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ABSTRACT. The main result is an all-genus construction of reduced Gromov—
Witten invariants for a large class of GIT quotients. This extends earlier
results, limited to genus one and two.

The main tool involves blowings-up of sheaves. More precisely, given § a
coherent sheaf on a Noetherian integral algebraic stack B, we give two con-
structions of stacks ‘33, equipped with birational morphisms p : 53 — P such
that p*§ is simpler:

(1) in the Rossi construction, the torsion free part of p*§ is locally free;
(2) in the Hu-Li diagonalization construction, p*§ is a union of locally free
sheaves.
The construction in item [I] above is an extension of the Nash blow-up and
certain flattenings of sheaves to Noetherian integral Artin stacks. We show that
reduced Gromov—Witten invariants obtained from each of the constructions
above coincide.
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1. INTRODUCTION

Overview of the problem. Let X be a smooth projective variety. We denote
by Mg.n(X,d) the moduli space of genus g, degree d € H>(X;Z) stable maps
to X (see [Kon95]). By [LT98, BF96], the stack M, ,(X,d) has a virtual class
(Mo (X, )]V € Au(My (X, d)). Gromov—Witten invariants of X are defined as
intersection numbers against this virtual class. They are related to counts of curves
in X of genus g and class d, but they often encode contributions from degenerate
maps with reducible domains. These degenerate contributions can be explained by
the geometry of the moduli space of stable maps.

We have little information about moduli spaces of stable maps to a variety X,
even when X is complete intersection, but the moduli spaces of stable maps to
projective spaces are better understood. The space of genus zero stable maps to a
projective space Mo, (P, d) is a smooth Deligne-Mumford stack and the resulting
genus zero Gromov—Witten invariants are enumerative. For g > 0, the moduli space
ﬂgm(]}”’, d) has several irreducible components and moreover, in genus one and two,
we have explicit local equations for M, ,(P", d): see [Zin09¢, HLI0, [HLNT2]. The
existence of components consisting of maps with reducible domain is reflected by
Gromov—Witten invariants: these components contribute in the form of lower genus
invariants.

In order to define invariants which do not have contributions from degenerate
maps with reducible domains, we need to define a virtual class on the closure of
the locus of maps with smooth domain. It is not possible to do this directly, we
need to replace this component by a birational one which admits a virtual class.
In genus one and two, there are several such constructions [Zin09d, VZ08, [HLI0,
[HN20]. The resulting numbers are called reduced

Gromov—Witten invariants.

Main result 1.0.1. We define reduced Gromov-Witten invariants in any genus
for:
(1) hypersurfaces in projective spaces when d > 2g—2 (see Definition and
Assumption ;
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(2) more generally, certain GIT quotients of vector spaces (see Deﬁnition
Assumption and Section [8.1)).

A precise statement which implies this result is Theorem below. In genus
one and two, our reduced Gromov—Witten invariants of complete intersections in a
projective spaces agree with the reduced invariants defined previously.

The main tool in the proof of Main result is the general flattening re-
sult of Theorem It allows to understand the components of the total space
Spec Sym (F) of a coherent sheaf over an integral scheme or stack 3, up to birational
modifications of P. Generically, § has rank r. One can birationally modify 3 so
that there is a closed subscheme of Spec Sym (§§) which is flat over 3. More specifi-
cally, we make the torsion-free part Ff := F/tor(§) locally free, so Spec Sym (F) has
a main component flat over 3. Other components supported in higher codimension
are then given by the torsion part of §. We can iterate this process to obtain a
decomposition of Spec Sym (§) into a main component and other irreducible com-
ponents corresponding to vector bundles of higher rank over closed subschemes of
B of higher codimension. Since the Gromov-Witten moduli space can be viewed
as an open in the total space of a coherent sheaf, the above construction, roughly
speaking, allows us to decompose it into components with well-defined virtual fun-
damental classes.

Theorem [I.0.2] below provides two different such birational modifications for 93,
each of which can be used to give a definition of reduced Gromov—Witten invari-
ants. In Proposition we show that reduced Gromov—Witten invariants are
independent of the birational modification of 3. In particular, both constructions
give rise the same reduced Gromov—Witten invariants.

Theorem 1.0.2 (See Theorems [5.2.1} [5.2.2| and [5.2.6|). Let B be an integral Noe-
therian Artin stack with affine stabilizers admitting an integral presentation and §
be a coherent sheaf on B.

There exist integral Noetherian Artin stacks BlgB and Bl? L&B together with
representable proper birational morphisms 7: Blg3 — B and p: BI?L‘B — P sat-
isfying the following universal properties:

(1) For any morphism of stacks p : ) — B such that (p*F)¥ is locally free of
the same generic rank as §, there is a unique morphism p', which makes
the following diagram 2-commutative

(2) For any morphism of stacks f : Q) — P such that f*F is diagonal of the
same generic rank as §, there is a unique morphism f’, which makes the
following diagram 2-commutative:
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(1) We call Bl33 the Rossi blow-up. This is a stacky version of the Raynaud-
Gruson flattening [RG71]. This construction does not change torsion sheaves.

(2) We call Bl? L3 the Hu-Li blow-up. The Hu-Li construction also produces a
sheaf p*§ whose torsion-free part is locally free. In addition to this, p*§ also has a
well-behaved torsion in the sense of Definition For schemes, this is achieved
by a construction of Hu and Li [HL11] and of Grivaux [Gril0, Proposition 12].

The first construction is a minimal birational modification of 3. This is suffi-
cient to define reduced Gromov—Witten invariants. However, in view of existing
proofs of Conjecture [1.0.5]it is convenient to work with the Hu-Li blow-up. More
explanations on this can be found in Section

Approach. In a first step, we use the geometry of M, ,(P",d) in the following
way. The moduli space of stable maps admits a map mg’n(IP’", d) — Pic, where Pic
denotes the stack which parameterises genus g curves with n marked points together
with a line bundle of degree d. One important observation is that M, ,(P",d) is
an open substack in an abelian cone Spec Sym §, with § a sheaf on Pic (see

and .

In a second d step, we choose a desingularization of the sheaf S (Definition [3. ,

i.e. a stack ‘Btc together with a birational morphism p : ‘Btc — Pic such that
the torsion free part of p*§ is locally free. By base-change along p, this gives
D: Mg n(P",d) = Mg, (P",d), and Mg,n(]P’T d) allows us to define reduced Gromov—
Witten invariants as follows.

We fix d > 2g — 2 (see Assumption for details). We denote by ﬂ;,n(Pr, d)
the closure in M, ,(P",d) of the locus of maps with smooth domain. The con-
dition on d ensures that M;n(]w, d) is generically smooth and unobstructed. As
before, we define ./K/lv;m(IE", d) as the closure in Mvg,n(IP’T, d) of the locus with smooth
domain.

We have the following result, which allows us to define reduced Gromov-Witten
invariants in all genera.

Theorem 1.0.3 (See Theorem . Let /K/lvgﬁn(]P’T, d) = Ueeeﬁg’n(]}”,d)e, with
My (P, d)? irreducible components of M, (P",d). Then the following statements
hold:

(1) The stack ﬂg,n(Pr, d) admits a virtual class.
(2) The morphism p is proper, and we have

5e[Mgn(P7,d)]"" = [Myn (B, )]

(3) Foranyf € ©, ./\/lg w(P7.d)? is smooth over its image in Pic; in particular,
./\/lo ( P7 d) is smooth over Pic.

(4) Let 7 : Ce — Mvg,n(Pr,d)e denote the universal curve. Then for any k,
the sheaf 70ev*O(k) is a locally free sheaf on ./T/l/g)n(]P’",d)e; in particular,
moev*O(k) is a locally free sheaf on /K/lv;n(ﬂw,d).

