote by Flffzt_hl the restriction of the trivial bundle FE*" to the hypersurface U x {q = =1} ~ U. We have

FKth

an isomorphism ¢ between the trivial bundles TU and F| "™ over U given by (for their sections)

TU —— ﬂgﬁg

ati — ¢Z

We can build a fundamental for the quantum connection.

Definition IV.2.2.9 ([Giv00]). For i,j € {0,..., N}, define the formal function S;; by

1 QS Kth
Sij =gij + —(gb;,T,...,T, J > Qd
Yoo ,Z;) n!\" 1-qL 0,n+2,d
deHy(X;7)

We will see below that the matrix (S;;) defines a fundamental solution of the differential equations
associated to the operators Vy, .

Lemma IV.2.2.10 ([Lee04], Theorem 4). For alli,j,k,1€{0,...,N}, we have

N N
> (040,01, F) G (84, S51) = Y., (01,04,00.F) G (01, S1)
,B=

a,3=0 a,3=0

Definition IV.2.2.11 ([IMT15]). We define the endomorphisms SXt 75t ¢ End(QK (X)) ® C((¢q)) such
that

G, (S"™(¢:),0;) = Si; g(6:, T*™(¢;)) = Sy

Notation. Let f(g) be an expression depending on the coordinate g (e.g. S;;). We will write f(q) = f(¢™").
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The endomorphisms S®*" and T have the explicit formulas below.

N JR—
SER ()= > SiaG*P g
a,B3=0

N
TEM(p) = Y Siag™ o5
«,B=0

Proposition IV.2.2.12 ([IMT15], Proposition 2.3). The metric G, on F is V-parallel, i.e. given two
sections s1, 82 of F', we have for all i € {0,...,N},

O, G (s1,52) = G (Vo 51,52) + G- (51, Vor,52)

Proof. For all 4,j,k€{0,..., N}, we have

1

G: (Vou, ¢i, 95) + G- (¢i,Vor, ¢5) = (17_(1 + Tiq) G (¢i, @j *7 O1) = 04,0,01, F = 01, G (i, 95)

Where the first equality uses the Frobenius algebra property, and the third uses String Equation. O

From these definitions we can instantly deduce the following adjunction property of SE* and T with
respect to the metrics G, and g :

G, (S5 ™ (i), 8;) = g(¢i, T*™(0,)) (IV.2.2.13)

Theorem 1V.2.2.14 ([Lee04], Theorem 4). The endormorphisms SK™ TE®™ gre fundamental solutions to
the set of differential equations indexed by i €{0,...,N} :

V(l—q)ﬁti . SKth — SKth . (1 _q)ati TKth . v(l—q)ati _ (1 _q)ati . TKth

Remark 1IV.2.2.15. Notice that unit 1 is not V-flat, while it was the case in cohomology. This means that in

quantum K-theory, we do not have a Frobenius manifold with the same properties as in quantum cohomology.

Definition IV.2.2.16. Givental’s K-theoretical J-function is given by the expression
JEM(r,¢,Q) = S5 (1,¢,Q) 1 € QK (X) @ C((9))

ST Zf'(]m,..., Qg7 ¢,

—
(n,d)>04,5=0 " 1=qL o2

Where
¢ \N™ Kth
T _ m m
7'71 L) = Zq (1,7,...,7,L", i)o,n+2,d
—-q 0,n+2,d m>0

1,r,...,
Givental’s small J-function is given by restricting the expression above to 7 = 0.

So far, our data fit in the diagram below.

SKth

(F.d,g) = > (F.V,Gr)

U x P!
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Ezample TV.2.2.17. for X =PV let P = O(1) e K(PY). The K-theoretical small J-function is given by

Kth & (1-pPy e d
J (q,Q):ﬂ+ZZ<1,1 - ) Q%
d>0 i=0 -9 0,n+2,d

Where ¢; is the metric-dual of (1 - P~')? with respect to g :

po=(1-P N

;= P~WN=0(1-p) ifi20

A computation gives

-Kth( Q) Z Qd

J q, =

a0 Tl (1- g PH)™*!
Where N
1 1 1 q -1 )m N
= = 1-P e K (P ®C
1-¢'Pt (1-¢)+q¢(1-P") 1-g" 7,;0(1_qr( ) () e Cla)

The computation of j5'" uses fixed point localisation in equivariant K-theory, see [GLO03, Giv].

I1V.2.3 Building ¢-shift operators on quantum K-theory

In this subsection we will follow IMT15], Subsection 2.5.

The g¢-difference structure on quantum K-theory was first found by A. Givental and Y. P. Lee for flag
manifolds in [GLO03], and they were able to identify it to a difference Toda lattice. For a general target X, it
is obtained by A. Givental and V. Tonita in [GT14].

This ¢-difference structure should play the role of the Divisor Axiom in K-theory. In [GT14], Givental-
Tonita show that because of the Divisor Axiom, one can find some differential operators acting on quantum
cohomology. Then, using a Riemann-Roch theorem, they send these operators to quantum K-theory and
realise they become ¢-difference operators. More precisely, they show that the tangent spaces to Givental’s
Lagrangian cone in quantum K-theory is preserved by g¢-difference operators denoted by Pj_qujan for
je{l,...,r} (see the two definitions below for notations).

Definition IV.2.3.1. Let j € {1,...,7}. We denote by q9799; the g-difference operator that acts on functions
f=1(Q1,...,Qr) by

(quanf) (Q17"'5Q7‘) = f(Ql)"'an—17QQj7Qj+1;~-'aQ7")

Definition IV.2.3.2 ([IMT15]). Let j € {1,...,r}. Denote by Pj‘1 € End(K (X)) the map ¢~ ¢; ® . The

g-shift operator A; is given by the expression

Aj =S50 (,1,Q) o P10, (S5 (¢,1,Q)
= 5" " (q,1,Q) o (P;'q¥ % (SKth)_l) (@:1.Q) o 49

This expression defines an automorphism* A; of QK (X) ® C[g,q™'].

*This is a consequence of Givental-Tonita’s quantum Riemann—Roch theorem, see [GT14], Section 9, Theorem. This theorem
is used in the definition of .A; to justify using in the right hand sides the endomorphism SEt(g,t,Q) instead of S (g,t,¢Q).
See also the diagram below Proposition I1V.2.3.6.
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Our main motivation for introducing that g-shift operator is that it preserves flat sections.

Theorem IV.2.3.3 ([IMT15], Equation 2, Proposition 2.6). The endomorphisms S and T are fundamental

solutions to the set of q-difference equations indexed by j € {1,...,7}
SKth . Pj—qujan _ A] . SKth Pj—qujan . TKth _ TKth . AJ (IV234)

Furthermore, let i € {0,...,N}. The g-shift operator A; and the derivative anti satisfy the compatibility
identity
[A;, Vs, ]=0 (IV.2.3.5)

Proposition IV.2.3.6 ([IMT15], Proposition 2.6). The compatibility of the metric G, and the q-shift oper-
ator is given by the identity

q99%%5 G (6, ) = G- (A0, AT')

We can add the ¢-shift operators to our previous diagram.

prae ( (Pdg) —— s (FV.G) A
JK %

U x P!

Ezample IV.2.3.7. for X =PV, let P = O(1) e K(PV). The K-theoretical small J-function was given by

jKth(q Q) _ Z Qd
’ d>0 ]_I’Ti,:1 (1_qrp_1)N+1

It satisfies the ¢-difference equation

[(1- P1ge) ™™ - Q] % (4.Q) = 0

Which should be compared to the relation

)N+1

(1-pP7! -Q=0ecQK((PY)

To mirror Example I11.2.3.20, it can be convenient to modify the endomorphisms S,T so that in the
g-difference equations, the operator Pjiquj 92; is replaced by q%9  In [IMT15], this is done by introducing
a shift by f(q,Q;) = ¢j log(Qj)/log(q), which satisfies ¢®79 fq,Q;) = (bji-lf(q, Q;). In this thesis, we will use
a different function which has the same purpose: they are both solutions of the g-difference equation.

Definition IV.2.3.8 ([IMT15]). We consider the new endomorphisms SKth TKth defined by
SR _ gKth T 4la(@) TR _ T 4 le(@) Kb
GKth — gKt °H¢j TKt}_H¢j OTt
j=1 j=1
Where
—0,(Q; 0o (Q; N 1 At Nk
@ = () - o) - S ( TTe@ -n) 0-07)
*r=0

k=0 k>0
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And
0.0 (0
(@) - %)
0,0,) =TI -1+ 4'Q,) (1+ . )
r>0 J

We also do the same for the J-function. We set

JKth — ﬁ ¢;Zq(Qy‘) , JK™

J=1

We refer to Subsection V.2.1 for more details on this special function. Omne should understand the
product H;zl QS;-EQ(Q") as the K-theoretical analogue of term e~™/# in the formula of S¥, J¥ for cohomological
Gromov-Witten theory). This comparison will be explained in the last chapter. Meanwhile, we invite the
reader to compare the formulas for the small .J-functions of P? given in Examples VI.2.1.2 and VI1.2.1.3.

Corollary 1V.2.3.9. The endomorphism S, T are fundamental solutions of the set of q-difference equations
indexed by j e {1,...,r}

SKth quan =A; , SKth quan o TKth = TKth = A

These results fit in the following diagram

20 (C (Rdg) T (VG 4
X / (IV.2.3.10)
FR 1

U x P!
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Chapter V

Regular singular ¢-difference equations

In this chapter, we begin by giving a brief overview of (analytic) g-difference equations, which the reader
might not be familiar with. We want to give the results necessary to understand the main theorem which
relates the g-difference module in quantum K-theory with the differential module in quantum cohomology.
This chapter is organised as follows:

e In Section V.1, we work some examples to motivate the general theory.

e In Section V.2, we introduce the main definitions for g-difference equations. Then, we focus on the
class of regular singular ¢-difference equations. We explain how they are solve and their confluence

phenomenon.

e In Section V.3, we discuss the analogue of monodromy of regular singular g-difference equations. This

section is not necessary for the understanding of the main theorem.

V.1 First two examples

In this section we will work on two g-difference equations. The aim of the subsection is to introduce the
basics of the analytical theory of g-difference equations: the space of functions in which we look for solutions,

special functions needed to build solutions, and the analogue of the characters (Q — Q*).

V.1.1 Finding solutions which are ¢-characters

Definition V.1.1.1. Let M(C) be the field of meromorphic functions on C. Fix g € C,|g| < 1 and n € Zso.
Let 9% be the g-difference operator acting on functions f : C — C by (¢9%2f)(Q) = f(¢Q). A linear
q-difference system is a functional equation

qQaQXq(Q) = Aq(Q)Xq(Q)

where X, is a column vector of n complex functions of input @, and A € M,,(M(C)).
The rank of this g-difference system is defined to be the rank of the matrix A,.

Remark V.1.1.2. Let us discuss briefly our choice to take ¢ € C,|q| < 1. Suppose that ¢ is a r*® root of unity,

for some r € Zsg. Then, we have (qQOQ )T = Id. Therefore, having A} = I,, is a necessary condition for the

47



48 CHAPTER V. REGULAR SINGULAR Q-DIFFERENCE EQUATIONS

g-difference equation 2% X,(Q) = A,(Q)X,(Q) to have a non trivial solution. To avoid having to deal with
this condition, we set |¢| # 1 and choose the inner side of the unit circle. Our results will still hold on the
outer side after replacing ¢ by ¢~*. We could also consider the case || = 1, ¢ not root of unity, however it is
more technical. We refer to [DV09]

Let A, € C* be some complex number, which may depend of the parameter g. In this subsection, our goal

is to understand solutions of the rank 1 g¢-difference equation

qQanq(Q) = )‘qfq(Q) (V.l.l.?))
Definition V.1.1.4. A solution of the g-difference equation ¢2%¢ f,(Q) = A\, f,(Q) is called a g-character.

Remark V.1.1.5. To see the necessity for A, to depend on ¢, and to motivate the choice of name in the

definition above, we will see in Proposition V.2.4.2 that if limg_ % =y € C*, then

(lzlil% eq,kq (Q) = QM

This statement is actually not true in general and needs to be refined in most situations. However, in the

next subsection, we will see an example where this kind of limit can be directly computed.

Solutions in C[[Q][Q7!]

Proposition V.1.1.6. The g-difference equation (V.1.1.3) only has non trivial solutions in C[[Q[Q7'] if
Ag = q* for some integer k € Z. If this condition is satisfied, then the C-vector space of solutions is spanned

by the function
fq(Q) = Qk

Proof. Assume that f,(Q) = Yk f2(q)Q? for some k € Z. If f, is a solution of the g-difference equation
(V.1.1.3), then for all d > k, q¢*f4 = A\, f4. This is only possible if f, = 0 or if \, = ¢" for some ko € Z, and
then f,(Q) = Q" up to a constant. O

To get non trivial solutions for every A, # 0, we need to look for solutions in a bigger space: we are going
to allow our solutions to have an essential singularity at @ =0

Notation. We denote by M (C*) the field of meromorphic function on C*. The germ of such functions at 0
is denoted by M(C*,0) = C{Q,Q"'}, the space of convergent Laurent series defined on a punctured disk at
0.

Solutions in M (C*)
We will build solutions using a special function which we introduce below (note that it is not a g-character).

Definition V.1.1.7 ([Mum83]). Jacobi’s theta function 6, is the complex function defined by

0,(Q) =Y q" " Q"

deZ

Since |g| < 1, this defines a convergent Laurent series 0,(Q) € C{Q,Q7'}. The computation of the

convergence rays give that the function 6, is defined for any @ # 0.
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Proposition V.1.1.8 ([Mum83]). Jacobi’s theta function 04 is a solution of the rank 1 q-difference equation

4990,(Q) = geq(cz)

Proof. We compute each side of this equality individually.

1 d(d-1) _ (d+1)d
—0,(@Q)=>q 7 Q'=Yq * Q°
Q deZ deZ
d(d-1) (d+1)d
0?%0,Q)=>q 7 (@@)"=>q 2> Q°

deZ deZ

Definition V.1.1.9 ([Sau00]). We define the function ey, € M (C*) by

0,(Q)
04(XgQ)

Lemma V.1.1.10. Denote by Fun(C) the ring of complex functions. The q-difference operator qQ%

eqx, (Q) = e M(CY)

Fun(C) — Fun(C) is a ring automorphism.

Proposition V.1.1.11 ([Sau00]). The function eq x, is a solution of the q-difference equation qQanq(Q) =
Agfe(Q)-

Proof. Using Proposition V.1.1.8 and Lemma V.1.1.10, we have

qQBQeq N (Q) _ /\quq(Q) _

- Qeq(AqQ) B /\qe%/\q (@

O

We have exhibited a non trivial solution ey, of the g-difference equation (V.1.1.3). To find the others,
notice that we can obtain another solution by multiplying e, x, with a solution of the g-difference equation
q@% f4(Q) = f4(Q). Let us describe the solution space of q@% f4(Q) = f,(Q).

The case \;,=1

Definition V.1.1.12. A function f which is a solution of the g-difference equation ¢@% f,(Q) = f,(Q) will

be called a g-constant.

Remark V.1.1.13. The Remark V.1.1.5 in this case (p = 0) says that the limit when ¢ tends to 1 of g-constants

will give us constant functions.

Proposition V.1.1.14. The solution space of the q-difference equation ¢2%2 f,(Q) = f,(Q) is given by the
space of meromorphic functions on the elliptic curve C*[¢”.