Concretely, we take ‘fl/c to be either the Rossi blow-up BlgBic or the Hu-Li
blow-up Bl? EsBic. In general, the Rossi construction is different from the Hu-Li
construction (see Example . By Example the Rossi construction gives
a new moduli space which is different from the Vakil-Zinger blow-up from [VZ0§].
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However, by Proposition [7.4.3] this does not change the reduced invariants: they
are the same for all birational models of ic.

Relation to previous approaches. The structure of this paper is different from
the ones in [VZ08 [HLI0, HLN12, [AN19, [HN20]. In the mentioned papers, the
authors have a three-step strategy to constructing the stack MV;TL(JP””,d) which
compactifies the locus of maps with smooth domain:

(1) they find equations of local embeddings of charts W; — M, ,,(P",d) in
smooth spaces V;;

(2) they blow up W; to obtain W;;

(3) they show that W; glue to a (smooth) stack M;n (P7,d).

The first step becomes involved already in genus two, due to the rather complicated
geometry of the moduli space of stable maps. Steps 2 and 3 are done by constructing
an explicit blow-up of Pic (or My, ). Finding a candidate for this blow-up is the
hardest part of the constructions in [VZ08] and [HLN12].

In this work, we omit Step 1 completely. For us, Step 2 is minimal in a suitable
sense — it is given by a universal property. The main ingredient in Step 3 is that
the (local) constructions proposed in Section [3[and in Section 4] commute with flat
pullbacks and this allows us to glue them. Explicit equations of the charts W; are
thus not necessary to construct M;,n(]P’T, d). The advantage of this approach is
that the gluing is conceptual and straightforward. This is similar to what Hu and
Li do in [HL11] — our construction heavily relies on their ideas.

Relation to Gromov—Witten theory. Genus one reduced invariants for varietes
of any dimension are related to Gromov-Witten invariants [Zin08]. For threefolds
the relation is conjecturally much simpler. Let X be a threefold under the assump-
tions in Section and let v € H*(X)®" be a collection of cohomology classes
of X. Let N g (7) be the genus g and degree 8 Gromov—Witten invariants of X
with insertions given by +, and let rg (7) be the corresponding reduced invariants.
In particular, for a Calabi-Yau threefold X, the moduli space has virtual dimen-
sion 0 and one defines the Gromov—Witten invariants and reduced Gromov—Witten
invariants withouth insertions as Nj and rj.

Conjecture 1.0.4. [Zin09a], [HLI1l Conjecture 1.1] Let X be a Calabi-Yau three-
fold. Then, there are universal constants Cp(g) € Q, such that for deg(8) > 29 —2,

we have
Ni= > Culg)rg.
0<h<g

When X is the quintic threefold, the above formula in genus one is the formula

in [Zin09al, [LZ09)
1

0 Ny = ND4r

If X is a Fano threefold, the reduced invariants are expected to be equal to
Gopakumar—Vafa invariants. Indeed, the Gopakumar—Vafa invariants are by defi-
nition related to Gromov—Witten invariants by a formula which takes into account
degenerate lower genus and lower degree boundary contributions. For Fano vari-
eties, there are no lower degree contributions. Boundary contributions were com-
puted by Pandharipande in [Pan99]. The conjectural equality between reduced
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Gromov-Witten invariants and Gopakumar—Vafa invariants (see [Pan99, Section
0.3]) for Fano threefolds gives the following.

Conjecture 1.0.5. [Zin09al [Zin11] Let X be a Fano threefold and let C;¥5(g) be
defined by the formula

sin 2h—2-Kx-f8
St = () -

s t/2

Then, we have the following

N§() =D Ciiglg = W5 (7).
h=0

The above should also hold in the Calabi—Yau case, where C,)lf 5(g) do not depend
on X and S.

The above conjectures have been proved in genus one and in genus two for
quasimaps [LLO22]. These are the only cases in which a definition of reduced
invariants existed prior to this work.

The conjecture in low genus was proved with symplectic methods [LZ07] [LZ0T]
and algebraic methods [CLI5], [LLO22]. The main idea of the algebraic proof is
to use an additional space of maps with fields, whose geometry is similar to the
geometry of the moduli space of stable maps to a projective space. After a sequence
of blow-ups, the moduli space of maps with fields becomes a union of components
which are well understood: they are smooth of dimension greater or equal to the
expected dimension. This allows an expression of the virtual class on the moduli
space of maps with fields as a sum of classes on the components of the moduli space.
An analysis of these classes then gives the relation between standard and reduced
Gromov—Witten invariants. The Hu-Li blow-up of Bic provides such an auxiliary
moduli space to tackle the conjecture in all genera.

History and related works: Gromov—Witten Theory. Reduced genus 1 in-
variants are the output of a long and impressive project. Reduced invariants in
genus one were defined using symplectic methods and compared to Gromov—Witten
invariants by Zinger [Zin08|, [Zin07, [Zin09bl, [Zin09al. Li—Zinger showed [LZ07, [LZ09]
that reduced genus one Gromov—Witten invariants are the integral of the top Chern
class of a sheaf over the main component of M, ,(P",d). This is an analogue,
for reduced genus 1 invariants, of the quantum Lefschetz hyperplane property
[LZ07, [ILZ09). In view of [Zin09b)], this also gives a proof of the formula (I). The
algebraic definition requires a blow-up construction for the moduli space of stable
maps to projective space, due to Vakil and Zinger [VZ08, VZ07]. See [Zin20] for a
survey from the symplectic perspective.

Explicit local equations for the Vakil-Zinger blow-up in genus one are given in
[Zin09¢, [HL10] and in genus two in [HLN12]. It is expected that the methods used
in low genus could provide local equations for general moduli spaces of stable maps
to projective spaces, but the combinatorics are likely to be quite involved.

In [HL10, HLN12, HN19, [HN20] the authors give a modular interpretation of
reduced invariants in terms of graphs of degenerate maps. A modular interpretation
via log maps has been given by Ranganathan, Santos-Parker and Wise [RSPW19al,
RSPW19b].



HIGHER GENUS REDUCED GWI VIA DESINGULARIZATIONS OF SHEAVES 7

Hu and Li introduce the diagonalization construction in [HL11]. They use this
construction to define an Euler class on the moduli space of stable maps to projec-
tive spaces. This gives a non-intrinsic definition of reduced invariants of complete
intersections. Conjecture is hard to approach with this definition. In this
paper, we rework their construction.

In a different digevction, instead of replacing the moduli space of maps wNith a space
which dominates Mg (X, d), one can construct a space dominated by Mg (X, d).
This has been done by moduli spaces of maps from more singular curves, such as
in [BCM20, [BC23]. A modular interpretation comes for free with this approach,
which makes these constructions particularly beautiful. A relationship between
reduced invariants and invariants from maps with cusps was established in [BCM20].
Battistella and Carocci introduce a compactification of genus two maps to projective
spaces [BC23]. An example of this compactification is given in [BC22].

More recently, reduced invariants for the quintic threefold have been compared
to Gromov—Witten invariants using algebro-geometric methods by Chang and Li
[CL15]. Chang-Li define reduced invariants as the integral against the top Chern
class of a sheaf but, as discussed above, this gives the same reduced invariants as
[Zin09b]. The algebraic comparison relies on the construction of maps with fields
due to Chang and Li [CL12], and on Kiem-Li’s cosection localised virtual class
[KL13]. This method has been employed in [LO22, [LO21] to extend the genus
one relation between absolute and reduced Gromov—Witten invariants of complete
intersections. In genus two, a similar work is done in [LLO22].

Zinger has computed reduced genus one invariants of projective hypersurfaces via
localisation [Zin09a]. The computations in [Zin09¢] and [Zin0§|] have been extended
to complete intersections by Popa [Pop13].

Shortly after our work was completed, Nesterov defined Gopakumar—Vafa in-
variants [Nes24] by proving a relation between Gromov—Witten invariants and in-
variants defined using the moduli space of unramified maps [KKO14]. In view of
this, reduced invarants of Fano threefold conjecturally agree with unramified maps
invariants. We expect these invariants to be different for varieties which are not
Fano.

History and related work: Flattening and Nash transformations. Given a
scheme (or a stack) 3 and § a coherent sheaf on it, in this paper we loosely refer
to a birational map ‘33 — P such that the pull-back of § is better behaved as the
blow-up of B at F. This is compatible to the notion of blow-up of a ring at a module
in [Vil06]. We do not define general blow-ups of schemes (or stacks) at a sheaf, but
we use the notation BlgB for certain more specific birational transformations.

Blow-ups of sheaves have an interesting history: they appear in different contexts
and they seem to have been re-discovered several times. As a consequence, the same
constructions appear in the literature with different names. Given their scattered
appearance, we decided to review some of these constructions in detail and to
discuss relations between them.

The first construction that we are aware of is a blow-up of a sheaf in the analytic
category, introduced by Rossi. It is a short geometric construction in the little
known paper [Ros68] from 1968. The main focus of Rossi’s paper is different and
his blow-up is just a technical tool. A more general, relative version was proved later
by Hironaka [Hir75]. Perhaps the most influential flattening theorem was proved by
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Raynaud—Gruson [RGTI1] in great generality. Their result is relative to a possibly
non-Noetherian base scheme and their proof is involved. The Noetherian case is
treated also in [Ray72]. On an integral Noetherian scheme, Rossi’s construction
is also known as the Nash transformation of a sheaf [OZ91]. In the particular
case when the sheaf is the cotangent of the given scheme, it is called the Nash
blow-up [Nob75]. In addition to these, Rossi’s geometric construction was recently
re-introduced in [CM13] by Curto and Morrison. They call it a Grassmann blow-up.
None of these authors seemed to be aware of Rossi’s paperﬂ

The most established term in the literature appears to be flattening (or occa-
sionally flatification). However, we consider the construction by Rossi, Nash, and
Curto—Morrison a significant special case of the Raynaud—Gruson and Hironaka
flattening, deserving its own name: it stands out as simple and geometric. While
we acknowledge the contributions of each of the authors above, we have decided to
refer to it as the Rossi construction or Rossi blow-up.

Of particular interest to us are blowings-up which enjoy a universal property.
A universal property is already mentioned in [RGT71), [Ray72], where they also es-
tablished the connection with Fitting ideals under additional assumptions. This
connection became more explicit in [OZ91], [Vil06].

A diagonalization construction was introduced in [Gril0] for analytic manifolds
and in [HLIT] for algebraic stacks. This has similarities with the Rossi construction,
although its flavour is more algebraic. One of its advantages is that it is quite simple.
Our approach is greatly influenced by their construction.

Nash blow-ups appear naturally in singularity theory. We mention [Nob75|
Spi90, CDLAL24J from a vast literature. The history of this problem is explained
in [Spi20]. The Raynaud—Gruson flattening was also used in birational geometry.
For example, Curto and Morrison conjectured that the Grassmann blow-up gives a
theoretical way of constructing all smooth 3-fold flops. This was proved in [GIIS].
In [RV23] the authors discuss singularities of certain Raynaud—Gruson blow-ups of
surfaces.

The result of Raynaud—Gruson received further interest very recently: it has
been reproved by Guignard |[Gui2I] and we have been informed by Rydh that he
is working on generalisations to stacks [Ryd09, [Ryd16]. After our paper was made
available, a generalisation to stacks was also proved by McQuillan [McQ24].

Our result is a stacky construction of a particular case of the Raynaud—Gruson
flattening. More precisely, in notation as in [RG71, Theorem 1.5.2.2] we prove the
result for X = S and X an integral Noetherian Artin stack. Rydh’s and McQuillan’s
proofs are more general and very different from ours. To our knowledge, our result
is the first stacky instance of a Raynaud—Gruson flattening.

Outline of the paper. In the following we give an outline of the paper and we
highlight the main results.

In Section [2] we fix notation and briefly recall the background notions used, such
as Fitting ideals and abelian cones.

n line with previous authors, but less excusably in the age of the internet, we started this
project unaware of the various constructions in the literature. Jarod Alper, Ananyo Dan, Evgeny
Shinder and Michael Wemyss kindly brought several references to our attention.
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In Section [3] we introduce the desingularization of a sheaf on a stack (Section [3.1)
and we review the minimal desingularization, due to Rossi (Section . In Sec-
tion we give an algebraic desingularization in terms of Fitting ideals in the
affine case, due to Oneto—Zatini and Villamayor. We show in 7?7 that the Rossi
and Villamayor constructions agree. We show several properties of the minimal
desingularization of a sheaf in Section [3.4]

In Section we introduce the notion of diagonal sheaf (see Definition .
In Section [4.2] we recall Construction due to Hu and Li, which gives the
minimal diagonalization of a sheaf. This is formalized in Section via a universal
property (Theorem . In Section we collect properties of the Hu—Li blow-
up, such as the existence of a morphism from the Hu-Li blow-up to the Rossi
blow-up in Proposition f.:4.6] The two blow-ups are not isomorphic in general, as
shown in Example In Section [4.5] we construct a filtration of a diagonal sheaf
under certain conditions (see Theorem . This filtration will then be used in
Section [6] to describe the irreducible components of the abelian cone of a diagonal
sheaf. Finally, in Section we collect some remarks and examples regarding the
minimality of the Hu-Li blow-up.

In Section [5| we generalize the Hu-Li and Rossi blow-ups to Artin stacks. These
are constructed in Section by first applying the Rossi and Hu—Li constructions
for schemes to an atlas and then gluing. This works because the Hu—Li and Rossi
constructions are local, they have a universal property, and they commute with
flat base-change by Propositions and We extend to stacks the results
on the schematic versions of these blow-ups, such as the universal properties of
desingularization in Theorem and of diagonalization in Theorem

Section [6] is devoted to the study the irreducible components of the abelian
cone C'(F) of a diagonal sheaf. Given a coherent sheaf F on an integral Noether-
ian scheme X, we introduce the main component (Definition [6.1.5) C(F') of the
abelian cone C(F) in Section General cones need not have a main component
(Example . Furthermore, if F*f is locally free, then C(F) is a pushout of its
main component, which is a vector bundle (see Proposition . The remaining
components are studied in Section [6.3] The best result is obtained for F a diagonal
sheaf: each component of C'(F) is a vector bundle over its support (Theorem [6.3.1)).

In Section[7] we use the notion of desingularization of a sheaf on a stack to define
reduced Gromov Witten invariants in all genera: see Definition[7.4.4] In Section
we recall how M, ,(P",d) can be naturally embedded as an open substack in an
abelian cone over Pic following [CL12]. In Definition we introduce the main
component of ﬂg,n(w,d), which is compatible with the open embedding in an
abelian cone by Proposition [7.2.3] In Section [7.3] we consider a desingularization
Pic — Pic and use it to base change M, ,(P",d) to a new space M, ,(P",d).
These space is used in Section [7.4] to define reduced Gromov-Witten invariants
in any genus for a hypersurface in projective space (Definition . We also
show independence of the chosen desingularization in Proposition [7.4.3] Finally, in
Section |7.5{ we recall maps with fields and consider the analogue of M, ,,(P", d) for
p-fields. These spaces can be used to compute reduced Gromov-Witten invariants
(Proposition . In Theorem we describe the irreducible components of
the blown-up moduli spaces.