Proof. We look for functions f, that are meromorphic on C* that satisfy for any k € Z, f,(¢"Q) = f,(Q). We
can identify the solutions to this g-difference equation with functions on the quotient E, := C*/ ¢”, the action
of ¢% being given by the multiplication ¢* - z = ¢* 2.

2imT

The space C*/q” has the structure of an elliptic curve. Take 7 € H such that e = ¢q. The elliptic curve

C*/q” is related to the usual elliptic curve C/(Z-1® Z-7) by
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C——«c
l |
c D ¢t

7 ﬁF:Eq

Therefore, the solutions to the g-difference equation ¢®%2 f(Q) = f(Q) which are meromorphic on C* is given
by the space of meromorphic functions M(E,). O

Remark V.1.1.15. This space of functions strictly contains the space of constant functions. To give an

example of a non constant function which is a g-constant, take A, € C* — ¢%, \/u ¢ ¢%, and consider

€q,7q (Q)eq,u(Q)
eq,)\qﬂ(Q)

Using Lemma V.1.1.10, we obtain the corollary below.
Corollary V.1.1.16. Let ¢@% fa(Q) = Ag(Q) f4(Q) be a g-difference equation. Then, the set of its solutions
in M (C*) has the structure of a M (E,)-vector space.
Conclusion
We return to the general case Ay # 0.

Proposition V.1.1.17. The solution space of the g-difference equation (V.1.1.3) : 292 f,(Q) = X\ f,(Q) is
the M(Eq)-vector space of dimension 1 spanned by eq x,-

Proof. According to Proposition V.1.1.11, the function e, x, is a g-character. Using Proposition V.1.1.14,
the solution space has the structure of a M(E,)-vector space. What remains is to show that the dimension
of this vector space is given by the rank of the g-difference equation which we admit for now, cf Proposition
V.2.1.3. O

Remark V.1.1.18. Later, we will explain how confluence relates the g-characters e, , to the characters
(Q — Q") of differential equations; see Proposition V.2.4.2.

V.1.2 An example to introduce confluence

The goal of this subsection is to introduce the confluence of g-difference equations on an example where the

limits are not too technical. This time, we consider the rank 1 g-difference equation

4% f,(Q) = (1- Q) f,(Q) (V.1.2.1)
Let us build a solution in M (C*).
Definition V.1.2.2. The g-Pochhammer symbol is the complex function defined by, for d € Z > 0

(Q;q)o=1
d-1

(@@)a=[11-¢"Q)
r=0

(R0 =]](1-4"Q)

720
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Proposition V.1.2.3. The function f, defined by

1
fa(@) = 7
=G
is a solution of the q-difference equation (V.1.2.1)
Proof. We have
. 1
fMQM%q%o=TH1—q*%%Q)=T—§(Qm0m
r>0 -

We remark that the function f; has poles at complex numbers of the form @ = q" for k € Z.
The idea for confluence of g-difference lies in the following computation. Introduce another g-difference
dq by

5 = q®% —1d
= ———
q-1
Then, for any k € Z, applying the g-difference operator d, to the monomial QF gives
kyk k
Q" -Q .
(SqQk = 61—71 = (1+q+-~~+qk 1)@’“

Taking the limit when ¢ tends to 1 gives
lim 5,Q° = kQ* = QQ"
Definition V.1.2.4. We say the g-difference operator d, has the formal limit Q0g when ¢ tends to 1 because
of the above computation: for any monomial Q*, we have
lim 5,Q" = Q9gQ"
Trying to apply this principle to our example, we rewrite the g-difference equation (V.1.2.1) as

Qoq _
A L N7 S A7)
q-1 1-g¢

Notice that the coefficient in front of f,(Q) in the right hand side does not have a limit when ¢ tend to one.
this leads us to introduce instead the g-difference equation

9% f,(Q) = (1- (1-9)Q) fo(Q) (V.1.2.5)

This time, this g-difference equation can be rewritten as
Qg

Rl ) =05©Q)
q-1

Writing formally f(Q) = limg1 f4(Q), we obtain the differential equation below as a formal limit of the
g-difference (V.1.2.5) when ¢ tends to 1.

QI f(Q)=Qf(Q)

Furthermore, the g-difference (V.1.2.5) has solutions spanned over M (E;) by

1
gq(Q) = fq (1-9)Q) = m

Let us try to compute lim,_,1 g,(Q) for a given @) near zero.
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Proposition V.1.2.6. (i) For|Q| <1, the function g, has the Taylor expansion at Q=0

o N\d
0@ = 3 LD

30 (©:0)d

(i) For |Q| <1, we have the following pointwise convergence
. _.Q

lim g4(Q) =

Proof. (i) We are going to show instead that

L@=3 ——q

d=0 (Q;Q)d

We show that the Taylor series of the right hand side h(Q) = ¥ 450 m@d is a solution of the g-difference
equation (V.1.2.1), which was the equation ¢©%2 f,(Q) = (1- Q) f,(Q). Indeed, we have

q%(z : Qd):z 0y

50 (©:0)a 50 (¢:0)a

1-0(Z )10 2 (- ) B s e

50 (@59)a S\ @)a (¢:9)a 50 (@q)a

Therefore, the functions f,; and h, are solutions of the same rank 1 g-difference equation, so they are related
by a g-constant by Proposition V.2.1.3. Note that f, e C{Q} as it is a convergent limit of inverses of finite
g-Pochhammer symbols. We also have f,(0) = hy(0) = 1. Thus, by Proposition V.1.1.6, the g-constant

relating the solutions f, and h, is necessarily the constant function 1.

(i1) We use (i) to compute the limit of the function g,. We have

1-¢)% 1
limi( 9) =

-1 (g3q)q !

From which we can deduce the wanted result. O

Notice that lim,_.; g, = exp is indeed a solution of the formal limit differential equation dg f(Q) = f. This
observation will be formalised in the Theorem V.2.4.7.

V.2 Survey of the theory of regular singular ¢-difference equations

The aim of this section is to give definitions related to the study of ¢-difference equations. After giving basic
definitions, we review the theory of regular singular ¢-difference equations. Similarly to differential equations,
solutions to a regular singular g-difference will exhibit polynomial growth properties at the singularity. We
will begin by showing how to find a basis of solutions for such g¢-difference equation. Then, we are interested
in describing how a g-difference equation is a g-unfolding of a differential equation, which is a phenomenon
referred as confluence. This phenomenon was first described in the easy case of Subsection V.1.2. The
main result will be that if such a ¢-difference equation admits a formal limit when ¢ — 1, then it admits
a fundamental solution whose limit is a fundamental solution of the limit differential equation. The main

references for this section are [Sau00] and [HSS16].



V.2. SURVEY OF THE THEORY OF REGULAR SINGULAR ¢-DIFFERENCE EQUATIONS 53

V.2.1 Fundamental solution, g-gauge transform and ¢-pullback

In this subsection, we define some basic notions in the theory of ¢-difference equations.

Remark V.2.1.1. We will actually restrict ourselves to finding solutions that are germs at () =0 or ) = oo for
the following reason : if a function f, is a solution of a g-difference equation ¢9% f,(Q) = a,(Q) f,(Q) and
has a singularity at some Qg # 0, oo, then f,; has a singularity at any complex number Qoq".

From now on we will be working all the time locally at @ = 0. Our results will also hold for @ = oo.
Definition V.2.1.2. Let (E,) : ¢?%2 X,(Q) = 4,(Q)X,(Q) be a g-difference system, with A, € M,, (M(C)).
We define the solution space of this g-difference equation by

_1\N
Sol (Ey) = { X, € (C{Q. Q71" [4979 X,(Q) = 4,(Q) X,(Q)}
By Corollary V.1.1.16, this set has the structure of a M (E,)-vector space.

Proposition V.2.1.3 ([HSS16], Theorem 2.3.1 p.118). Let (E,) : ¢?%2X,(Q) = A,(Q)X,(Q) be a g¢-
difference system. Then, we have
dimM(IEq) (Sol (Eq)) < rank(Aq)

Definition V.2.1.4. Let qQaQXq(Q) = A,(Q)X4(Q) be a g-difference system. A fundamental solution of
this system is a matrix X, € GL,, (C{Q,Q7'}) such that 9% X,(Q) = 4,(Q)X,(Q).

Let us define gauge transforms and pullbacks for g-difference equations. We will only use pullbacks by
isomorphisms so we will give an easier definition.

Remark V.2.1.5. In the differential case, let V = d + A be a connection on a bundle F - X (we have
AeM,(Qy) where U is a trivialising open for F'). Given a base change P € I'(U, GL,(Ox)), the connection
matrix A in the new base becomes

P-[A]:=P AP+ P'dP

The matrix P-[A] is called the gauge transform of A by P.

Definition V.2.1.6. Let ¢?%2X,(Q) = A4,(Q)X,(Q) be a g-difference system. Consider a matrix P, €
GL, ((C {Q, Q‘l}). The gauge transform of the matrix A, by the gauge transformation P, is the matrix

Py [Ay] = (qQaQPq) quq_1

A second g-difference system ¢ X,(Q) = B,(Q)X,(Q) is said to be equivalent by gauge transform to the
first one if there exists a matrix P, € GL,, (C{Q,Q'}) such that

Bq:Pq'[Aq]

Remark V.2.1.7. We can retrieve the formula for the g-gauge transform by computation. Consider a g¢-
difference system qQaQXq(Q) = A4,(Q)X,(Q) and a matrix P, € GL, ((C {Q,Q’l}). Denote Y, = P, X,.

Then, we have
qQaQYq = 9% (PgXq) = (qQaQPq) (qQaQXq) = (qQaQPq) AgXq = [(qQaQPq) AqPq_l] Y,

Definition V.2.1.8. Let (E,) : ¢?%2X,(Q) = 4,(Q)X,(Q) be a g-difference system and let f : C - C be
an isomorphism. The g-pullback (f*E,) of (E,) by f is the g-difference system given by

(F'Eq) = 4970 X,(Q) = 4,(f (@) X4(Q)
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Definition V.2.1.9. A system ¢?%2 X, (Q) = 4,(Q)X,(Q) is regular if A,(0) is diagonal and if its eigen-

values are of the form ¢" for k € Zs

Ezample V.2.1.10 (Proposition V.1.1.6). Let k € Z5o and consider the g-difference equation

qQaQ fq(Q) = qqu(Q)

Then, the solutions of this g-difference equation are spanned by the function (Q —~ Qk).

Definition V.2.1.11. A system ¢®%2 X, (Q) = 4,(Q)X,(Q) is said to be regular singular at Q = 0 if there
exists a g-gauge transform P, € GL, (C{Q,Q’l}) the matrix P, - [A4](0) is well-defined and invertible:
P,-[4,](0) € GL,(C).

Remark V.2.1.12. In [HSS16], such a g¢-difference system is called fuchsian at 0. A g¢-difference system is
strictly fuchsian at 0 if its associated matrix is already invertible without the need of a ¢g-gauge transform.
Ezample V.2.1.13 ([IMT15, GL03]). Let us considerate the g-difference system obtained from the g-difference

equation of the small K-theoretical .J-function of P2. The g-difference system given by

0 1 0

QQBQXq(Q) = 0 0 1 Xq(Q)
1-Q -3 3

is regular singular at @ = 0.

Let us give a criteria for when a g-difference equation is regular singular at @ = 0. This critera is the

analogue of Fuchs’ condition for differential equation ([Sab02], Théoréme 4.3)
Proposition V.2.1.14 ([HSS16]). Let P (qQaQ) =Yrar(q, Q) (qQaQ)k be a q-difference operator.

(i) The q-difference equation P (qQaQ) f4(Q) =0 can be vectorised to a q-difference system qQaQXq(Q) =
A (Q)X4(Q) where Ay is companion matriz of the operator P. The resulting q-difference system is

fa(Q) 0 1 0 0 fo(Q)
Qoo qQaQ fq(Q) _ : 0 0 qu?Q fq(Q)
q : 0 1 :
(@9)" " @) \-22 —m e e J{(09%)T £(Q)

(i) We denote by valg(ax)) the Q-adic valuation of the polynomial ay, i.e. the lowest integer o € Z U
{+o0} such that (Q%ax(Q)) g0 * 0. The g-difference system associated to the g-difference equation
P(qQaQ)fq(Q) = 0 is regular singular if and only if valo(a(0)) — valg(a(n)) = 0, and for every k €
{1,...,7=1},valg(a(k))) —valg(a(n)) >0

V.2.2 Special functions to solve regular singular ¢-difference equations

We define some specials functions required to construct fundamental solutions for regular singular g-difference
systems. We recall that to build a fundamental solution in the case of a regular singular differential system,
we need to use the functions (Q ~ Q") and (Q ~ log(Q)). We are going to give g-analogues of these

functions.



V.2. SURVEY OF THE THEORY OF REGULAR SINGULAR ¢-DIFFERENCE EQUATIONS 55

Recall that in Definition V.1.1.7, we defined Jacobi’s theta function by

Hq(Q) = Z q@

deZ

Qd

This function satisfies by Proposition V.1.1.8 the g-difference equation ¢©%26,(Q) = éeq(Q).

We also recall the g-characters below.

Definition V.2.2.1 (cf V.1.1.9). Let A\, € C*. The g-character associated to A, is the function e, x, € M (C*)
defined by

0,(Q)
04(AQ)

By Proposition V.1.1.11, the g-character e, satisfies the g-difference equation qQ% eqn, (@) = Ageg, (Q).

eq.r, (Q) = eM(C)

Definition V.2.2.2. The g-logarithm is the function ¢, € M(C*) defined by

-Q0,(Q)
0,(Q)

Proposition V.2.2.3. The function ¢, is a solution of the g-difference equation

,(Q) =

q9%20,(Q) = ,(Q) +1

Proof. We obtain the wanted identity after deriving the g-difference equation satisfied by Jacobi’s theta
function 6,. By Proposition V.1.1.8, we have

/ ooy L
98, (qQ) = Q9q(Q) Q29q(Q)

Which gives

oo (—QQ;(Q)) ) ~4Q (504(Q) - 5:0,(Q)) e

0,(Q) 56,(Q)
O

Remark V.2.2.4. Note that this g¢-difference equation is not a linear g-difference system as in Definition
V.1.1.1. To understand ¢, as a solution of a g-difference system, we should instead consider the g-difference

o [F@)_ (1 0\ (1@
94(Q) 1 1/19,(Q)
Notice that f, is a g-constant and g, satisfies qQ% 9q = 9q+ [q. Therefore, solutions of this g-difference system

are given by (é) and (E (1Q))
q

V.2.3 Fundamental solution of a regular singular ¢-difference equation

system

The strategy to construct a fundamental solution of a regular singular g-difference equation is the same as

for differential equations. As a reminder, we give a sketch of this strategy for differential equations.
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Fundamental solution of a regular singular differential equation

Definition V.2.3.1. Let 05X (Q) = A(Q)X(Q) be a differential system, where A € M,,(C(Q)). A funda-
mental solution of this differential system is a matrix X € GL, ((C{Q} [Q_l]) such that

IoX(Q) = A(Q)X(Q)

Definition V.2.3.2. A complex function f:C — C has polynomial (or moderate) growth at @ =0 if there
exists a neighbourhood U of 0 and two constants d € Zsq, C € R, such that for any Q € U, we have

IF@l=<cler™

Definition V.2.3.3. Consider a differential system dgX(Q) = A(Q)X(Q). This system is called regular
singular at @ =0 if it admits a fundamental solution which has a pole at @ = 0, with polynomial growth at

this pole on small triangular sector.