In Section [8 we extend the definition of reduced invariants to a large class of
GIT quotients (see Section and to quasimaps. In particular, we define reduced
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invariants for complete intersections, toric varieties and Grassmannians. For con-
venience, we review quasimaps to these GIT quotients in the first part of Section [§]

In Section [9] we compare the moduli spaces obtained from the Rossi desingular-
ization and the Vakil-Zinger blow-up. While reduced invariants are independent
of the birational/vmodel of Pic, the induced moduli spaces can be different. We
study charts of M, ,,(P",d) and we show that the Rossi construction in genus one
is different from the Vakil-Zinger blow-up.

How to read this paper. Sections are self-contained and of independent
interest. The schematic version of the results in Section [5are explained in Sections
[BHAl The reader interested in reduced Gromov—Witten invariants can take the
results in Section [f] for granted and read Section [7] to Section [g directly.

Further work. Our desingularizations do not come with a modular interpretation.
It would be nice to have a modular interpretation of the resulting stack M, ,(P", d),
either in the spirit of [HLIO, [HLN12, [HNT9, [HN20], or a log interpretation as in
[RSPW19a]. It would be perhaps better to have a space of maps with more singular
domains, as in [BCM20, BC23].

While a modular interpretation would be very interesting from a theoretical
point of view, higher genus computations as done by Zinger in [Zin09a] are likely
to be hard. The genus two blow-up ./K/lvgm(IP””,d) already involves several rounds
of blow-ups, and a localisation computation would inherit the complexity of the
blow-up. We hope that our construction sheds new light on this beautiful problem
and will encourage more mathematicians to work on it.

On the positive side, we expect this construction to be enough for proving Con-
jecture The main difference with [HLIT] is that we blow up Pic, instead of
blowing up M, ,,(P", d). The advantage of blowing up Bic is that now we have the
ingredients used by Chang-Li, Lee-Oh and Lee-Li-Oh to prove Conjecture
(and therefore Conjecture in genus one and two. More precisely, we have fairly
simple moduli spaces ,(lf maps with fields over ‘j’jivc, and these can be used to split
the virtual class on M, ,,(P",d). We hope to be able to prove Conjecture
without having explicit equations of M, ,(P",d), or a modular interpretation of

‘jﬁi/c. We will address this problem in future work.
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2. BACKGROUND

In this section we recall several basic constructions and fix the notation used
throughout the paper.

2.1. The relative Grassmannian. Let X be a scheme with a fixed quasi-coherent
sheaf £. The Grassmannian functor Gr’y(£) : ((Sch)/X)°P — (Set) is given on
objects by

(2) T — {&r — Q |Q is locally free of rank r }

with 5T =& ®OX OT—

This functor is represented by a scheme Gr'y(€) over X, which is projective if
€ is finitely generated. Moreover, the Grassmannian functor is compatible with
base-change. In particular

Gr'y (0%") =2 Gr(n,r) x X

where Gr(n,r) is the usual Grassmannian of (n — r)-dimensional subspaces of C"
relative to a point. Since it represents a functor, the relative Grassmannian Gr'y (£)
comes with a universal sheaf and a universal quotient sheaf, which is locally free of
rank 7:

Eary(e) 7 Qarg(e)-

The relative Grassmannian admits a The Pliicker embedding;:
Ay Gr'y (0%7) = Gry (/\ o@”> ~ PR,

with m = (:f) For the last isomorphism, consider an X-scheme 7. A point of
Gri (O®™)(T) is a surjection

OF™ —» L
with £ a line bundle on 7. This is a pair of a line bundle and an m-tuple of
generating sections, which is an object of P’;(T_l(T).

2.2. Fitting ideals.

Definition 2.2.1. Let M be a finitely presented R-module. Let F 2 G — M — 0
be a presentation with F' and G free modules and rk(G) = r. Given —1 < i < o0,
the i-th Fitting ideal F;(M) of M is the ideal generated by all (r—i) x (r —4)-minors
of the matrix associated to ¢ after fixing basis of F' and G. We use the convention
that F;(M)=Rifr—i<0and F_1(M)=0.

Intrinsically, F;(M) is the image of the map A" 'F ® A" 'G* — R induced
by A" "p: A"T"F — A""G. The i-th Fitting ideal is well-defined in that it

does not depend on the chosen presentation. Since determinants can be computed
expanding by rows and columuns, it follows that there are inclusions

0=F (M) C Fy(M)c i(M) C...C Fp(M) C Fya(M) C ...
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It follows from the definition and right-exactness of tensor product that Fitting
ideals commute with base change. That is, given R — S ring homomorphism and
M a finitely presented R-module, then

Fi(M ®g S) = F,(M) - S.

Similarly, for a scheme X and F a quasi-coherent O x-module of finite presentation,
we have ideal sheaves

0=F 1 (F)CFy(F)C--CF(F)cC---COx

which can be defined locally as described above. For f : Y — X a morphism of
schemes, we have

[TYF(F) - Oy = F(f*F).
Fitting ideals describe the locus on X where the sheaf F is locally free of some rank.

More precisely, we recall the following standard result (see for example [Sta22] Tag
05P8]).

Proposition 2.2.2. For any n, the sheaf F is locally free of rank n on the locally
closed subscheme V(F,_1(F))\ V(F,(F)) of X.

We also have the following result [Sta22] Lemma 0F7M)] (cf [Lip69, Lemma 1})
relating Fitting ideals to the projective dimension of a module and the local freeness
of its torsion-free quotient.

Proposition 2.2.3. Let R be a ring and M be a finitely presented module over R.
Let r > 0 be such that F,.(M) = (f) for some non zero divisor f € R and F,._; = 0.
Then

(1) M has projective dimension < 1.

(2) M(f)=ker(M — fM) has projective dimension < 1.
(3) M/M(f) is locally free of rank .

(4) M = M/M(f)® M(f).

The result in [Lip69, Lemma 1] also gives the following useful partial converse.

Notation 2.2.4. Let R be an integral domain and let M be an R module. We
denote the the torsion free part of M by M := M /tor(M).

Proposition 2.2.5. If R is a local ring and M is a finitely presented module of
projective dimension < 1 with M/tor(M) locally free of rank r, then F.(M) is
invertible and Fr._1(M) = 0.

In fact, we shall make use of the following result.

Proposition 2.2.6. If R is an integral domain and M is a finitely presented module
of projective dimension < 1 with M /tor(M) locally free of rank r, then F,.(M) is
locally free and F._1(M) = 0.

Proof. By Proposition 2.2.5] all we need to do is to check that the assumptions are
preserved by localization at maximal ideals of R.

By [Rot02], Proposition 11.154], 1 > pd(M) > pd(M ®g R,,) for every maximal
ideal m in R.

Let m be a maximal ideal in R. Then R,, is a flat R-module by [Rot02, Theorem
11.28] and tor(M ®g R,,) = tor(M) @g R,, because R is integral. It follows that
(M @p Rp)" = (M)" @g R,, is locally free. O
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2.3. Abelian cones. Let X be a Noetherian scheme. We recall the notions of cone
and abelian cone over X and collect some basic properties.

Definition 2.3.1. Let A = @ ., .Aq be a graded sheaf of Ox-algebras such that
the canonical map Ox — Ay is an isomorphism and such that A is locally generated
by A; as an Ox-algebra. The cone of A is the scheme Spec x (A) equipped with
the natural projection
Spec x(A) — X.