Proposition V.2.3.4 ([Sab02], Subsections 11.2.1 and I1.2.6). For a regular singular system, there exists a
gauge transform F € GL,, (C{Q} [Q’l]), such that the connection matriz becomes

1
9o X(Q) = @B(Q)X(Q)
where the matriz B € M, (C[Q]) has holomorphic coefficients.

Remark V.2.3.5. Consider a differential system 90X (Q) = A(Q)X(Q). The order of the pole at @ = 0 of
the matrix A does not immediately determine the nature of the complex number 0 as a singularity. Indeed,

following [Sab02], Exercise I1.4.4, consider the gauge transform

0 0
The differential system 0o X (Q) = ( L,

)X (Q) is regular singular, as we see the logarithm as a solution,
Q

but its gauge transform by the matrix P is the system given by doX(Q) = (Q_?’ o

-1
0
@ ) ,which appears to
be of order 3.

To construct a fundamental solution of a regular singular differential system, we are going to consider
first the case where the matrix B(Q) is constant in (). In a second time, we will explain how this gives a

fundamental solution for any regular singular differential system.

Lemma V.2.3.6 ([Sab02], Chapter II, 2.6.). Consider a regular singular differential system 0gX(Q) =
%BX(Q), where the matrix B is constant. Take the Jordan-Chevalley decomposition B = D + N where D is
semi-simple, N is nilpotent and D, N commute. Write the diagonalization D = P~*diag(\;)P. We define

QD = P’ldiag(Q)‘i)P

and
d
QY= 3 (Nlog(@)

k=0
Then, the matriz QP QYN is a fundamental solution of the differential system 0o X (Q) = éBX(Q).
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Lemma V.2.3.7 ([Sab02], Chapter II, Propositions 2.11 to 2.13). Consider a regular singular differential
system 0o X (Q) = éB(Q)X(Q) Assume that the difference between any two distinct eigenvalues of the ma-
triz B(0) is not an integer. Then, there exists a gauge transform P € GL,, (C{Q} [Q’l]) which is recursively

computable such that
P-[B(Q)]=B(0)

Definition V.2.3.8. A a regular singular differential system 9oX(Q) = éB(Q)X(Q) is said to be non
resonant if the difference between any two distinct eigenvalues of the matrix B(0) is not an integer.

Theorem V.2.3.9 ([Sab02], Chapter 2, Theorem 2.8). Consider a regular singular differential system
00X (Q) = éB(Q)X(Q) Assume that this system is also non resonant. Then, there exists a fundamental
solution X € GL,, ((C{Q} [Q‘l]) of the regular singular differential system.

Proof. We apply Lemma V.2.3.7 to our system and obtain a gauge transform P € GL,, ((C{Q} [Q’l]).

Then, we can apply Lemma V.2.3.6 to the differential system dg X (Q) = éB(O)X(Q) and obtain matrices
QP,QY, so that the product QPQY is a fundamental solution of dp X (Q) = éB(O)X(Q).

Finally, the matrix PQPQY =: X is a fundamental solution of the starting 1differential system 0o X (Q) =

SBQ)X(Q). O

Existence of a fundamental solution for regular singular ¢g-difference equations
Definition V.2.3.10. We denote by ¢” (resp. ¢%) the discrete (resp. continuous) q-spiral

qZ::{qk|k€Z}c(C qR::{qk|keR}c(C
For a complex number )\, € C, we will also use the notation

)\qqZ = {)\qqk | ke Z} cC

Definition V.2.3.11. Consider a regular singular ¢-difference system ¢?%2 X,(Q) = 4,(Q)X,(Q) and denote
by (\;) the eigenvalues of the matrix A,(0). This g-difference system is said to be non (g-)resonant if for
every ¢  j, we have % ¢q”.
Theorem V.2.3.12 ([Sau00],1.1.4). Let ¢9%2 X, (Q) = A,(Q)X,(Q) be a regular singular g-difference sys-
tem. Assume that this g-difference system is non resonant. Then, there exists a fundamental solution of

X, € GL, (C{Q,Q’l}) of this g-difference equation expressed with functions eq s, and £, of Definitions
V.1.1.9 and V.2.2.2.

Sketch of proof. We start by recursively building a gauge transform Fy, € GL,, ((C {Q, Q! }) sending the matrix
A4(Q) to the constant matrix A,(0). See [Sau00], Subsections 1.1.1 and 1.1.3, or [HSS16], Theorems 3.2.2
and 3.2.3 pp.127-129 for the construction.

Then, we find a fundamental solution for the g-difference system of constant matrix ¢?92 X, = 4,(0)X,,.
Take the Jordan-Chevalley decomposition of A(0) = DU where D is semi-simple, U is unipotent and D,U
commute. Take a basis change P to diagonalise D = P~'diag()\;)P. We define

eq,D = P_ldiag(eq,ki(Q))P

Write U = e”, where N is nilpotent. We define

oo

0= Y, 1 (l(QN)!

d=0
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Then one can check that the product Fyeq peg.u =t X,(Q) is a fundamental solution of the g-difference system

9% X,(Q) = A(Q)X,(Q). U

Recall that in the case of differential systems, solutions of a regular singular g-difference system at @ =0
had polynomial growth at that singularity. Solutions of a regular singular g-difference system will also have
polynomial growth at @ = 0. Before giving a statement, we need to identify the poles of the special functions
eq,n, and £,. We recall the notation for the g-Pochhammer symbol: (Q;q)eo = [T,50(1 - ¢"Q).

Proposition V.2.3.13 (Jacobi’s triple product identity, [Mum83]). For Q € C*, the following identity holds

04(Q) = (¢ 0) 0 (-Q3 @) o (_aq;q)oo

Corollary V.2.3.14 ([Sau00]). (i) Jacobi’s theta function 6, has an essential singularity at 0,00. Its

zeroes are all single and at every complex number —¢* for k € Z.
(it) Let \q € C. The poles of the q-character eq x, are all simple and are given by the set —A;lqz.
(11i) The poles of the g-logarithm £, are all simple and are given by the set -~

At last, we can give a statement on the growth of the solutions of a regular singular g-difference system.
These solutions will have polynomial growth along the continuous g-spirals v¢®. However we have to make

sure the g-spiral we choose does not contain a pole of the solution.

Proposition V.2.3.15 ([HSS16], Theorem 3.1.7 p.127). Let ¢?%2 X,(Q) = A,(Q)X,(Q) be a regular singular
q-difference system of rank n which is not resonant. Forie {1,...,n}, denote by Xy the " column of the
fundamental solution given by Theorem V.2.3.12. Choose v € C,|v| = 1 such that the function below is well
defined:
(R*,0) — (C*,0)

t— X(i)(z/qt)

fi,l/:

Then, the function f;, has polynomial growth at t = 0.

V.2.4 Confluence of a regular singular ¢-difference equation

In this last subsection we explain the confluence phenomenon for the class of regular singular g-difference
systems. The main idea is the following: take a regular singular g-difference system and its fundamental
solution &; given by Theorem V.2.3.12. If the g-difference system admits a formal limit when ¢ tends to 1
that is a regular singular differential system, then the limit lim,_,; &} coincides with the fundamental solution
of the differential system given by Theorem V.2.3.9. The precise statement will be found in Definition V.2.4.4
and Corollary V.2.4.8.

Remark V.2.4.1. We recall that in Subsection V.1.2, we got a similar result in Proposition V.1.2.6. We
had (the g-pullback of) a g-difference equation whose solutions were spanned by g,(Q) = ((1 - ¢)Q;¢)=-
Furthermore, the function g, was pointwise convergent when ¢ — 1 to a solution of the formal limit of the
g-difference equation for @) < 1.

In general, these limits will be harder to obtain. One issue that arises is quickly is the behaviour of the
poles of our special function e, »,, ¢, when we consider ¢ as a variable. One way to control the poles of these

functions is to fix qo € C*,|go| < 1, let q(t) = ¢§,t € (0,1] and compute limits when ¢+ — 0. By doing so,
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the discrete g-spirals q(t)% are for all ¢ > 0 subsets of the continuous g-spiral ¢i. Notice also that the set
C* - q(0)® is simply connected, so we can define a logarithm on it.

Proposition V.2.4.2 ([Sau00], Subsections 3.1.3 and 3.1.4). Let qo € C*,|qo| < 1, let q(t) = ¢§,t € (0,1], and

Ag)-1

R lind 8 Then we have the asymptotics:

consider Mgy, it € C* such that

(i) Denote by log the logarithm on C* - (=1)gk, such log(1) =0. We have the uniform convergence on any
compact of C* — (=1)gi
lim(g(t) = 1)ly() (-Q) = log(Q)

(ii) We have the uniform convergence on any compact of C* — )\qoqﬂoK
%E% eq(t),)\q(t)(_Q) = QM

Confluence of the ¢-difference equation

Definition V.2.4.3. A regular singular ¢-difference system ¢?%2 X = A (Q)X is said to be non resonant if
two different eigenvalues \; # A; of the matrix A(0) satisfy )\i)\;l ¢ g~

Definition V.2.4.4 ([Sau00] Section 3.2). Let qo € C,|qo| < 1, and set g(t) = ¢f, for ¢t € (0,1]. A regular
singular, non g-resonant g-difference system ¢?%2 X = A (@)X is said to be confluent if it satisfies the four
-1d

1

conditions below. Set B,(Q) = %, whose coefficients have poles Q1(q),. .., Qr(q) in the input Q. We

require that
1. The g-spirals satisfy ﬂle Qi(qo)ﬁ =g.

2. There exists a matrix B € GL,, (C(Q)) such that

lim B,y = B
uniformly in @ on any compact of C* — Ufzo Qiqu, where Qg = 1.
3. This limit defines a regular singular, non resonant differential system
Q0oX = BX
with distinct singularities @i =1limy_0 Q;(q).

4. Take all Jordan decompositions By)(0) = Pq(t)_qu(t)Pq(t) as well as B(0) = P-'.JP. We ask that
lim Py = P

Let us discuss these hypotheses. The condition 1. says that two different poles @;,Q; lie on different
continuous g-spirals. This implies that the limit differential system will have simple singularities given by
limy—0 Qi(q)-
Ezample V.2.4.5 (About condition 2.). Given a regular singular g-difference system ¢%%2X = A,(Q)X,
such system needs not to satisfy the existence of lim;_.g %. For example, take the g-difference equation
q@% f4(Q) = (1-Q)fy(Q) of Subsection V.1.2. We can easily see that this ¢-difference equation is regular
singular at @) = 0 while the matrix By = q(%?_l does not admit a limit when t - 0, so the g-difference
equation ¢9% f,(Q) = (1- Q) f,(Q) fails condition 2.
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Ezample V.2.4.6 (About condition 3.). The g-difference equation

Q - g-1
qQa fo(Q) = (1+ Q+(q—1))fq(Q)

is singular regular at ( = 0 and admits a formal limit which is
~ 1
Qoo f(Q) = @f(Q)

whose solutions are spanned by e’%, which has exponential growth at = = 0. This system is therefore singular

irregular.

For a counter-example where condition 4. fails, we refer to [Sau00], Subsection 3.3.2, Subsubsection

”Remarque préliminaire”.

Confluence of the solutions

Theorem V.2.4.7 ([Sau00], Section 3.3). Let qo € C,|qo| < 1, and set q(t) = ¢, for t € [0,1]. Consider a
regular singular confluent g-difference system q2%2 X,(Q) = A4(Q)X,(Q), whose limit system is Qo X (Q) =
B(Q)X(Q).

We assume that there erists a vector Xo € C" -0, independent of q, such that Ay Xo = Xo for all
t€(0,1]. We also assume that we have a solution X, of the g-difference system satisfying the initial condition
X4(0) = Xo.

Let X be the unique solution of QipX(Q) = B(Q)X(Q) satisfying the initial condition X (0) = Xo. We
have

lim X 4)(Q) = X(@Q)
uniformly in @ on any compact of C* — Uf:o Qi

Applying this theorem to the fundamental solutions given by Theorems V.2.3.12 and V.2.3.9 gives the
corollary below.

Corollary V.2.4.8 ([Sau00], Subsections 3.2.4 and 3.4). Let ¢?%2 X, (Q) = A,(Q)X,(Q) be a confluent
reqular singular q-difference system. Denote by X, the fundamental solution of the q-difference given by
Theorem V.2.3.12. The limit differential system Q@QX = BX also has a fundamental solution constructed
by Theorem V.2.3.9, which we denote by X. Then, we have

Hm &gy = &
Remark V.2.4.9. This corollary applies only to the fundamental solutions of Theorems V.2.3.12 and V.2.3.9.
For example, consider the ¢-difference equation ¢@%@ fo(Q) = fo(Q), which has formal limit BQf: 0. The
function Xy(Q) = qfll is a solution of this g-difference equation. However, it does not admit a limit when
t - 0. This function failed the requirements on the initial condition of Theorem V.2.4.7.

Definition V.2.4.10. Let ¢Q% X = Ay X be a confluent g-difference system. A fundamental solution X is

confluent if lim,_; X is a fundamental solution of the formal limit of Q%X = A X.
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When confluence fails

We close this subsection on what can be done if confluences fails because a limit is not well defined.

Remark V.2.4.11. Recall that in Subsection V.1.2, the example ¢@%@ f4(Q) = (1-Q) f,(Q) was not confluent
(see Remark V.2.4.5). Then, we studied the confluence of another ¢-difference equation, ¢@%2 fo(@)=(1-
(1-9)Q)f,(Q). The second equation is the g-pullback of the first one by the isomorphism

C———C
Q——(1-97'Q

Notice that this is the only g-pullback by an isomorphism of the form (Q ~ (1- q)kQ) for k € Z such
that, after g-pullback, the system has a limit which is both defined and non trivial.

When working on concrete example, a g-pullback of the same form (Q m (1-¢q)F Q) is always used when
a g-difference system fails the condition 2. for confluence. However, we could not find a statement which

guarantees the existence of a "good” g¢-pullback.

Remark V.2.4.12. The g-difference equation ¢@%e f4(Q) = f4(Q) is a regular singular confluent g-difference
system of formal limit an(Q) = 0. The function f,(Q) = q%l is a solution of this g¢-difference equation,
however it is not confluent. However, let us consider the change of fundamental solution replacing f, by
(1-¢)fy- The rescaled solution (1 -¢)f, =1 is now confluent.

Notice that this is the only transformation of the form (fq ~ (1- q)qu) for k € Z such that the limit
when ¢ — 1 of the rescaled solution is both defined and non trivial.

A similar situation can also be found in Proposition V.2.4.2 where the special function ¢, was rescaled to

(¢ —1)¢,4 to obtain a non trivial limit.