The cone of A is abelian if the natural morphism Sym (A4;) — A is an isomorphism
of Ox-algebras. A morphism of cones is a morphism over X induced by a graded
morphism of sheaves of O x-algebras.

Definition 2.3.2. Let F be a coherent sheaf on X. The abelian cone associated
to F is

Cx (F) = Spec x (Sym (F))
equipped with the natural projection to X.

We will omit the subscript X in the formation of relative spectra and cones
whenever it is possible to do so without introducing ambiguity.

Definition [2:3:2) is related to the total space of a locally free sheaf. If £ is a
locally free sheaf, then C'(£) is a vector bundle, but some authors (e.g. [Full3]
B.5.5]) prefer to define the total space of £ as

Tot(€) == C(E*) = Spec (Sym (£7)),

so that the sheaf of sections of Tot(€) over X is (£*)* ~ € by Lemma[2.3.3] When
working with sheaves that may not be locally free, it is advisable to use C(F)
instead of C'(F*), see Lemma and Example 2.3.4]

To an abelian cone 7: C(F) — X we can associate two natural sheaves of Ox-
modules. The sheaf of sections Sect(C(F)) of the projection 7 is given by

U — Homy (U, C(F) |u).
The sheaf of functionals Fun(C(F)) is given by
U + Homay, (C(F) |, U x A,
where Homa}, denotes morphisms of abelian cones.

Lemma 2.3.3. Given a coherent sheaf F in a Noetherian scheme X, there are
natural isomorphisms of Ox-modules

(1) Sect(C(F)) ~ F* and
(2) Fun(C(F)) ~ F.
Proof. 1t is enough to prove the statements in the affine case and for global sections.

Let X = Spec R and F = M for a Noetherian ring R and a coherent R-module M.
For [, we see that

Homx (X, C(F)) = Homx (X, Spec Sym F) ~ Hompg_ a1 (Sym M, R)
~ Hompg_moa(M, R) ~ M*.
For 2l we have that
Homap(C(F), X xA') = Homey p—mod(Sym R, Sym M) ~ Homp ymea (R, M) =~ M,

where Homg; p—moq denotes morphisms of graded R-modules and where we used
thatXxAl ’:CX(O)(). [l
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Ezample 2.3.4. Let X = Spec (R) with R = C[z] and let I = (z) be the ideal of the
origin 0 and let M = R/I viewed as an R-module, that is, M is the skyscrapper
sheaf supported at 0. Then

C(M) =~ Spee (Cli, 4]/ (z1)) € X x AL
According to Lemma C(M) has no non-zero sections because M* = 0. On
the other hand, C'(M) has non-zero functionals
C(M) = X x A': (z,9) — (z,\y)

for any A\ € C.
The cone of the dual is trivial, in fact M* = 0, so C(M*) = X, which has no
non-zero sections or functionals.

Lemma 2.3.5. For a cone m: C' = Spec (A) — X, the following are equivalent:
(1) C is a vector bundle over X,
(2) C is abelian and A, is locally free over X,
(3) m is smooth.

Proof. The implication [I] = [3] is clear and the equivalence [I] <= [2]is standard.
The implication [3| = [1| can be found in [BE96, Lemma 1.1]. |

3. DESINGULARIZATIONS OF COHERENT SHEAVES

In this section we introduce several constructions which “desingularize” a coher-
ent sheaf F on a base scheme X.

3.1. Definition of desingularizations on stacks. We define our notion of desin-
gularization and prove that it behaves well with composition. This part can be
formulated directly for algebraic stacks instead of schemes, which will be useful
later.

Definition 3.1.1. Let § be a coherent sheaf on an integral algebraic stack X. A
desingularization of § is a morphism p : X — X such that

(1) X is integral,

(2) p is birational and proper,

(3) (p*%)" is a locally free sheaf.

Let us explain why a morphism as in Definition deserves to be called a
desingularization. The surjection §F — ' induces a closed embedding C(F*) —
C(%) of abelian cones over X. By Lemma [2.3.5) the morphism C(F*) — X is
smooth if and only if §f is locally free. Therefore, Item (3| in Definition is
equivalent to saying that the morphism C;E((p*g)tf) — X is smooth.

Remark 3.1.2. If X is a scheme and § is a non-zero coherent ideal sheaf, the usual
blow-up of X at the closed subscheme defined by § is a desingularization of 3§.

Lemma 3.1.3. Let X be an integral algebraic stack and § a coherent sheaf on X.
Let p: X — X be a desingularization of § and let q 1Y) — X be a proper birational
morphism. Then, the composition po q :%Y) — X is a desingularization of §.

Proof. The composition r := p o ¢ is birational and proper, so all we need to prove
is that (r*§)" is locally free. In the following we show that

()" = ¢* ("))
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We have a commutative diagram of sheaves on )

0 R p*F *((p*F)") ——0
| |
‘ J ‘
v v

0 Ro Tp*F (¢*p*F)"T ——0

where the map ¢*p*F — ¢*((p*)*) is the pull-back of the surjective map

p*g N (p*g)tf’
R1 and Ry are the corresponding kernels and the solid vertical map is the identity.
Since the image of the composition £ — (¢*p*F)" is generically zero and X is
irreducible, we have that the morphism &; — (¢*p*F)" is zero. By the universal
property of cokernels this map factors through ¢*((p*§)"), which gives the right
vertical map in the diagram. The universal property of kernels gives the left vertical

map in the diagram. We have that K and K5 are torsion sheaves. Let K3 be the
cokernel of 81 — R5. By the Snake Lemma, we have an exact sequence

0— 8 — ¢ (PHY) = (HY = 0.

By assumption (p*§)" is locally free, so ¢*((p*F)') is locally free. Since X is
irreducible and 83 is a torsion sheaf, we get that K5 = 0. This proves the claim. [

3.2. Rossi’s construction. In the following we describe the desingularization con-
struction proposed by Rossi in the analytic setup in [Ros68], which is very geometric
in nature. The same construction was studied by Oneto and Zatini in the algebraic
setup in [OZ91], under the name of Nash transformation. It gives a way of desin-
gularizing coherent sheaves on Noetherian schemes taking the closure of a graph
into a Grassmannian. We present Rossi’s construction for Noetherian schemes; for
stacks it will be presented in Section

Remark 3.2.1. We thank David Rydh for pointing out this more concise version
of the construction.

Theorem 3.2.2. Let X be a reduced Noetherian scheme, F a coherent Ox -module,
and U C X a schematically dense open subset where F is locally free of constant
rank r. Then there exists a projective morphism f : X — X such that )Z'U = U and
(f*F)* is locally free of rank r. Moreover, X — X is universal for the following
property: if g : X' — X is any morphism of schemes such that (g*F)" is locally
free of rank r, then there exists a unique morphism X' — X over X.

Proof. Consider the relative Grassmannian
m: Griy(F) — X,

which parametrizes rank-r locally free quotients of F. This scheme is projective
over X.
On the open subset U C X, the sheaf |y is locally free of rank r, so it determines
a section
s: U — Gr'y(F).

Let X be the scheme-theoretic closure of s(U) inside Gr"(F). By construction,
f: X — X is projective and restricts to an isomorphism over U.
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Over X , the universal quotient on the Grassmannian restricts to a quotient
p: [TF > G,
with G locally free of rank r and f*F|y = G|y. Since G is torsion-free and U is
schematically dense, ¢ descends to @ : (f*F)* — G. On the other hand, the kernel
of ¢ is supported away from the schematically dense U, so it is torsion. Hence
G = (f*F)%.