Let us give an informal summary of this section.
Summary. Let ¢??2 X = AX be a regular singular ¢-difference system (Definition V.2.1.11).

e This g-difference system is confluent if, up to some technicalities, its formal limit when ¢ — 1 defines
a regular singular differential system (cf. Definition V.2.4.4). If that limit is not defined, we may try
to find a ¢g-pullback after which it exists (cf. Remark V.2.4.11). In common situations, the g-pullback
that is used is of the form (@ ~ (1 -¢)*Q), with k € Z.

o If this g-difference system is confluent, it has a fundamental solution &, given by Theorem V.2.3.12.
Also, the limit when g — 1 of this system defines a singular regular differential system, which has a
fundamental solution X constructed by Theorem V.2.3.9. Then (cf. Corollary V.2.4.8),

lim X, = X

e A non trivial solution to a confluent g-difference system is confluent if it admits a non trivial limit when
q — 1 (cf. Definition V.2.4.10). If that limit is not defined, we may try to find a change of fundamental
solution after which it exists (cf. Remark V.2.4.12). In common situations, this change of fundamental
solution changes the non confluent fundamental solution &, into the confluent fundamental solution
X, B, where B, € GL, (M (E,)) is a g-constant matrix.
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V.3 Monodromy of regular singular ¢-difference equations

In this subsection we discuss the g-analogue of monodromy for regular singular g-difference systems. Since
the contents of this subsection does not apply to the g-difference of Givental’s small K-theoretic J-function
of projective planes (see Example V.3.1.2), the reader interested in the comparison theorem can skip this

section. However, this subsection will be useful for the computation of the g-stokes matrices.

V.3.1 Birkhoff’s connection matrix

Definition V.3.1.1. A ¢-difference system ¢9% X,(Q) = A,(Q)X,4(Q) is fuchsian if it is regular singular
at @ =0 and @ = 0.

Ezample V.3.1.2. The g-difference equation (1 - ¢?%2)?f,(Q) = Qf,(Q) is regular singular at Q = 0 but is
not fuchsian. Define W = Q!. This g-difference equation becomes

(1= (@) ) 0, W) = 0, (0)

Which can be rewritten as ¢>W (qWBW - 1)2 - (¢"W9%)2g,(W) = 0. This g-difference equation is not regular
singular at W = 0 by Proposition V.2.1.14.

Definition V.3.1.3. Let ¢©?%2X,(Q) = 4,(Q)X,(Q) be a fuchsian g-difference system. This g-difference
systems admits a fundamental solution Xp(Q) at @ = 0 and a second one Xo(1/Q) at Q = oco. Birkhoff’s
connection matriz (or g-monodromy) P, is the ratio P,(Q) = Ap(Q) (X (1/Q)) " e M (Ey).

Since Birkhofl’s connection matrix is the ratio of two fundamental solutions, it is invariant by gauge
transform. The data of Birkhoff’s connection matrix classifies fuchsian g-difference systems up to gauge
transform. For a precise statement, see [HSS16], Theorem 3.4.9 p.134.

Theorem V.3.1.4 ([Sau00], Section 4.3). Let ¢?%2 X, (Q) = A,(Q)X,(Q) be a fuchsian confluent q-difference

system, so that By = % has poles Q1(q), - .., Qr(q), and let P, be its Birkhoff’s connection matriz.

i) Let Qo = 1. The limit P(Q) = limy_o P, (Q) is well defined on any compact of C* — UX, ¢%, and is
q(t) 1=0

locally constant.

(ii) Define Q; :=limy_o Qi(q(t)) and let P; be the value of P(Q) on the connected component whose boundary
is given by the q-spirals Qi(qo)qy and Qi1(qo)qs. Then the monodromy M; of the limit differential
— ~—1~
system at Q; is given by the ratio P; P;_q.

V.3.2 Computing ¢-monodromy and its confluence on an example

In this subsection we give the computations for a given example. This subsection has no purpose in quantum
K-theory and can be skipped. However, we mention that this subsection contains two propositions that can
be helpful to compute the confluence of solutions, which are Propositions V.3.2.8 and V.3.2.10.

Consider the rank 1 g-difference equation

(¢-1)Q
(Q-1)(Q-9)(Q+1)

9% £,(Q) - (1 ; )fq(Q) (V.3.2.1)
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We chose this ¢-difference equation because it admits the formal limit

_ 1 _
PN G-

Solution at @ = 0. We check that the coeflicient in front of f; in the right hand side is not an integer

power of ¢ and well defined when @ = 0, so the g-difference equation is regular singular at @ = 0.
Proposition V.3.2.2. Let A\, € C*, N >0, and (o;),(8;) € (C*)N. Consider the q-difference equation

Hi(l - azQ)
‘L - Q)

A solution to such a q-difference equation is given by

g% f,(Q) = A fa(Q)

_ Hi(ﬂi@;Q)m
fq(Q) = €q,0q (Q) (i Q; q)os

Proof. Because of the compatibility of the g-difference operator ¢?2¢ with multiplication, this is a consequence

of
Qo 1 1- aQ

’ (0Q; @)oo (aQ;q) o

q

O

Corollary V.3.2.3. Let a1(q),a2(q),as(q) € C* be the inverses of the roots of the polynomial P(Q) =
(g-DQ+(Q-1)(Q-9)(Q+1). A solution of the g-difference (V.3.2.1) is given by

(Q,0) 00 (-1Q,q) 00 (-Q, ) oo
(01(9)Q, 7)o (a2(9)Q; @) o (3(9)Q; @)

While the expression of the roots of the polynomial P(Q) = (¢—1)Q+(Q-1)(Q-14)(Q+1) might be hard

to obtain (especially if P were to be degree > 4), we are only interested in computing their Taylor polynomial

fq(Q) =

in g —1 of degree 1.
Solution at () = 0 and connection formula. We set W = % Notice that ¢@%e = (qwaw)fl. Setting
gs(W) = f, (W‘l), the ¢-difference equation (V.3.2.1) becomes
(1-gW)(A -igW)(1 - (-1)gW
(1-a1(@)gW)(1 - az(q)gW)(1 - az(q)gW)

Proposition V.3.2.5. A solution at W =0 of the g-difference equation (V.3.2.4) is given by the function

qWBqu(W) = gq(W) (V.3.2.4)

(qa1(q) ™' W, @)oo (qa2(q) "W, @) oo (qas(q) "W, @) oo
(GW, @) 00 (1gW, @) 0o (=qW, @) o

Proof. Same argument as in the Proposition V.3.2.3 O

gq(W) =

Corollary V.3.2.6. Birkhoff’s connection matrixz of the g-difference equation (V.3.2.1) is given by

04(-Q)0,(iQ)0,(Q)
Oq (—1(q)@Q) bg ((—a2(q)Q) bq ((—a3(q)Q)

Proof. Consequence of Jacobi’s triple product identity, see Proposition V.2.3.13. O]

Pq(Q) =
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Confluence. We had seen that the ¢-difference equation (V.3.2.1) has the formal limit

1 _
CECEDICED A

The solutions to this differential equation are spanned by the function

9 f(Q) =

Q) = (Q-1)iWD(Q-i) 5 (Q+1)10D (V.3.2.7)

For confluence of solutions, we will need the Taylor polynomial in ¢ — 1 of degree 1 for every root of
PQ)=(¢-1)Q+(Q-1)(Q-1)(Q +1). We have three roots Q1,Q;, Q-1 which satisfy

Q1=1+2(1_ii)(q—1)+0(q—1)
Qi:i+%(q—1)+0(q—1)
Q=14 g (a- D+ olg-1)

Therefore,
a1:1+%(q—1)+0(q—1):1(1+%(q—1)+0(q—1))
agz—i+%(q—1)+0(q—1)=—i(1—%(q—1)+0(q—1))

@D+ o(g-1) =11+ - ) olg- 1)

as=-1-—~

Proposition V.3.2.8 ([Sau00]). Let Q=C-q;,Qo € 2. Let Q1(q), Q2(q) € Q. Assume there exists complex
numbers ag, a1 € C so that Q;(q(t)) = Qoquitw(t)‘

Then, on 2, we have the uniform convergence when t - 0

i (@1(a(®);¢(1)) 0
=0 (Q2(q());¢(t)) oo

Proof. See [Sau00], Subsection 3.1.7, Corollaire 3. O

— (1- Qo)™

Corollary V.3.2.9. Let f, be the solution of the q-difference equation (V.3.2.1) given by Proposition V.53.2.3,
and let f be the solution (V.3.2. 7) of the limit differential equation. Set Q=C - (¢® uig® u—-¢®). Then, on
any compact of €2,

lim f,: = f

t—0

O

Proposition V.3.2.10 ([Sau00]). Let Q = C—-q&, Qo € Q. Let Q1(q),Q2(q) € Q. Assume there exists complex
numbers ag, o € C so that Q;(q(t)) = Qoqs ™.

Then, on §, we have the uniform convergence when t — 0

Oa()(Q2(q(t)) ~ *°

Proof. See [Sau00], Subsection 3.1.7, Corollaire 1. O
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Corollary V.3.2.11. Let P, be Birkhoff’s connection "matriz” of the g-difference equation (V.3.2.1). Set
Q=C-(®uig®u—¢®). Then, on any compact of Q, we have the uniform convergence

1+1

lim P (Q) = (-Q) ¥ (-iQ) 2 Q%
O

We recall that that the logarithm used to define the characters @ » Q< is the principal determination of
the logarithm on the simply connected subset C* — (~1)g®.
~up =~d
We give below a picture of the three connected components of 2. If we denote by Piup, P; ™ the two

-1
~d ~
connected components bordering the singularity ¢, we remark that the computation (R o Piup should

amount to the action of a loop around the singularity ¢ on the solution of the differential equation.

The three connected components of Q0 with the singularities of the differential system
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Chapter VI

Confluence of the ¢-difference
structure for SQK (PV)

In quantum cohomology, the I-function appears as a solution to a (differential) hypergeometric system. In
quantum K-theory, we see instead the apparition of g-hypergeometric series (see e.g. [Giv], V). Therefore, it
may be interesting to study the g¢-difference module structures in quantum K-theory. It turns out that the
g-difference module in quantum K-theory can be related to the differential module in quantum cohomology

using the confluence of g-difference equations. The goal of this chapter is explain this relation.

VI.1 Definitions revisited from the point of view of ¢-difference

equations

In this section we revisit the definitions related to Givental’s K-theoretical small J-function. We focus on

the g-difference structure given by this function, and try to apply the theory of the previous chapter.

VI.1.1 Solving the ¢-difference equation for the J-function

The goal of this subsection is to try to find the solutions of the g¢-difference equation of the J-function.
The main result of this subsection is Proposition VI.1.1.12, which states that Givental’s J-function is a
fundamental solution of its ¢-difference equation.

We begin by recalling the definition of the two Givental’s small K-theoretical J-function, then we establish

their g-difference equations.

Definition VI.1.1.1 ([GL03]). Let X = PV and let P = O(1) € K (P") be the anti-tautological bundle.

Givental’s small J-function is the power series

d
JKth(q,Q) - Z % € K(PN) ® (C(Q)[[Q:H
a0 (qP~%;q)y

We recall that the g-Pochhammer symbol (¢P~';q)q is defined by Hle (1 - qTP‘l)

67
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Recall that the K-theory of PV is the ring ([Kar08], Theorem 2.5 p.190)
K@®Y)=z(P,P]/((1-P)")
Thus we can look for a basis of K (PN ) in which we will decompose the value JX* (¢, Q). We choose the
basis 1,1- P71, ... (1- P )N,
Remark VI.1.1.2. The basis ((1 - P‘l)i)_ of K(PN) has two advantages.

1

(i) The ring generator 1 — P~ is nilpotent which will be useful for definitions and computations.

(ii) We have the ring automorphism = : K(PN) ®Q - H* (IPN;Q) defined by v(1 - P7') = H, where
H e H? (PY;Q) is the hyperplane class.

Ezample V1.1.1.3. Let us give the decomposition of the value JX* (¢, Q) when X =P2. We have

d
(¢Ph@)a=[1(1-¢"P")= H (1-d)+q"(1-P)

quj+(1-P H(1 )

O<7,<]<d(1_q )(1 q])

i+j

d
d d
I:[lq)+ I_I(lqg11

Therefore, in the power series JX" (¢, Q), the coefficient attached to the to Q¢ is

2
d 7 i+7
q q
6 -] -3 —
(;1—(1]) og;gd (1-¢")(1-¢’)

Notice that in the sum following (1 - P~1)?, for i € {0,1,2}, each term is a fraction of the form below

1
(P h0) = —
C T (g39)3

1+(1-PY) [—3_§dj - quj] +(1- P12

qjl +tJi
(]_ — qjl)...(]_ — qji)
We point out that this denominator consists of exactly ¢ products, which will be important for the confluence
of the J-function.

Proposition VI.1.1.4 ([GL03]). The small J-function is a solution of the g-difference equation with K-
theoretical coefficients

N
[(1 _ PfquaQ) + Q] JKth(q,Q) -0
Where P~ is the operator acting on K (IP’N) by tensor product with the class P~' e K(IP’N).

Proof. For d > 0, notice that

(1 _P_quaQ)NJrl Qd N+1 — (1 _qu_l)]J\\//-:lle = Qd N+1
(@P19),4 (¢P19),4 (¢P159) 4
Therefore,
[(1 _P—quaQ)N+1 ]JKth( Q) — Z (1 qu_l)J]\\::lle Qd —
a0 (P h9), &1 (qP159) 4
_ (1 _p- )N+1

_1)N+1

We conclude using the relation (1 -P =0in K (IP’N). O
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Notice that the g-difference equation of Proposition VI.1.1.4 is not a ¢-difference equation in the sense of
Definition V.1.1.1: since we make use of the operator P71, it is a g-difference equation with K-theoretical
coefficients. Therefore, it is convenient to introduce another J-function which will be a solution of the same
g-difference equation without any K-theoretical operator. We will refer to this function as the J-function
throughout this chapter.

Definition VI.1.1.5 (IMT15]). Let X = P and let P = O(1) € K (P") be the anti-tautological bundle.

Givental’s (small, modified) J-function is the function

- d
JEh(q,Q) = P KM (g, Q) = P 3 Qim (VL1.1.6)
&0 (¢P7159)4
Where ,
pPta(@) (1 _ (1 _ P—l))lq(Q) _ Z(_l)k( q(Q)) (1 _ P—l)k
k>0 k
And

(“@)- ;ﬁ)(zq@) )

Proposition VI1.1.1.7. The K-theoretical function (Q > P‘Z‘f(Q)) satisfies the ordinary linear q-difference

equation with K-theoretical coefficients

qQaQ pta(Q) = p~1 p~£a(Q)

Proof. The ¢-logarithm ¢, satisfies by Proposition V.2.2.3 the ¢-difference equation qQaQZ,I(Q) =4,(Q)+1.

Therefore, we have
qQaQP_é(I(Q) = p~ta(Q)-1 - p-1p~£e(Q)

Proposition VI.1.1.8 ([IMT15]). The J-function jﬁl(q,@) is a solution of the q-difference equation
[(1—qQaQ)N+1 - Q] TR (q,Q) =0 (VL1.1.9)
This q-difference equation is reqular singular at Q =0 and irregular singular at @ = co and of rank N + 1.
Proof. Using Proposition VI.1.1.7, we get
g@o2 JKh (q,Q) = (¢R22 P~1a(@)) (q9%2 JKt (¢, Q)) = PTHP1(®@) (9% JKt (g, Q)
Therefore, using Proposition VI.1.1.4, we have
[(1 _ qQaQ)N-H B Q] m(%Q) - pta(@) [(1 B P—1qQ3Q)N+1 B Q] JKth(q’Q) -0

Applying Proposition V.2.1.14 to this ¢-difference equations gives that it is regular singular at @) = 0. Now,
to study the singularity at @ = oo, let us set W = Q1. Then, the g-difference equation (VI.1.1.9) becomes

[qN+1W (qwaw B 1)N+1 B (qwaw)N+1] FW)=0

This g-difference equation is not regular singular at W = 0. More precisely, its Newton polygon consists of

_1
one slope of value . O
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Now, we want to exhibit a fundamental solution of the g-difference equation (VI.3.1.14). We are going to
show that the J-function JX*t provides this fundamental solution. We will require an intermediary result on

the ¢-logarithms.

Lemma VI.1.1.10 ([Ada29]). Let N € Zso. The family consisting of the functions £,(Q)" € M (C*) for
i€{0,...,N} is linearly independent over the field M (E,)

Proof. Let us assume that the function ¢, is algebraic over the field M (E;). Then, it admits a unique
minimal polynomial, denoted by P(X) = X%+ a1 X4+ +ag e M (E,) [X], which satisfies P (£,(Q)) = 0.
Applying the ¢-difference operator ¢292 to this identity, we obtain

P(l(Q)+1) =£,(Q)* + -+ (ap + - +ag_1 +1) =0

Which means we have a new unitary polynomial @ € M (E,) [X] satisfying P ({,(Q) +1) = Q(£4(Q)) = 0
and P # (). By contradiction, the function ¢, is not algebraic. O

Remark VI1.1.1.11. Consider the g-difference system

1 0 0 0
(3) 1 0 :
X, @ =13 () 1 1 X (Q)

Ny Ny L (N
( 0 ) ( 1 ) (N—l) 1
This g-difference system admits the fundamental solution below:

1 0 0

£(Q) 1
XQ(Q) = Eq(Q)Q 2q(Q)

éq(Q)N Eq(Q)N_l Eq(Q) 1
Proposition VI.1.1.12. Consider the g-difference equation (VI1.1.1.9) : [(1 - qQaQ)N+1 - Q] f4(Q) =0 and
take the decomposition

TR (¢, Q) = fzvgji(q,Q) (1-P Y ek (PY) e C(9)[Q]

Then, the functions Jy,...,Jn form a fundamental solution of this q-difference equation.

Remark VI.1.1.13. Obtaining a fundamental solution this way is similar to the Frobenius method for the
resolution of regular singular ¢-difference equations which have exponents of multiplicity strictly greater than

1. For a reference in the differential setting, see [HLY96].

Proof. Since the g-difference equation (VI.1.1.9) does not involve K-theoretical coefficients, each of the func-
tions Jo, ...,y is a solution of the g-difference equation. Since the ¢-difference equation has rank N + 1, it
remains to check if our solutions are linearly independent over the field M (E,). We recall the definition

— Qd
JE®h (g, Q) = pta(@) Z —

a0 (qP~t;q)y
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The decomposition of the function @ — P~%(?) in our basis is given by

K
k>0

Let J; be the coefficient in front of (1 - P‘l)i in JX™ (¢, Q). Then, J; does not involve g-logarithms. More
precisely, a computation gives

Ju
Qd N (N+k) qm1+ +my

(o o\ N+ Z Z ( N' H Z 1-qgm1).-o(1 =g
) k=0 0<j1,...,iNsSN Jilegn! =1 15m1<~~<mlsd( qm)-( qm)

Ji+e+in=k
J1+2j2++Njn=i

(VL1.1.14)
Therefore, the decomposition of JKt (g, Q) is given by the functions

Te@= ¥ (" awe
0datben

This expression involves integer powers of the g-logarithm ¢, up to the order i. Therefore, by applying
Proposition VI.1.1.10, we obtain that the functions Jo, ..., Jy are linearly independent over the field M (Ey).
O

For the remainder of this subsection, we try to naively solve the g-difference equation (VI.1.1.9) satisfied
by the J-function by hand, in the case of X = P2. This will allow us to recover the functions J; given by the
decomposition of the J-function. We will try to find two solutions Jo, J; € M(C*,0) of the form

Jo(4:Q) = Y fa(9)Q" J1(4,Q) = Y 9a(@)Q +£,(Q) Y 9a(@) Q"
deZ deZ deZ
Using the previous Proposition VI.1.1.10, we will get the that solutions Jo and J; are linearly independent
over the field M(E,) as long as the sequences f, g, d are non zero. To have a basis of solutions, we could also
look for third solution jg involving the special function Eg.

Proposition VI.1.1.15 (A first solution for N =2). The function Jo below is a solution of the q-difference
equation (VI.1.1.9).

~ 5 Q*
JO(Q7 Q) =
&0 (@ Q)z
Before giving a proof, we remark that the solution J; coincides with the coefficient in front of 1 in the

decomposition of JEH, (see Example VI.1.1.3).

Proof. Let us explain how the Taylor series Jy is found. Let us assume that jo(q,Q) = Yz fa(@)Q? is
a solution of the g-difference (VI.1.1.9), where f;(q) € C are some unknown coefficients to determine. By

assuming that Jo is a solution of the g-difference equation, we have

(1-49%)". 3 £4(0)Q" = Q Y. fa(g)Q*

deZ deZ

Now, fix an integer d € Z. By comparing the coefficients in front of Q?, we obtain the identity

(1- qd)3 fa(q) = fa-1(q)
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Which allows us to determine recursively the coefficients fy(q). Setting d = 0 implies that all coefficients
fa(q) for d <0 are zero. The other coefficients are given by

fo(q) _ fo(q)
Mo(1-¢)3 ()i

Setting fo(q) =1, we get the wanted solution. O

fa(q) =

Our next proposition will explain how to construct another solution of the ¢-difference equation (VI.1.1.9).
This solution will be a priori of the form J;(¢,Q) = g4(Q) + he(Q)4,(Q), where gy, hy € C((q)).

Proposition VI.1.1.16 (Second solution for N =2). The function Ji below is a solution of the q-difference
equation (VI.1.1.9)

_ Q! d _ggk
7@~ ) (@ )
;)(q;Q)‘Z ! ;;ll—q’“
Setting hg =1 and ag =0, we obtain the wanted solution.

Proof. Let us assume that we have a solution of (VI.1.1.9) of the form

T1(0:Q) = Y. 9a(9) Q" +£4(Q) Y ha(9)Q*

deZ deZ

Where ¢4(q), ha(q) € C are to be determined. We begin by computing (qQaQ)k J1(q, Q) for k € Zsy before
computing (1 - ¢Q% )3 i(q, Q@). We have, for any k € Zs,

(qQaQ)k Ji(q,Q) = . (ga+kha) "Q* + £,(Q) 3 hag™*Q?

d>0 d>0
Thus, we have
3 3
(-0 70 @) = £ (3 ()t i)@'+ 0@ 3 (£ () @
d>0 \k=0 d>0 \k=0

Now, in the identity (1 - qQaQ)3 J1(¢,Q) = Qf(q,Q), because of Proposition VI1.1.1.10, we can identify the
coefficients in front of Q? for both series to get the recursion relations for d € Z

(1- qd)3 ha =ha-1
_d\3 2. (3 _d\k _
(1-q¢") " ga+ 2 () J(=¢")*kha = ga—
j=0 \k

The recursion relation for hy gives (see the previous proof) that for all d € Z,

ho(q)
(¢39)3

ha(q) =

In particular, hy(q) = 0 for d < 0. Using the second line, we also obtain

_ (3 vk
91(0) = hofa) 32 () -0

50 gq4(q) =0 for d < 0. Now, let us make a change of variable and set g4 = hgaq for some a4 € C. The second
line becomes

3 3.3 ,
(1- qd) haaq + (k)(—qd)kkhd =hg_1aq-1
=0
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Using (1 - qd)3 hg = hq-1 in the right hand side, we can factor by (1 - qd)3 hg for d > 0 and obtain the relation

ad + % 23: (3)(—qd)kk = ad-1
(1-q?)" k=0 \k
Developing and reorganising, we obtain for d > 0
1 d. 24 osay_ —34°
Gd — ad-1 = m(—?ﬂ] +6¢™" -3¢ ): ﬁ

O

Remark VI.1.1.17. Notice that the function J; of Proposition VI.1.1.16 corresponds to the coefficient in front
of (1-P7!) in the development of JKth(q, Q).

A third and last independent solution can be found using the same method as in Proposition VI.1.1.16.
This solution will be matched with the coefficient in front of (1-P~1)? in the development of JKth(q, Q), using
Example VI.1.1.3 and the formula of the function P~%(?) in Definition VI.1.1.5. Since the computations are

getting quite technical, we will stop there.

VI.1.2 About the special function used in the J-function

In this transitory subsection we discuss the role played by the function Q — P~%¢(?) in Givental’s K-theoretical
J-function JKth,

We recall that the function Q — P~%(@) is a solution of the g-difference equation with K-theoretical
coefficients ¢(@%@ f,(Q) = P71 £,(Q). This function allowed us to replace the original J-function, which was
a solution of a g-difference equation with K-theoretical coefficients, by a changed solution which is a solution
of a g¢-difference equation with complex coefficients, in the sense of Definition V.1.1.1. To do so, we need
to pick a g-character, solution of q(Q)8<Q>fq(Q) = P’lfq(Q). In this subsection, we explain that our choice
has a simple decomposition in the K-theoretical basis ((1 - P‘l)l), unlike the usual g-characters from the

literature.

Remark V1.1.2.1. Let us discuss why we chose the function P~%(®) as a solution of the g-difference equation

qQanq(Q) = P_lfq(Q)

Notice that this g-difference equation is close to the one satisfied by the g-characters of Definition V.1.1.9.
We will explain in this remark that our choice is motivated by a computational reason.

In a first time, we return to the usual g-characters of Subsection V.1.1. Let A\; € C* - ¢®. We consider the
g-difference equation ¢@% fo(Q) = A f4(Q). We can find two solutions

eq(Q) . a 1 &
9,(0Q) AP = 2 5 (0a(A)6(Q))

These two solutions are in general different, and the second one depends on the choice of a logarithm (which

eq,)\q (Q) =

is well defined here since A, takes values in a simply connected space). Let us compare the confluence of
these solutions. Assume that A, = ¢*. We had already seen in Proposition V.2.4.2 that for @) € C* - (-1)q%,

we had the uniform convergence
; - OH
limeg s, (@) =@
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For the second solution, we have

Nt (@ 2 los@a(@) L ol =1)6 (@)

Using Proposition V.2.4.2, we obtain

. eqt(Q) _ mlog(Q) _ Hu
fimAf T = =0

Thus both solutions e »,(Q) and )\gq(Q) are confluent without the need of a change of fundamental solution,
and have the same limit. This means that choosing one or the other has no influence on confluence.

In a second time, we consider instead the g¢-difference equation with K-theoretical coefficients

4% £,(Q) = P71 f4(Q)

We want to build the analogues of the two solutions above. Since 1-P~! e K (IPN ) is nilpotent, we can define

the following functions

eqpi(Q) = @) (@)~ (&:9).,
q, 9q(P—1Q) (P—lQ;q)w(P%qu;q)oo

P@ = (1-(1-p 1))@ o Z(—1)’“(€‘Z(k@)) (1-P 1)

k>0

Notice that it is harder a obtain a decomposition of the first function in our basis of K (PN )

VI.1.3 Recall: Givental’s cohomological J-function

Let us recall the definition of the cohomological small J-function. In this section we will use a slightly different

form of the cohomological J-function compared to Definition I11.2.3.15.

Definition VI.1.3.1. The small cohomological J-function is given by the expression

h v Q1
Jooh(2,.Q)=Q*
(=@)=Q C;) Hle (H +rz)

Proposition VI.1.3.3. This function is a solution of the differential equation

[(2Q0)"*! - Q] Te°h(2,Q) =0 (V1.1.3.4)

The strategy we use to prove this result is similar to the proof of Proposition VI.1.1.4, which is the

vt € H (PY) o Clz, 27 [Q]] (VL.1.3.2)

K-theoretical analogue of this proposition.

Proof. First, notice that
H "
2Q06(Q%) = HQ®
Thus, we have

Q° H Q°

Qd
T )™ M )™

T = (H+d2)N"1Q~

(2QIg)N*1Q*

N+1

Therefore, we get
[(:Q0)"" - Q)TN (=, Q) = HN*'Q*
We conclude using the relation HV*! =0 in H* (IPN). O
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Remark V1.1.3.5 (Comparison with Definition I11.2.3.15). In Definition III.2.3.15, or more precisely in Propo-

sition II1.2.3.20, we had

t1 H tid

e
7" (t,2) =€
(;) Hle (H+7z)

N+1
Which was a solution of the differential equation
[(zatl)N+1 _etl]jcoh(tl’z) -0
We obtain the J-function J(z, Q) from j°°"(¢1,z) by setting @ := e'*. Then, we have 9, e'* = Q0gQ.
Let us describe the role played by the function @ — Qg for the cohomological J-function

Definition VI.1.3.6. We introduce another J-function given by

d
JCOh(Z,Q) _ Z Q

d50 Hle (H + 7‘z)N+1

Proposition VI.1.3.7. The function J" is solution of the differential equation with cohomological coeffi-

cients

[(H +2Q00)""" - Q] 1" (2,Q) =0

Therefore, we observe that just like Q — P~(@) in the K-theoretical setting, the function Q — Qg gives
a J-function that satisfies a functional equation with complex coefficients. We could expect the confluence
of the function Q — P~%(®@) to be related to the function Q — Q%. In the next section, we will show that it
is true.

V1.2 Confluence for small quantum K-theory of projective spaces

VI.2.1 Statement of the theorem

For us to apply g-difference equation’s confluence phenomenon to Givental’s K-theoretical J-function, we
have to think the class ¢ € K¢+ (pt) as a parameter g € C*,|g| < 1. Then confluence will correspond to taking
the limit of this parameter ¢ — 1 along a g-spiral. Similarly, the class z € Hc+(pt) will be seen as a parameter
zeC*.

The goal of this subsection is to prove the following theorem:

Theorem VI.2.1.1. For X =PV let JK®h (resp. jESB) be the small K-theoretical (resp. cohomological)

J-function.

(i) Making the q-difference equation satisfied by JE™ (VI.1.1.9) confluent yields the differential system
satisfied by J8, (VI.1.3.4).

(ii) Consider the ring automorphism v : K (PV)® Q —» H* (IP’N;Q) defined by v(1 - P™') = H and let
confluence (JKth) be the result of confluence applied to the solution JE® of the above q-difference

system. Then, we have
0% (conﬁuence (JKth)) (2,Q) = Joh(2,Q)

For a precise definition of the K-theoretical function confluence (J K th), we will refer to Definition VI.2.4.1.

The proof of this theorem is structured in three parts, which get their own subsection:
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(i) Confluence of the g¢-difference equation (see Subsection VI.2.2 and Proposition VI1.2.2.4).
(ii) Confluence of the fundamental solution (see Subsection VI.2.3 and Proposition VI.2.3.3)

(iii) Comparison between the confluence of the solution and the cohomological J-function (see Subsection
VI.2.4 and Proposition VI1.2.4.2).

For the sake of comparison, we give the developments of the small J-functions in the case X = P2.

Example V1.2.1.2 (Example VI.1.1.3). In the case of P?, the partial decomposition of the K-theoretical
J-function JKt§2 (¢,Q) in the basis (]l 1-pt (1 - P’1)2) of K(]P’Q) is given by

@y QT [ ] 2_ g
g c;)(q;Q)Z A 321 ] )[(21 qﬂ) o<i<zjgd(1—qi)(1—qj)

Ezample V1.2.1.3. In the case of P2, the partial decomposition of the cohomological .J-function in the basis
(]l,H7 H2) of H* (IP2;Q) is given by

2
d 1 1
JCOh (2,Q)=Q* 3 +H* 6> —| -3 —
- dz>:0 (de') JZ; Jz J; J=z lsjgjzsd J1j27?