For the universal property, let g : X’ — X be a morphism such that (g*F)"
is locally free of rank r. Then the quotient g*F —» (¢*F)" determines a unique
morphism s’ : X’ — Gr'yx(F) by the universal property of the Grassmannian. To
see that s’ factors through X we take V the inverse of the maximum open subset
of X such that F is locally free. We claim that V' is schematically dense in X’.
If V' is not schematically dense, there exists Z a subscheme of X’ which does not
intersect V' and which is mapped in the complement of U. By replacing Z with
the reduced structure, we may assume that Z is reduced. Then, by the maximality
of U, (¢*F)|z has higher rank. This contradicts (¢*F)" is locally free. Thus
g 1(U) is schematically dense. Then particular, s’ and s o g agree on g~(U), so
this determines the morphism and we see that it factors uniquely through X, the
closure of s(U). This establishes the claimed universal property.

O

If X is an integral Noetherian scheme, a coherent sheaf F is locally free over the
unique generic point £ € X. We define the generic rank of F:

rk(F) =1k(Fl¢) =1

Taking this as U in Theorem [3.2.2] above gives a construction desingularizing F.
In particular, the morphism X — X is proper and birational.

Definition 3.2.3 (The Rossi blow-up). Let X be an integral Noetherian scheme
and F a coherent sheaf. Theorem applied to U the generic point of X defines
the Rossi blow-up Bl X — X, a proper birational morphism. We call it the blow-up
of X at the coherent sheaf F.

A classical example of this construction is the Nash blow-up of X, which is the
particular case F = QL. This case is related to resolution of singularities, see
[Spi20]. The general case appeared in [OZ91] under the name of Nash transform.

If F is a non-zero coherent ideal sheaf on X, then Blz(X) is the usual blow-up
and the above recovers its construction as a relative Proj.

The Rossi blow-up thus defined is a desingularization of F in the sense of Def-
inition 311} In fact, it is the minimal desingularization of F in the sense of the
universal property in Theorem [3.2.2

3.3. Local descriptions. The geometric construction of Section [3.2]has some use-
ful affine-local characterizations, which we shall use in Section to establish some
properties of this construction. That these are local descriptions of the Rossi blow-
up presented in the previous section follows from comparing the universal property
in [Vil06] to that of Theorem The first characterization, for affine integral
Noetherian schemes follows closely the the original construction by Rossi [Ros68].
Let X = SpecR, and F = M be the coherent sheaf associated to a coherent
R-module M. We can find for some n a surjective morphism of sheaves

(3) [0 — F.
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Restricted to a non-empty open subscheme U where F is locally free, f gives a
U-point of GrU(OE‘?", r), which is a morphism

Ff U — GI‘U<O(€?n,7“).

Then BlzX is the closure of I'y(U) in Grx(O%",r) with the reduced induced
structure, equipped with the morphism

p: Bl]-'(X) = Ff(U) - X
obtained by restricting the natural projection Grx (O%",r) — X. This is a Zariski-
local description of Definition|3.2.3] and can be seen to be independent of the choice
of presentation of F, see [Ros68]. It is sometimes useful to work with this more
explicit affine construction, as we do in the proof of Proposition

Another construction of the blow-up BlzX can be given in terms of Fitting ideals
of the sheaf F. This construction applies to an affine integral Noetherian scheme
X. Most of this ideas first appeared in [OZ91]. We follow the exposition in [Vil06].

Fitting ideals (see Section are related to ranks of modules and flatness.
Indeed, the local rank of M at a prime ideal P of R is r if and only if F_;(M) C
Fy(M)C...C F._1(M) C Pbut F.(M) ¢ P. As a corollary, if R is a domain
then the generic rank of M is r if and only if F,.(M) is the first non-zero Fitting
ideal, and moreover M is flat if and only if it is free, if and only if F,.(M) = R and
F._1(M)=0.

The relationship between Fitting ideals and local freeness of the torsion-free part
comes from Lipman’s theorem (Proposition .

In particular, the proposition shows that blowing up the first non-trivial Fitting
ideal of M will make (p* M) locally free (with p the blow-up morphism). However,
it is possible that M* is already locally free on Spec R even though its first non-
trivial Fitting ideal is not principal. See Remark for an example. Only if the
projective dimension of M is at most one, is the blow-up of the first non-trivial
Fitting ideal the minimal desingularization of the corresponding sheaf. In order to
find a minimal transformation of Spec (R) on which M is locally free, Villamayor
proposes in [Vil06] the following construction.

Given a finitely presented module M of generic rank r over a domain R with
fraction field K, define its norm to be the fractional ideal

(4) HMHM«AM%KNAMMK)

Definition 3.3.1 (Villamayor’s blow-up). Let R be a Noetherian integral ring, let
X = SpecR and let M be a finitely presented R-module of generic rank r. The
blow-up of X along M is

p:BlyR:=BlpgR — R,
where [M] is the norm of M from (4.

Remark 3.3.2. In general, Blj; X is not obtained by blowing up the first non-zero
Fitting ideal of M. Indeed, let I C R be an ideal and M = R/I. On the one hand,
M = 0 is locally free of rank 0, which is the rank of M, so Bly; X = X. On the
other hand, the first non-zero Fitting ideal of M is Fo(M) = I, so BlgnX =
Bly X if and only if I is principal.

However, if M has generic rank r and projective dimension < 1, then Bl X =
Blg, () X.
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Note that any two ideals I, J of R which are isomorphic to [M] as fractional
ideals define the same blow-up, up to unique isomorphism.

The same ideas apply in [Vil06] to any (Noetherian) ring R if we restrict to
finitely presented R-modules M such that M ®r K(R) is a free K(R)-module,
where K(R) is the total quotient ring of R. However, for our purposes, we shall
not need that generality.

Below, we explain the connection between this definition and the theory of Fit-
ting ideals.

Construction 3.3.3 ([Vil06, Remark 2.1]). Let R be a domain and let M be a
finitely presented R-module of rank r. Choose generators my,...,my for M. Then
there is a short exact sequence

0P RY 5 M-o0.

Since M has rank r, there are elements py, ..., py_, in P which induce a morphism
RN—" — RN of rank N —r. Let P, ~ RN~ be the free module generated by
P1y--.,PN_r and let My = RN/Pl, that is, the following is exact

0— P — RN = M, —0.

Then M; has projective dimension at most 1, rk(M;) = rk(M), there is a natural
surjection My — M and M /tor(My) = M /tor(M).

Lemma 3.3.4. Under the assumptions of Definition let My be the R-module
associated to M in Construction|3.3.5. Then F.(M) and [M] are isomorphic as
fractional ideals over R. In particular,

Bl X = Blp, (am) X
Proof. See [Vil06l, Proposition 2.5]. O

Remark 3.3.5. It is straight-forward to check that the algebraic definition of
Definition [3.3.1]is equivalent to the local version of the Rossi construction by taking
the Pliicker embedding of the relative Grassmannian. We omit the details, which
are present in a previous draft.

3.4. Properties of the Rossi blow-up. In light of Remark from now on
we will identify the Rossi and Villamayor blow-ups of a coherent sheaf F on an
affine integral Noetherian scheme X, both of which are local descriptions of Defi-
nition In this section, we collect some properties of BlxX.

Proposition 3.4.1 (Blow-up commutes with flat pullbacks). Let f : Y — X be
a morphism of Noetherian integral schemes and let F be a coherent sheaf on X of
generic rank r. If f*F has generic rank r then there is a unique morphism

Bl #(Y) -1 BlF(X)

| |

y — . x

making the diagram commute. If, moreover, f is flat, then the square is Cartesian.