More precisely, through confluence of the K-theoretical J-function, we expect to obtain the correspon-
dences

QK (P?) QH* (P?)
Basis 1,1- P, (1-P71)* s ki s Basis 1, H, H>
t%
q_character P_Z‘I(Q) vavvvvvvvvvvvvv?/vvivvvvvvvwvvvvvv—) Character Qg

d

Zd>0 @ q)S 4\/\M/\/\A/\/\/\N\/\AA/\/\A/\/\NVWVWWVWV\/\/WVW> 2d>0 ( ddl)3

d=0 (g; Q)S -7 11- qJ d>0 ( dd')g j=1 jz

i+J

o 4 Jo\2 Lz to a 1)\? 1
Yazo @l [6(23':1 137) =3 Yosicjzd m] Yazo G dd!)3 [ (ijl Tz) =3 X1<j1<joxd W]

VI.2.2 Confluence of the ¢-difference equation of the small J-function

Notation. In this chapter the indices of the matrices will start at 0 instead of 1. This means we will write a
matrix of size (N +1) x (N +1) in a vector space V as

A= (Aij)ijeqo,...ny €My (V)
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Remark VI1.2.2.1. To check the confluence of the equation with respect to Definition V.2.4.4, let us write our
equations in matrix form. The differential equation (VI.1.3.4) satisfied by the cohomological J-function can

be translated to the differential system

! 0 0 . /
Qdg @?f S 0 Q%f (V1.2.2.2)
: ; :
@) ) | o Qo)™ f

QI
Write dq = %. The g-difference equation (VI.1.1.9) becomes the g-difference system

0 10 0
f 0 0 - A
84 6?1‘ = : : ~ 0 5?f (V1.2.2.3)
: O :
N f ' N f
q C=ne 0O -« - 0 q

Proposition VI1.2.2.4. Consider the q-difference equation (VI.1.1.9) : (1 —qQaQ)NJr1 f(q,Q) = Qf(q,Q)
Let z € C* and let @q,. be the function

C———C

Pq,z * )N+1

Q— (5

Then, the g-pullback of the q-difference equation (VI.1.1.9) by ¢, . is confluent, and its limit is the
differential equation (VI.1.3.4) satisfied by the small cohomological J-function

(2QAQ) " TN (2,Q) = QI (2,Q)

Proof. Replace the g-difference equation (VI.1.1.9) by the g-difference system (VI.2.2.3)

d 0 0 A7
|| of| ™/
: O . 1 :
SN f i N f
1 (1,q)N+1 O O 1

N+1
Then, the g-pullback of this g-difference system by the isomorphism ¢ : Q ~ (i) Q is given by

1-q
0o 1 0 - 0
J 0o 0 -~ : /
1) ’ “11 9
8q ?f =+ ~ 0 ?f
: 0 . 1 :
N : N
0 L0 - 0 0
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Recall that we have the formal limit lim,q 0, = QJg. By taking g — 1, the ¢-difference system above has
the formal limit

0 1 0 - 0
/ o o0 -~ : /
17) ’ : 0
QaQ @ _Qf : : . 0 @ .Qf
N 0 1 N
(Qoq)" f 0 (Qoq)" f
& 0 - 0
Which corresponds to the differential system (VI.2.2.2) satisfied by the cohomological J-function. O

Let us make a few remarks on the g-pullback ¢, . we have used in this proposition.
Remark V1.2.2.5. (i) The g-difference system (V1.2.2.3) of the K-theoretical J-function is not confluent,
so we look for a g-pullback ¢, . to make it confluent. From the point of view of g-difference equations, the
natural pullback to use is Q ~ (1 -¢)~"N*DQ, cf. Remark V.2.4.11. By doing so, we obtain as formal limit
the differential system satisfied by the function (Q > Jeoh(1, Q))

(i)  In the C*-equivariant cohomology H¢. (pt), we recall that we have the relation ch(g) =e™*=1-z¢
H¢.(pt) ([CK99], (9.1)). An easy way to modify the g-pullback of (i) is to consider instead the g-pullback
@, of the Proposition VI1.2.2.4: (Q ~ (z/(1- q))N+1Q).

(iii)  Notice that we have in small quantum cohomology the relation H°V*1) = @, which means the
Novikov variable has degree N + 1. This degree appears also in the g-difference system (VI1.2.2.3) and in the

exponent in the formula for ¢ ..
Remark V1.2.2.6. The g-pullback ¢, . defined in Proposition VI.2.2.4 is natural in the following way: it is the

A
only g-pullback of the form @ (ﬁ) @, with A € Z, which defines a confluent g-difference system whose
formal limit is non zero.

Let us verify that. Let ¢y 4, be the function defined by

C———=C
Y

Q— () @

Then, the g-pullback of the g-difference system (VI1.2.2.3) by ¢ 4,» is given by system

Prqz "

0 10 - 0
5f 0 0 - : 6f
5,| %+ | - : o[ %
Stjl\}f 1-q >‘0 Q . 551\}]0
(7) e Le 0 - - 0

The only value of A such that this g-difference system has a well defined and non trivial limit when ¢ tends
tolisfor A= N +1.

VI1I.2.3 Confluence of the J-function

We recall that by Proposition VI.1.1.12; we can see the K-theoretical J-function as a solution of the g¢-
difference equation (VI.1.1.9). Our goal is to obtain the confluence of the g-pullback by ¢, . of this funda-
mental solution. Before giving a statement, we need to describe this fundamental solution.
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Remark V1.2.3.1. Consider the g-difference system (VI.2.2.3) associated to the K-theoretical J-function

0 10 - 0
! . A
5| || o[ °f
: O . 1 :
o o 5N
q g5 0O - - 0 q

Take the decomposition

TR (0,Q) = S T(0.Q) (1- P) € K (BY) & C(9)[Q]

=0

The fundamental solution (see Proposition VI.1.1.12) associated to the J-function is the matrix

XKth((LQ) _ 5qJ0('Q>Q) 6qJ1(.Q>Q) 6qJN.(QaQ)

The first line of this matrix is of particular interest for us as it contains the J-function.

Recall that the g-pullback ¢, . was given by the function

C———C

¥Pq,z L \N+1
Q— ()
Therefore, the g-pullback by the ¢, . of the fundamental solution A’ Kth ig given by
To(e(59" Q) T(e(39)"Q) - In(a(59)"Q)
1 N+1 ~ 1-g\N+1 1 N+1
X5 (g, 5L (@) - 8070 (2, (jq) Q) 67 (a (_7”) Q) 07 (4 (f) Q) (V1.2.3.2)

0T (e () Q) 0 (1) Q) T (0. (2)7 Q)

Proposition VI.2.3.3. Let ¢, . be the q-pullback of Proposition VI.2.2.4. There exists a q-constant matric
P, . € GLy+1 (M (E,)) such that the transformed fundamental solution X% (q, ©q; Z(Q)) 0= obtained from
Equation VI.2.3.2 is given by

(X5 (4, 471(Q)) P, ny :(5‘1)10<§<N( . ) (f (Q))( - )Jb(q’(lzq)NﬂQ)

a
a+b=1
Where the functions Jy are defined in Equation VI.1.1.14. Moreover, this fundamental solution has a non

trivial limit when ¢' tends to 1.

Before giving a proof, let us comment on the characterisation of the change of fundamental solution P, .
While the condition on the first line of the new fundamental solution may seem arbitrary, we will see in
Proposition VI.2.4.2 that it is closely related to the cohomological J-function. Furthermore, we will discuss
in Remark VI1.2.3.9 the naturality of this transformation. Let us detail these formulas in the concrete example
of P2.
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Example V1.2.3.4. In the case of P2, let us apply the g-pullback ¢q,~ and the change of fundamental solution
P, . to the small J-function. Putting the first line of the fundamental solution (XKth (q ©q; Z(Q))) otz as
a K-theoretical function again, we obtain the function

(2o (12 (4@ ) (i

k>0 d>0

d m _ mi+ma 1 _ )2
x(]1+(1 P )[ jmzl 1(_1qmq)]+(1—P1) [(mzlq (1- q)) 3091”;712@(1q—qm1)8_zznz)]))

Which has the limit when ¢! — 1 given by
d 1 a1\’ 1
~i(1-P -
PR CEO 10 by RN

(,;) 1ogz(kQ) (1- P’l)k) (dz% (ZdQ(;)g (11 -(1-P7)
We invite the reader to compare this limit to the cohomological J-function given in Example VI.2.1.3: after
using the Chern character sending the class (1 —P’l)z to ch((l —P’l)l) = H?, the limit coincides with
Jcoth(Z Q).

Proof of Proposition VI.2.3.3. We recall that

T (e (@)= % (- 1)( ((1_:)N+1Q))Jb(q’(1_q)N+1Q)

a+b=i z
0<a,b<N

| w
u

Where the functions .J, are obtained from the decomposition of J&%

Ji
Qd N A (N+/€)' N qm1+~--+ml
Jo(q,Q) = (D'
d;(q Q) ;;) Ogjl,.Z,jNgN N!Jﬂmjzv!g 15m1;<mlsd(1—qm1)~-(1—qml)

Jiterin=k
J1+2j2++Njn=b

We are going to exhibit a g-constant matrix P, , € GLy11 (M (E,)) such that the limit of the transformed

fundamental solution
lim X (¢, 05 . (Q)) P
is well defined. The transformation P, will be constructed in two steps.

(i) Notice that in the formula of J; (q ot (Q)) the ¢-logarithms ¢ (( )N+1 Q)7 do not have a well defined

limit. We are going to construct a first transformation A4, , to change them into the ¢-logarithms ¢,(Q).

(ii) After this change, we will require to multiply J; by (%)l to get a well defined limit that is not zero.
We will construct a second transformation B, . to do that.

In the end, the function J; (q, <p‘1(Q)) will be replaced by the function
1 _ i E 1 _ N+1
(=) = o) (% (%) e
z a+b=1 z
0<a,b< N

Then, we will show that the transformation given by P, ., = A, B, . satisfies the conditions imposed by the

proposition.
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We begin by making a first change of fundamental solution to modify the g-logarithms ¢, (( )N+1

Q).
Notice that we can not use the asymptotic of the g-logarithm of Proposition V.2.4.2, as the input of the
g-logarithm tends to 0. We recall that a g-logarithm is a solution of the g-difference equation ¢®%2 fo(Q) =

f2(Q) +1. To be able to apply Proposition V.2.4.2 to the matrix X%t (q, ga;}z(Q)), we are going to take the

other ¢-logarithm Zq: defined by
—-q N+1
m@-u((*1) " e)

By replacing in the matrix XX (q ©q. Z(Q)) the ¢-logarithms ¢, by Z;;, we obtain a new fundamental
solution XXth(g Q). In particular, for i € {0,..., N}, denote by (XKth)O_ (q,Q) the coefficient of the new
yth

fundamental solution on the first row and the (i + 1) column. We have

(T, - = (" Ppafa(9) o)

a+b=i
0<a,bsN

So we will be able to apply Proposition V.2.4.2 to compute the asymptotics of the matrix W(q,@).
Since the matrix w‘(q, Q) is another fundamental solution of the same ¢-difference equation, there exists
a g-constant matrix A, . € GLy.1 (M (E,)) replacing the fundamental solution XXh (q, np;}z(Q)) by the
transformed solution )’(_ml(q Q) = XKt (g, goq’}z(Q))

Our new goal is to compute lim;_, (X Kth) (¢, Q) or more precisely, to find a transformation after
which these limits exist, then to compute them. We recall that

() - L Tlw@-n - 2@+

a

Z (1 q)d(N+1)Qd JZV: Z ( (N+k) H Z gt Ju
o 24N D (g ) i 0<j1,njN<N N'J Legn! Lemysmemyzd (1= q™)+(1=g™)
Jite+jn=k
J1+2jo++Njn=b

For the coefficient (ZQ(LIQ)) to have a well defined limit when ¢* tends to 1, according to Proposition V.2.4.2,
we should multiply it by (1 -¢)*. Then, by the same proposition, we have
1—g*\" [ty 1 @
hm( q ) ( qt (Q)) ( 1)a Og(Q)
t—0 z a

As for the second one, Jp (q, ( 1= )N+1 Q), the summand inside the sum on the multi-index (j1,...,jn) only
has a well defined limit after being multiplied by (1 - ¢)71*292+Ni~n = (1 - ¢)b. Then, we have

1 1\ 0 1 +\ N+1
fo(2,Q) = lim( 1 ) Jb (qtu( 1 ) Q)
t—0 z z

Ji
Q? 1 X w (N +k)! 1
:Z 1d N+ T)Z Z (- )N' H Z
a0 (d!2%) =0 0<ji1,.jN<N Jil N 12T \dema Smemyca 1T

Jit++jn=k
]1+2j2+'“+NjN:b
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So, for the first line to have a well defined limit, we need to modify the coefficient (XKth)Ol (q,Q) by
7

(ﬂ)Z (XKth)Oi (q,Q). Since we are multiplying by a scalars, the matrix

z

_o\N
(¥FH) @@ (B (FFE) (@) - () (XFT )0 (2.Q)
Kth 1 Kth 1-q N
thh(qu,Q) ( 00 (q Q )6 (X )01 (q7Q) ( P ( ) (q7Q)
1 1-q\ sN ( Y Kth oo ()N 5N
o (XF )00 (0.Q) ((2)6) (¥F™) (3,@) -~ (2)" o (X b, (@@
(V1.2.3.5)
is another fundamental solution of the same ¢-difference system, which is confluent. Therefore, there exists
a g-constant matrix By . € GLy41 (M (E,)) replacing the fundamental solution X5t (¢, Q) by the confluent
solution YX*™ (2, ¢, Q) given by Equation (V1.2.3.5).
Furthermore, the fundamental solution YX*(z, ¢, Q) verifies the condition on the coefficients (X Kth (q T (Q)) )

asked in the statement of this proposition, because we have
. _ 1 a E 1 _ b 1 _ N+1
), 3 (S () o2
OF g<ab<n \ F a z z
a+b=1

Next, we compute the limit of the matrix Y% (2, ¢, Q) when ¢' tends to 1. For the first row of this matrix,

we have

i (0,0, = > B )
’ i

Since lim,_ §, = Qdgq, the other rows have a finite limit, and the fundamental solution YX*(z,¢,Q) has a
well defined limit.

Therefore, the g-constant transformation given by P, . = A, .B, . satisfies the conditions imposed by
the proposition, and the matrix X*™ (g, cpqz(Q)) .- is given by the matrix YE*™(z ¢, Q) of Equation
(V1.2.3.5). O

Remark VI.2.3.6. Just like in the Proposition VI.2.2.4, we could have multiplied the functions (éq EYQ)) and
Jy (q,(ﬂ)N+1 Q) by (1-¢)” only. By doing so, the limit we get will be related to ﬁl(l,Q) only, cf.

z

Remark VI.2.2.5.

Definition VI.2.3.7. We can put the first row of the fundamental solution (XKth ( 4y, Z(Q))) » back
into a K-theoretical function, which we will denote by P, . - wq’ZJKth. Denoting by ag;,i € {0, .. .,N} the

elements of the first row of (XK““( q' e (Q))) we have

qt,z»

S N i
P‘LZ "P;,ZJKth(Zv%Q) = Z (1 _P_l) @0i
i=0

The function P, . - ¢; . JK™ decomposes in our basis of K (PN) as follows:

Pyl TEM(2,,Q) = JEVE‘) (1-PY T (%) (5‘1 ELQ)) (1;‘1)b Ji (q7 (1;‘1)N+1 Q) (V1.2.3.8)
‘atb=i

Remark V1.2.3.9. The g-constant transformation P, . of Proposition VI.2.3.3 could be natural in the following
sense: if a fundamental solution is not confluent, it makes sense to look for a transformation which changes a
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solution 90;7;];(2, q,Q) into the confluent solution (%)ki @27;]:;(2; q,Q) for some integer k; € Z (cf Remark
VI.2.2.5). The transformation P, . is the only change of fundamental solution of this form such that the

ki ~
limits when g tends to 1 of the solutions (%) ¢y..Ji(2;¢,Q) are well defined and non zero.

Let us explain why. For the change of fundamental solution F, ., we chose k; = 4 in the proof of Proposition
a
VI.2.3.3. If instead we have k; # ¢, in Equation VI.2.3.8, this amounts to changing the exponents of (—qtl)

b
and (%) . If these exponents were to be changed, we see that the limit of the coefficient in front of

(1 - P‘l)i when ¢ tends to 1 would be either trivial or not defined.

VI.2.4 Comparison between the confluence and the cohomological J-function

This subsection consists of the comparison between the limit of our transformed fundamental solution and

the cohomological J-function jga‘(z, Q) using the Chern character.

Definition VI.2.4.1. We denote by confluence (JKth) the function defined by the limit
confluence (JKth) (2,Q) = %1_{% Py - JEM (2,4, Q)
The existence of this limit is given by Proposition VI.2.3.3.

Proposition VI.2.4.2. Consider the ring automorphism v : K (IP’N) Q> H* (PN;Q) defined by v(1 -
P~Y) = H. The confluence of the K -theoretical J-function is related to the cohomological J-function by the
identity

v (conﬂuence (JKth) (z, Q)) = Jeoh (2, Q)
Before giving a proof of this Proposition, we recall that a decomposition of the function P, . - cp;’zJKth is

given by Equation (VI1.2.3.8). We are going to compare this decomposition with the one of the cohomological
J-function.

Proof. The decomposition of the cohomological J-function in the basis (1, H,..., HY) is given by

fcal(z,Q):%Hi > 1,(1(”5@) a(2,Q) (V1.2.4.3)
ot

Where

Ju
Q? 1 X e (N+E)! X 1
9(2,Q)=), — a3l 3 (D) —
C;)(zdd!)NH Zbkz:;) 0§j1,.§NSN N!jl!"']N!E 1§nz1;<mlgdm1”'ml)

Jite+in=k
J1+2j2++Njn=b

Let us recall Equation (VI.2.3.8). We have

P N i t_ a . ot b o\ VL
Pea - S0 3 (P (@) (o () o)

=0 0<a,b<N
a+b=i
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Where
1 _ N+1
a(e(1) " 0)-

5 (1= DQ? 12\/: 5 (c1)F ) (N +Fk)! IJ—V[ 5 gt !
d=0 Zd(N“)(q;‘I)flVH k=0 0%j1,....jn<N Nl g Nt 10 \demy Semusd (1-gm™)-(1-qm™)

Jiterin=k
J1+2j2++Njn=b

ot b ot N+1
Pr%(l d ) Jy (qt,(l 1 ) Q) = g(2,Q)
- z z

Using Proposition V.2.4.2, we also observe that

(1) (+0)-5(42)

Putting these two observations together, we get

We observe that

confluence (ﬁfﬁ) (2,Q) = g: (1 - P_l)i > l' (bg@) 9 (z,Q)
i=0 Osi,ll))fiN a: z

Comparing with Equation (VI.2.4.3), we find that

v (conﬂuence(m) (Z,Q)) = ﬁ’(Z, Q)

We can now give a complete proof of Theorem VI.2.1.1.

Proof of Theorem VI.2.1.1. Confluence of the equation. Using the ¢g-pullback ¢, . of Proposition VI.2.2.4,
we obtain a confluent g-difference system. Its limit is the differential equation (2Qd¢g)"™ +1f(Q) = ]A”'(Q)7 which
is the differential equation associated to the small cohomological J-function. The choice of the formula for
the g-pullback ¢, . is discussed in Remark VI.2.2.6.

Confluence of the solution. By Proposition VI.1.1.12, we can see the K-theoretical J-function as a
fundamental solution matrix X% of the starting ¢-difference equation (VI.1.1.9). By Proposition VI.2.3.3,
there exists a change of fundamental solution P, . € GLy41 (M (Eq)) such that the fundamental solution
Do Kthp _ is confluent. The choice of the formula for the g-constant transformation P, is discussed in
Remark VI.2.3.9.

Comparison with quantum cohomology. The first row of the fundamental solution ¢; X KthPW
defines another K-theoretical function, which we denote by P, .- ¢, . JX™. Since the fundamental solution
was confluent, this function has a well defined limit when ¢* — 1, which we denote by confluence (m)

Using Proposition VI.2.4.2, we have

v (conﬂuence(JKth) (2, Q)) = Jeoh(2,Q)
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V1.3 Equivariant version of the comparison theorem

In this section we state and prove an analogue of Theorem VI.2.1.1 in the context of equivariant K-theory

and cohomology. The two main differences compared to the previous section are:

(i) The formulas have to be adapted to the equivariant setting. In particular, since we see the generating
classes q € Kc+(pt), z € Hf . (pt) as parameters, we will also need to see the generators of K(coynn (pt)

as parameters.

(ii) The bases of equivariant K-theory and cohomology are not related to the non equivariant bases. This

means that the fundamental solution we will consider in the equivariant setting are different.

VI1.3.1 Equivariant Gromov—Witten theory

The goal of this subsection is to introduce the definitions of the J-functions in the equivariant setting and

explain the differences mentioned above.

Equivariant K-theory

Notation. We denote by T™V*! the torus (C*)N*!.
For (tg,...,tx) € TN*t and [z : - : 2x] € PV, we define an action of the torus 7N+ = (C*)V*! on PV by
the formula,

(to, .- tn)[20::2n] =[tozo i tnzn]

The elementary representations
. (CHN+1
(toy .- tN) —— 1

defines N +1 classes Ag,...,An € Kpna(pt), where —A; is the line bundle on the point with an action of the
group T™V*! given by p;. In the end, we get

Proposition VI1.3.1.1 ([CG10]). The TN -equivariant K -theory of the point is the ring given by
Kwoa (pt) = Z[ARL, -, A%)]

Proposition VI.3.1.2 ([CG10]). Denote by P = Ocq(1) € Kpne (PY) the anti-tautological equivariant
bundle. The TN*'-equivariant K -theory of PV is the ring

Kpna (PY) = Z[AG, .. AR IP*' ] /(1= AgP7h) -+ (1= ANPTY))

Corollary VI.3.1.3. The TN*!-cquivariant K-theory of PV is generated as a Ky (pt)-module by the

classes )
1-A; P~ N
ﬁ;‘/\fl € KTN+1 (IP )

;=1

J#i

Notice the generating classes ¥; € Kpn+1 (]P’N ) behave like the polynomials of Lagrange interpolation: for
all j€{0,..., N}, we have

Wiip=p,; = 0ij
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Definition VI.3.1.4. There is a morphism of rings p : Ky~ (]P’N) - K (]P’N) defined by p(P) = P and for
alli€{0,...,N}, p(A;) = 1. Given an equivariant class ¢ € Kpn+1 (]P’N), its image p(¢) will be called its non

equivariant limit.

Remark V1.3.1.5. The non equivariant limit of the basis (¥;) of Ky~ (PN) is not a basis of K (IP’N). For
any i € {0,..., N}, we have p(¥;) = (1 —P’l)N

Equivariant cohomology
Introduce the classes
Ai = c1(Ag) € Hyna (pt) = H(BG) z=-c1(q) € H(pt)
Proposition VI1.3.1.6 ([CK99], Section 9.1). We have the following equivariant cohomology rings
Hina (pt;Q) = Q[Xo, .-, AN] Hr(pt;Q) = Q[2]
Denote by H = ¢1(Oeq(1)) the equivariant hyperplane class. We have
7o (PY3Q) = QAo ANIH]/((H = Xo)++(H = An))

Corollary VI.3.1.7 ([CK99], Equation 9.4). The set Hj.y., (IP’N;Q) is generated as a Hjy,. (pt; Q)-module
by the classes
H-)
Lag; =[] L e Hyna (PV;Q)
Xi = Aj

J#

Definition VI.3.1.8. There is a morphism of rings p: Hln., (IP’N;(@) - H* (IP’N,Q) defined by p(H) = H
and for all i € {0,..., N}, p(A;) = 0. Given an equivariant class ¢ € Kpn+1 (]P’N), its image p(¢) will be called

its non equivariant limat.

Comparison between the equivariant classes

Let us explain how to the actions by 7' and T™V*! are related. Our goal is to motivate a formula we will use

later when dealing with g-difference equations. The multiplicative group morphism

f TN+1 N
(20, ey ZN) > 20"""ZN
Induces a ring morphism fx, @ K7(pt) > Kpnva(pt) as follows: if E denotes a complex vector space and

)N+

x:T x E - E is a T-action, then we can define a (C* "action on E by

(toy .- tn)-v=x(f(to,...,tn),v) = x(to-tn,v)

In particular, by checking the group actions, recalling that ¢ is a generator of Kr(pt), we have fx(—q) =
Ao ® -+ ® An. This map has N + 1 sections (s;), with the section s; being given by the inclusion of T' in the
i™ factor of TN*1. We have s;(A;) = &; j¢. The map fi, has a cohomological analogue geon constructed in
the same way. This data fit in the diagram

Qlg*'] = K1 (pt) 2 Q 5% Ky (pt) @7, Q

B [

Q2] = Hi(pt;Q) —="— HZnoi (pt; Q)
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Proposition VI.3.1.9. Up to degree 1 terms, we have the relation in Hx.,(pt; Q)

ch(A;) = ch(fxc () 7 (V1.3.1.10)

Proof. Since all the K-theoretical classes are line bundles, we have up to degree one terms

.Y i
Ch(fK(q)) g (2) :1+mcl(A0®"'®AN)+“':1+)\i+"':0h(Ai)

Givental’s equivariant K-theoretical J-function

Definition VI.3.1.11 ([Giv], II). Let X = PV and let P = Oeq(1) € Kpn+1 (PY) be the anti-tautological

equivariant bundle. Givental’s equivariant small J-function is the function

d
JKthea(y 0y = pta(@ @ VI.3.1.12
(2,Q) % (gAoP~1,...,qANP1;q), ( )

Where

=

(gAoP7',....qANP Y5 q), = [T (¢MiP Y5 q),

(3

I
(e}

Proposition VI1.3.1.13. The small equivariant J-function (VI.3.1.12) is solution of the q-difference equation

[(1-A0g%%) - (1-Ang®%) - Q] T*™(¢,Q) =0 (V1.3.1.14)

The proof of this proposition is exactly the same as in Proposition VI.1.1.4, where we use instead the
relation (1-AgP™) - (1-AnP™') =0¢e Kpne (PV).

Remark VI.3.1.15. The non equivariant limit of the equivariant J-function JX%°9 is the usual J-function
JKth

Recall that the equivariant K-theory of projective spaces is generated by the classes

_A.p1
% € KTN+1 (]P)N)
74

v, -1

j#i
Proposition VI.3.1.16 ([Giv], IT). The decomposition of the J-function in this basis is given by
Kth S Kth
J ¢ ,eq(q’Q) = Z J|P:A7ieq(q7Q)‘Ili
i=0

Remark VI1.3.1.17. The equivariant limit of this decomposition does not have a sense, since the basis (¥;) is
not compatible with non equivariant limit. We have

d ~
00 E -

Where we recall that I)(q, Q) is the coefficient in the decomposition

TR (0,0) = S T.(0.Q) (1- P) € K (BY) & C(9)[Q]
i=0
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Givental’s equivariant J-function as a fundamental solution

Let us consider the ¢-difference equation (VI.3.1.14)

[(1-40g9%2) - (1-Ang?%2) - Q] TX™1(q,Q) =0

If we assume Ag, ..., Ay € C* such that if 5 # j, AiAJ‘-1 ¢ ¢”, then this ¢-difference equation is a hypergeometric
g-difference equation which is regular singular and non resonant, see Definition VI.3.1.20 (here, non resonance
is equivalent to the condition AZ-AJ_»1 ¢ ¢%). Notice that, from the previous section, the non equivariant g-
difference equation [(ZQ(?Q)N+1 - Q] ja;h(z, Q) =0 is resonant.

Proposition VI.3.1.18. The functions (J‘I;iieq) (0N} form a M (E;)-basis of the solutions of the g-
i /Ji€{0,...,
difference equation (VI.3.1.14).

Proof. Since the g-difference equation (VI.3.1.14) has no K-theoretical coefficient, the functions Jﬁ;gj\’?q
solutions. The condition AiAJT1 ¢ ¢% implies that the g-logarithms Aé‘I(Q) and Aﬁ"(Q) are independent over

M(E,). Using Proposition V.1.1.6, if ¢ # j, then Jllgtl/l\eq and Jllgtl;\eq are M(E,)-linearly independent. [

are

Remark V1.3.1.19. Given a g-hypergeometric equation that is regular singular at () = 0 and non resonant, the
theory of g-difference equation gives a fundamental solution. This fundamental solution depends on the choice

of a g-character. For example, choosing the g-characters A;g"(@ in [Ada29] gives a basis of solutions that is
the same as (Jf;“}fq) 0N} We will explain how this basis is constructed in the next subsubsection, see
i€ R

Proposition VI.3.1.26.

g-hypergeometric equations
In this subsubsection, we give the definitions and the fundamental solutions for g-hypergeometric equations.

Definition VI.3.1.20. Let r,s € Zsg,a1,...,a,,b1,...bs € C*. The associated q-hypergeometric equation is

[Q( q9%) "I (1 - 0:g%%9) - (1 - 9%2) 1‘[ ( b QBQ)] f4(Q) =0 (V13.1.21)
=1 q
The g¢-difference equation is said to be non resonant if any ratio of two coefficients a1, ..., a,,b1,...bs is not

in ¢%.
Proposition VI1.3.1.22. This q-difference equation is singular regular at 0 and oo if and only if r+1 = s.

Proof. This is done by applying Proposition V.2.1.14 to the Equation (VI.3.1.21). Notice that the only
coefficient depending on @ in this ¢g-difference is @ (—qQaQ )HS?T. If r > s+1 (resp. r < s+1), this ¢g-difference
equation is singular irregular at @ = 0 (resp. @ = o). O

By looking for a solution under the form of a Laurent series, we find the following definition.

Definition VI1.3.1.23. Let ag,...,a,,b1,...,bs € C*. The associated q-hypergeometric series is the formal

al e a'f‘
T’SDS
by - b,
Where (a1, ...,a:3q), = (a1;9) 4 (ar;q)y = Tyso (L =q"a1) (1= gq"a,). If by,...,bs ¢ ¢”=°, this defines an
element of C[[Q]].

Taylor series

(ala ceey Qpy q)d d d(d 1)\ L+r—s .
T (@1, b )y ! @ VI.3.1.24
) g;)(q’bl""7bs;q)d (( ) ) ( )
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Proposition V1.3.1.25. The q-hypergeometric series (VI.3.1.24) is a solution of the q-hypergeometric equa-
tion (VI.3.1.21). Moreover, assuming |q| < 1, if r < s+ 1 (resp. r > s+ 1), this formal power series has

convergent ray oo (resp. 0).