Proof. A unique morphism fmaking the diagram commute exists by the universal
property of Blz(X), which is Theorem To show that the diagram is Cartesian,
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we work locally with Villamayor’s description. We use [Sta22, Lemma 0805], which
is the analogous result for blow-ups along ideal sheaves. This requires checking that
f7YF] - Oy = [f*F], which holds since F and f*F have the same rank and the
norm [-] is a determinantal ideal.

Indeed, we can work locally. Then we have X = Spec (A), Y = Spec (B), a ring
homomorphism f#: A — B and F = M for some finitely presented A-module M.
To compute [F], we take a presentation

A Ly 4n M 0,

we choose a submatrix I' of T' consisting of n — 7 columns of I and then [F] is
represented by the ideal generated by all the minors A;(T”) of size (n —7r) X (n —r)
of I". The choice of I'" must be so that this ideal is non-zero and such a choice exists
because tk(F) = r. Then f~![F]- B is the ideal in B generated by f#(A;(I")) for
all 5. On the other hand, tensoring by ® 4B we get a presentation

B I B s MosB——0.
Since f*F = Mi@TA/B and since rk(f*F) = r, we can compute [f*F] in the
same manner, i.e., taking all the minors of size (n — r) x (n — r) of a submatrix
(f*T")" consisting of n — r columns of f*I". This means that [f*F] is generated by
A;((f#T)"). We can actually choose I and (f*I")” so that they consist of the same
columns, and in that case we are done because f# is a ring homomorphism. O

Proposition 3.4.2. Let X be an integral Noetherian scheme and L a line bundle
on X. Then we have a unique isomorphism

Blr(X) —— 2 4 Blres(X)

L

which makes the diagram commute.

Proof. Work locally for affine X. Let f : Og’?” — F be a surjective morphism, let
S denote the kernel of f and let U an open subset of X such that S is a vector
bundle. We thus obtain a short exact sequence

0= SeLly— 0" e Ly 'S FoLy —o.

By possibly shrinking U we may assume we have an isomorphism g : L|y ~ Oyp.
We thus obtain a commutative diagram

Ff E— er((’)?é",r)

]

L ygia — Grx (0", 7)
where the right vertical arrow is induced by g. This gives a morphism 5 Ty —
T tgiq and proves the claim. O

Proposition 3.4.3. Let X be a Noetherian integral scheme and €, F,G be coherent
Ox -modules. Assume that we have an exact sequence 0 = & — F — G — 0.
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(1) If the sequence is locally split and & is locally free, then there is an isomor-
phism BlrX ~ BlgX.
(2) If G is locally free, then there is an isomorphism BlpX ~ Blg X.

Proof. 1t is enough to prove the statements locally. Indeed, if pr: Blz X — X
and pg: BlgX — X are the natural projections, then BlrX ~ Blg X if and only if
(p5G)Y and (p&j’:)tf are locally free, and these are local statements.

Therefore, we may assume that we have F ~ & @ G. With this, we have that

(5) AP F = APE @ ATOPG,

From the alternative description of Definition [3:3.1] or from composing with a
Pliicker embedding, it’s clear that BlgX =~ BlatorgX and BlrX =~ Blatrr X =~
Blptorggnterg X using Equation . Suppose now that £ is locally free, then A°PE
is a line bundle and we conclude that Bl X ~ Blg X by Proposition |3.4.2

If G is locally free, the sequence is locally split and a similar argument to the
one above shows that Bl X ~ Bl X. O

In the following we discuss a more general situation, when we have an open
U C X such that 0 — &y — Fy — Gy — 0, with &y locally free.

Proposition 3.4.4. Let F and G sheaves of ranks r+a and r on an integral scheme
X and O™ — F and O™ — G surjective morphisms. Suppose there exists U C X
an open subset and a commutative diagram

0 0
oy, Glv 0
i f
opte Flu 0
oy —I s &y

with the columns split short exact sequences and h an isomorphism. Then, we get
an induced morphism
BlgX — Bl£X.

In particular, Blg X is a desingularisation of F.

Proof. Tt suffices to prove this for X affine. The diagram in the hypothesis gives a
commutative diagram

U— X x Gr(n,r)

| |

U—— X xGr(n+a,r+a)

where the vertical map Gr(n,r) = Gr(n + a,r + a) is
V—-Q VoW —»Qah(W)).
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Here we denoted the fiber of the vector bundle Of by W and (by a slight abuse
of notation) the induced map by h. This gives a morphism between the closures
Blg X — Bl£X.

O

We record here a fairly immediate corollary of the above proposition, which will
be useful as stated in Section [

Corollary 3.4.5. Let F and G sheaves of ranks v+ a and r on an integral scheme
X and O™ — F and O"% — G surjective morphisms. Suppose there exists U C X
an open subset and a commutative diagram

0 0

with the columns split short exact sequences and h an isomorphism. Then, we get
an induced morphism

BlgX — BlrX.
In particular, Blg X is a desingularisation of F.

Proof. This follows by dualising the statement in Proposition [3.4.4] Note that g is
not the dual of f, but the dual of a splitting of f.

Alternatively, one can copy the proof above. The only difference is that a map
Gr(r,n) — Gr(r + a,n + a) is

(S=V)= (g(S) W <= Ve hW)). O

Remark 3.4.6. In general, Bl X is not isomorphic to Blz- X. For example let
X be a normal scheme and F an ideal sheaf. Then F* is reflexive and it has rank
one, so it is an invertible sheaf. This shows that Blz«X ~ X. If F is not locally
free (see e.g. Example , then we have BlzX # X.

4. DIAGONALIZATION

This section may be skipped for a first reading. The Rossi construction suffices
to prove the main result Main result We add this new blowup because we
believe that this is a first step for proving Conjecture [1.0.5)

The diagonalization process for certain coherent sheaves is introduced by Hu and
Li in [HL11] and by Grivaux in [Gril0]. A coherent sheaf F on an integral Noe-
therian scheme X can locally be written as the cokernel of a morphism of locally
free sheaves ¢: €71 — £°. Blowing up all the Fitting ideals of F desingularizes
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both F and the kernel of ¢, and makes the morphism ¢ diagonalizable (see Defini-
tion . We summarize the construction for schemes and its universal property
and explore the possibility of finding a minimal blow-up which also desingularizes
all the components of the abelian cone associated to F. Applied to the moduli
space of maps, this construction will be used in Section [7] to desingularize all the
components of M, ,(P",d). All schemes are assumed to be Noetherian and integral
in this section.

4.1. Diagonalizable morphisms and diagonal sheaves. We recall the notion
of diagonalizable morphism of locally free sheaves from [HLI1I] and introduce the
notion of diagonal sheaf. We show that these two notions are equivalent in Proposi-
tion [4.1.6] in the sense that a morphism is diagonalizable if and only if its cokernel
is diagonal.

Definition 4.1.1 (Diagonalizable morphism [HL11l Definition 3.2]). Let X be a
scheme. A morphism ¢: O?@p — O?@q is diagonalizable if there are direct sum
decompositions by free sheaves

¢ ¢
(6) 0P =Goo@PG; and 0% =Hyo P H;
i=1 i=1
with ¢(G;) C H; for 0 < i < ¢ such that

(1) @ la=0;

(2) for every 1 < i < ¢, there is an isomorphism I, : G; — H;;

(3) the morphism ¢ |g,: G; — H; is given by f;I; for some 0 # f; € I'(Ox);

() (fir1) & (fi)-
More generally, a morphism ¢: E~! — E° of locally free sheaves on X is locally di-
agonalizable if X admits an open cover which trivializes E~! and E° simultaneously
and on which ¢ is diagonalizable.