Proof. We look for a solution of the g-hypergeometric equation (VI.3.1.21) of the form

f(Q) = ¥ aa(9)Q*

deZ

Where (aq(q))aez € CZ. Assuming that f, is a solution of (VI.3.1.21), we obtain that

(1-aog?)--(1 - arqg?)
(1-q™1)(1-bog?)--(1 - bsq?)

From this recursion relation, by setting the initial condition fj = 1, we deduce that the function f; corresponds

fd+1 _ (_q)1+s—r

to the g-hypergeometric series (VI.3.1.24). In particular, the factor (1-¢%92) inside the g-difference equation
(VI.3.1.21) implies that a_1(gq) = 0.
Next, we compute the convergence ray of the Taylor series (VI.3.1.24). We have

Ad+1

d\1+r—s
aq )

d—o0 (q
We conclude by ratio test. O

Proposition VI.3.1.26 ([Ada29]). Assume in this proposition that r = s + 1. Then, the g-difference equa-
tion VI.8.1.21 is singular regqular at @ = 0,00 of degree r. Assume furthermore that if i + j,k + I, then
aifa;j,bi b, q/b ¢ q*. A basis of independent solutions at Q = 0 is given by taking the convergent power series
(VI.3.1.24) as a first solution and adding the functions indexed by j € {1,...,s}

g 40
0,(=b;Q/a) bi bi
0 _ Y\ 7Yy —
T e e wan|C
b bj b b,
Where™ means that this element is omitted.
A basis of independent solutions at Q = oo is given by the solutions indexed by i € {1,...,r}
@ aiq aiq
;i (Q) = 04(-a:Q) ! bs gbi--bs
. 6,(-Q) | @@ |V aaQ
a1 a; (078
Proof. Our starting function was
al e a’T’ Q)
rPr-1 q,
by - by

It is obtained by looking a Taylor series solution } ;. F1(@)Q" to the equation VI.3.1.21 and setting the
initial condition f(0) = 1.

To obtain the other solutions, we observe that if b € C* — ¢” and g is a solution of the g-difference
equation (1 - %qQaQ ) gy = 0, then the function f(Q) = e, 4-1(Q)gy(Q) is a solution of the g-difference equation
(1-xg@%) f=0.

The independence of the families over M (E,) is a consequence of the hypothesis a;/a;.1,b;/bji1,q/b1 ¢
q*. O
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VI1.3.2 Statement of the equivariant comparison theorem

We are going to relate Givental’s equivariant K-theoretical J-function to its cohomological analogue by

confluence. Before stating the theorem, we define the equivariant cohomological J-function.

Definition VI.3.2.1 ([Giv96]). The small equivariant cohomological J-function is given by the expression

d
Jcoh7eq — g Q
(Z7Q) Q (;)ngl(H_)\O_;,_/,nz)...(H—)\N'FTZ)

Proposition VI.3.2.2. The function J°%4 is a solution of the differential equation

[(=Xo +2Q00)-(-Ay + 2Q80) — Q] J©™(2,Q) = 0 (VL.3.2.3)

Recall that the equivariant cohomology of projective spaces has a basis given by

H-)\
Lagi = []5—2 € Hin (BV:Q)
j#i M A

Proposition VI.3.2.4 ([CK99], Proposition 9.1.2). The function J°™°4 is decomposed in the basis (Lag;)
by the formula

N
Jered(z Q) = Y chHO}:l;q(z, Q)Lag; (V1.3.2.5)
i=0

For this the comparison theorem to make sense, we need to see the classes ¢, z, \;, A; as complex numbers.
Because of the Equation VI.3.1.10, we assume that if ¢ # j, then \; — A; # Z and ask the parameters A; to
satisfy

wfr

Ni=q (V1.3.2.6)

This relation will be necessary for confluence to work correctly.

Theorem VI1.3.2.7. Denote by TN*! the torus (C*) ' and let JE™eq (resp. Jeohed ) pe the small equiv-

ariant K -theoretical (resp. cohomological) J-function of PV.

(i) There is a q-pullback making the q-difference system (VI.3.1.14) satisfied by JEMed confluent. Its
confluence yields the differential system satisfied by J°V°4, (VI.3.2.3).

(ii) Consider the isomorphism of Tings Yeq : Kpn (IP’N) = Hina (IP’N;Q) given by Yeq(¥;) = Lag; for all
i€{0,...,N} and let confluence (JKth) be the result of confluence applied to the solution JX™ of the
above q-difference system. Then, we have

Yeq (confluence (JKth’eq)) (2,Q) = J©M4(2, Q)

For the formal definition of the function confluence (J Kth’eq), see Definition VI.3.5.2. The proof of this
theorem will again be in three steps:

(i) Confluence of the g-difference equation (see Subsection VI.3.3 and Proposition VI.3.3.2).
(ii) Confluence of the fundamental solution (see Subsection VI.3.4 and Proposition VI.2.3.3)

(iii) Comparison between the confluence of the solution and the cohomological J-function (see Subsection
VI.3.5 and Proposition VI1.3.5.3).
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VI.3.3 Confluence of the equation, equivariant version

Before giving a statement on the confluence of the g¢-difference equation (VI.3.1.14), let us write it in its
matrix form. We look for a matrix B, € My.1(C(Q)) such that

JHEMea(q,Q) JEe(q, Q)
5qJKth,eq(q7Q) _B (Q) 5qJKth,eq(q7Q)
. q .

(5,)" JEthea(g, Q) (5,)" T ea(q, Q)

We rewrite the g-difference equation (VI.3.1.14) as
[(1-Ag+(1-q)Aody) (1 -An+(1-q)And,) - Q] JX™Y(q,Q) =0

We see the expression in the square brackets as a polynomial in d,. For i € {0,..., N + 1}, the coefficient in

dg

front of 5; in this polynomial, which we denote by p;, is given by

pi = —51',0Q+(1—Q)i Z Aji Ay, H (1-Ag)

0<jr<<ji<N ke{0,....N}={j1,-.di }

Where §; ¢ is the Kronecker symbol which is zero unless ¢ = 0. In particular, we have
N
po=-Q+[[(1-A)
i=0

e = (1-q@) VA Ay

So the g¢-difference equation (VI.3.1.14) has the matrix form

0 1 0 0
0 0 0
q?%2 X = : : : X (V1.3.3.1)
0 0 1
Po P1 PN
(1-¢)N+1Ag-~An  (1-q)N+1Ap--An (1-g)N+1Ao--AN
Where
JEMea(q, Q)
| B0
(5q)N JKth,eq(q, Q)

And

Di :_6i,OQ+(1_q)i Z Aj1"'Ajz‘ H (1_Ak)

0<j1<<j; <N ke{0,...,N}={j1,...,4i }

Proposition VI1.3.3.2. Consider the q-difference equation (VI1.3.1.14)
[(1-A0g®%2) - (1= Ang®P?) - Q] J¥™(¢,Q) = 0

Let g, be the function

C———C
Pq,z * L\
o— (&) @
Then, the q-pullback of the g-difference equation (VI.3.1.1]) by @q . is confluent, and its formal limit is the

differential system satisfied by the small equivariant cohomological J-function (VI.5.2.3).
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Proof. We consider the g-difference system (VI1.3.3.1). We recall that its coefficients on the last line are given
by, for i € {0,..., N}

DN+1 (I-q)N+1Ag--Ap

For i # 0, we have

i 1 1-A
- Ajy-Ay, i

DN+1 AO,.-AN 0<j1<<ji <N ke{0,...,N}—{j1,-...Ji } l-q

Using Equation (V1.3.2.6) : A; = ¢"*/%, we have

lim P 1 » Aj A

_ 2 \N+1-4
=1 PN+ ( Z) ' 0<j1<<JN+1-i <N

JN+1-i

The remaining coefficient is

J2 1 Q N1-A
: (_(q—l)N+1 o1l )

pna AoAn j=0 1-4¢

Which has no limit as it stands.
The g-pullback of this system only change the only coefficient of the matrix which depends on Q. The
g-pullback is given by the system

0 1 0 0
0 0 . 0
g% X = : : : X
0 0 1
ano(2,4,Q) (]__q)me W’iﬁ
Where
1 Q No1-A;
an ZvQ?Q = - +
0( ) AOAN ( 2N+1 JI:!) 1_q
We have

. 1
limano(z,¢,Q) = x5 ()N g Ax - Q)

Which is well defined. Therefore, the g-pullback by ¢, . of the system (V'1.3.3.1) is confluent. Moreover, its

formal limit is the differential system associated to the differential equation

[(=Xo +2Q0q)-(-An +2Q0q) - Q] f(2,Q) =0

Which is the differential equation satisfied by J%¢d (VI1.3.2.3). O

Remark VI1.3.3.3. The g-pullback ¢, . defined in Proposition VI.2.2.4 is the only g-pullback of the form
A
Qr~ (%_q) @, with A € Z, which defines a confluent ¢-difference system whose formal limit is non zero.

The proof of this statement is the same as in Remark VI.2.2.6.
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VI1.3.4 Confluence of the solution, equivariant version

Let us mention a reason why confluence of the solution in the equivariant case should be easier than in the

previous setting. We recall that in Remark VI.3.1.17, we had the non equivariant limit

(755, e

(,Q) =),

o==An=1 &0 (64

In the proof of Proposition VI.2.3.3, the right hand side above had a well defined limit after the g-pullback

without the need of a transformation. We could expect that the limit when ¢ tends to 1 of the functions

JKth,eq
|P=A;

Let us introduce the fundamental solution of the g-pullback for which we want to compute the limit when

(q,Q) to be well defined without the need of a gauge transform.

q tends to 1.

Remark V1.3.4.1. The g-pullback of the g-difference system (VI.3.3.1) has a fundamental solution obtained
from the equivariant J-function JX*"-d(q, @), which is given by

‘]|IJ§Z}X§q (q7 (%)N-‘—l Q) Jﬁ;i}kiq (Q7 (%)N-‘—l Q)
X (g, 00(Q)) = : : (V1.3.4.2)
oI (0 () Q) RS (0.(59) Q)

Proposition VI1.3.4.3. There exists a g-constant transformation Py , € GLy.1 (M (Eq)) such that the fun-
damental solution XK™-ed (q o Z(Q)) 7,2 obtained from Equation VI.5.4.2 is given by

(1 _ q)d(N+1)Qd
qAOAi‘l7 el q,.. .,qANAi‘l;q)d

e P 1
(XKth, q (q o z(Q)) ) = (5q)lAi€ (Q) {;} D (

Moreover, this fundamental solution has a non trivial limit when q tends to 1.

Proof. By the same argument as in Proposition VI.2.3.3, there is a g-constant transformation P, , € GLy+1 (M (Eq))
which changes the g-logarithms ¢, ((1 ‘I)NJr1 Q) in the fundamental solution X#th-ed (q, gp;lz(Q)) into the
other g-logarithm ¢,(Q). Let us denote by (XKth’eq (q,go’l (Q)) ) for i € {0,..., N} the elements on

the first row of the fundamental solution X #th-cd (q ©q. Z(Q)) P, .. We have

(1 q)d(N+1)Qd
qAA1 q...,qANAZ.‘l;q)d

th,e £ (Q)
(XK " q(q Pq,z (Q)) ) =A; Z Zd(N+1) (

Therefore, the g-constant transformation P, . satisfies the condition on the coefficient (X4 (g, 90;,12(@)) Pq’z)li
of the proposition.
Let us compute the limit of this new fundamental solution. Using Equation VI.3.2.6, we have

lim A (@) _ hme 2 108(0)((@) _ %

q—)
1 (1 q)d(N+1) L d N 1 ]._q ~ d N 1
1 277D (ghoAT", g, aAN A ), _iﬁggzl—q%ﬂ\{l _gﬂ) (Xi = Aj +72)
Thus,
Kth,eq i d N 1
lim (P, "% (g, 0, (@), = @ F CE)Q 1‘[1‘[0(A )

Since limg1 04 = Qdg, the fundamental solution P,X %™ (q,¢.1(Q)) is confluent. O
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VI1.3.5 Comparison between the confluence and the cohomological J-function

Definition VI.3.5.1. The first row of the fundamental solution X¥th-ed (q,cp (Q)) .= of Proposition

VIL.3.4.3 defines a K-theoretical function, which we denote by P, . - ¢  J&™hed,

Definition VI1.3.5.2. By Proposition VI.3.4.3, the limit when ¢ tends to 1 of the function P, , - @;’ZJKth’eq
is well defined. We define the K-theoretical function confluence (J Kth’eq) by

conﬂuence(JKth’eq) (z,Q)—hmP 2 Pt ZJKtheq(q Q)

Proposition VI1.3.5.3. Consider the isomorphism of rings veq : Kpn+ (IP’N) - Hlnn (IP’N;Q) given by
Yeq(¥;) = Lag; for alli€{0,...,N} Then, we have

Yeq (confluence (JKth’eq) (2,Q)) = Jeohea (2 Q)
Proof. On one hand, recall that by Equation VI1.3.2.5, we have the decomposition
TNz, Q) = th;Q(z,Q)Lagi

On the other hand we have

qu Saq zJKthcq(t z Q) ZE)( _e (Q) Z Zd(NJrl) (

(1 _ q)d(N+1)Qd v
qhoATY, g, qANAT ), )

Thus,
ch (confluence (JKth’eq) (2,Q)) = ]ZV: Q Z Q! ﬁ ljj[ _ v
’ B i=0 d>0  r=13;=0 (Ni = Aj +72)

We conclude using veq(¥;) = Lag; and

Jeohieq 1
Toesi(z,Q) = QY Q! Hnm

d>0  r=1;=0

We can now give a complete proof of Theorem VI.3.2.7

Proof of Theorem VI.53.2.7. Confluence of the equation. Using the g-pullback ¢, . of Proposition VI.3.3.2,
we obtain a confluent ¢-difference system. Its limit is the differential equation associated to the small equiv-
ariant cohomological J-function. The naturality of the g-pullback ¢, . is discussed in Remark VI.3.3.3.
Confluence of the solution. By Proposition VI.3.1.18, we can encode the equivariant K-theoretical J-
function as a fundamental solution of the g-pullback of the system (V1.3.3.1), which we denote by X %4 (g, ©q; L(Q))
in Equation VI.3.4.2. By Proposition VI.2.3.3, there exists a g-constant transformation P, , € GLy+1 (M (E,))
such that the fundamental solution A Xth-ed (q g Z(Q)) 0,- 15 confluent.
Comparison with quantum cohomology. The first row of the fundamental solution X% th-ea (q, w;}Z(Q)) P,
defines another K-theoretical function, which we denote by P .-, .J Kthed Since the fundamental solution
was confluent, this function has a well defined limit when ¢* — 1, which we denote by confluence (J Kth’eq).

Using Proposition VI.3.5.3, we have

Yeq (conﬂuence (JKth’eq) (2,Q)) = Jeehed(z Q)
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We remark that from this theorem we can recover the non equivariant version of the theorem, by taking
the non equivariant limits in cohomology and K-theory. The way to proceed can be summed up in the
informal diagram below.

QK pxa (PV) LT QH v (PV)

confluence

$am $a-0

QK (PN) -Xo2ils H (PV)

confluence

Note that non equivariant limits are only defined for the expressions of JX™ed and Je°"¢d which are not
decomposed in our bases, cf. Remarks VI.3.1.5 and VI.3.1.17.
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