Ezample 4.1.2. If X = Spec(R) for a principal ideal domain R, then every mor-
phism ¢: RP — R?is diagonalizable in the sense of Definition [I.1.1]and the diagonal
form associated to ¢ is called the Smith normal form of ¢.

We will be interested in the coherent sheaves arising as kernels and cokernels of
such diagonalizable morphisms.

Proposition 4.1.3. Let X be a Noetherian integral scheme and let p: E=% — E°
be a locally diagonalizable morphism between locally free sheaves on X. Then ker(y)
is locally free.

Proof. The question is local, so we can assume that E~! = O?Ep and E° = O?Eq,
and that they admit decompositions as in Equation @ Then ker(p) = G is free.
O

Definition 4.1.4. We say that a coherent sheaf F on a scheme X is diagonal if
all the Fitting ideal sheaves F;(F) are locally principal.

Remark 4.1.5. By Proposition if F is diagonal then F* = F/tor(F) is
locally free and F has tor-dimension at most 1.

Proposition 4.1.6. A morphism ¢ : E=' — E9 of locally free sheaves is locally
diagonalizable if and only if the coherent sheaf Coker(y) is diagonal.
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Proof. This result is contained in the proof of [HL11, Proposition 3.13]. Observe
that the Fitting ideals F;(F) are just the determinantal ideals A,_;)x(q—i)(®),
where ¢ = rk(EY). If ¢ is locally diagonalizable, take an open where it is of the
form @ Then the Fitting ideals of F are generated by products of the f;’s, so are
principal in this open.

On the other hand, if F is diagonal, we can cover X by affine opens where all
F;(F) are principal and where the E%’s are simultaneously trivialized. We quickly
sketch how [HLIT] Proposition 3.13] produces a decomposition as in @, by possibly
further restricting. In the affine open Spec (R) C X, the morphism ¢ is given by

I'= (a:;)
ie{l,....,p}, j € {l,...,q}, a;; € R. The Fitting ideal F;_1(F) = A1x1(I)
is principal if and only if, after further localization, there is an entry a;, j, which
divides every other entry a; ;. In that case, one can perform row and column
operations to put I' in the following form
Ay, 50 ‘ 0O ... 0
0

: r

0

with TV a matrix of smaller size. The same argument works recursively since the
remaining Fitting ideals of F and those of I differ by the principal ideal (a;, j,). O

Ezample 4.1.7. Any smooth curve X can be covered by affine open subschemes of
the form Spec (R) with R a principal ideal domain. Therefore every coherent sheaf
on X is locally diagonal and every morphism of locally free sheaves on X is locally
diagonalizable.

We are interested in morphisms that transform a given coherent sheaf in a diag-
onal sheaf.

Definition 4.1.8. (1) Given a scheme X and a coherent sheaf F, a diagonal-
ization of F is a morphism f : X — X such that f*F is diagonal.
(2) Given a scheme X and a morphism of locally-free sheaves ¢ : E~! — EO,
a diagonalization of ¢ is a morphism f : X — X such that f*p is locally
diagonalizable and rk(Coker(y)) = rk(f*Coker(yp)).

Remark 4.1.9. From Proposition we see that diagonalizing a coherent sheaf
F is equivalent to diagonalizing any presentation E~' — E° — F by locally free
sheaves.

Remark 4.1.10. If ¢ : E=! — EY is a locally diagonalizable morphism on a
scheme X, and f : Y — X is any morphism of Noetherian schemes, f*¢ is locally
diagonalizable.

Similarly, if F is diagonal, f*F is diagonal.

Note that the generic ranks of F and f*F will be different in general for non-
dominant morphisms.

4.2. Construction of the Hu—Li blow-up. We recall the construction of the
minimal diagonalization of a sheaf, introduced in [HLI11], which we call the Hu-Li
blow-up of a scheme along a sheaf.
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Definition 4.2.1 (Maximal rank). Let X be an integral Noetherian scheme and
F a coherent sheaf of generic rank r. The maximal rank mrk(F) is

mrk(F) = max{rk(F,)} = 7

which is the maximum rank of F when restricted to a closed point of p € X. Equiva-
lently, mrk(F) is such that the Fitting ideals Fiyi(r)(F) is Ox and Fipi(r)—1(F) #
Ox, with the convention that F_;(F) = 0.

Remark 4.2.2. The above mrk(F) is finite. Indeed, the ascending chain condition
on the Fitting ideals
Ffl(]:) - F()(.F) c.--C Fn(]:)
guarantees that there is some mrk(F) such that Fi i (r)(F) = Frk(F)+1(F) = ...
Moreover, for any affine open U C X, the ascending chain of Fitting ideals
stabilizes at Oy, since Fly = M for a finitely generated module M. So the chain
above must stabilize at Ox.

Remark 4.2.3. There is a closed point ¢ € X such that rk(F|,) = mrk(F), and
such that we have a resolution

o — Ik — Fl, — 0.

However, F may not be generated globally by mrk(F) sections. Indeed, it may not
be globally generated at all!

Construction 4.2.4 (Hu-Li blow-up). Let X be an integral Noetherian scheme
and F a coherent sheaf of general rank r and maximal rank ry. Recall from Sec-
tion [2.2] that the Fitting ideals of F satisfy a chain of inclusions F_1(F) C Fy(F) C
..., that F,.,(F) = Ox and that Fo(F) = ... = F,._1(F) = 0 because F has rank
T
Let
p:BIE"X =Blp (7).p,_ (X = X

By [Sta22, Lemma 080A], BI;ILX can also be constructed by successively blowing
up X along (the total transforms of) the Fitting ideals of F, that is

BIZEX =X, 20y 5 X, 22 X, 2 X
where
o X1 = BlFrzfl(]:)X’
[ X’l“272 = BIFT2_2(p:271]:)XT2,1 = Blp:;_lFrQ—z(]:)Oxw,lX"‘271 and

° Xz = BlFi(P:Perl~--p;271-7:)Xi+1 for all ¢ with r < ) < ro — 2.

Each p; is the natural morphism coming from the blow-up construction and we
denote by p the composition p,,_10...0p;.

4.3. The universal property of the Hu-Li blow-up. We are now ready to
state the minimality properties for Construction[f.2.4l We can formulate a universal
property for the morphism ¢ or, in light of Remark we can formulate it to
only depend on the cokernel sheaf F.

Theorem 4.3.1 (Universal property of BIZLX [HLII]). Let X be a Noetherian
integral scheme and F a coherent sheaf on X of generic rank r. The natural pro-
jection p: BlgLX — X satisfies that
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(1) the sheaf p*F has generic rank r and
(2) the Fitting ideal F;(p*F) is locally principal for all i.

Moreover, p: BI;H‘X — X satisfies the following universal property: for any mor-
phism f:Y — X of Noetherian integral schemes such that

(1) the sheaf f*F has generic rank r and
(2) the Fitting ideal F;(f*F) is locally principal for all i,

there is a unique morphism f':Y — BlgLX factoring f.

3y
Y --——- >

I Bl X
\ l”
X

Proof. Let ro denote the maximal rank of F. Then r = r9 if and only if F is locally
free, in which case BlgL X = X clearly has this property.

Otherwise, we must have ro > r, so BlgLX is defined by the sequence of blow-
ups in Construction [£:2.4] By construction, p is dominant and each Fitting ideal
of p*F is locally principal. The universality follows from the universal property of
the usual blow-up as in [Har77, Proposition 7.14], using that F;(f*F) is non-zero
for all » < i < ro, which holds by the assumption that f*F and F have the same
generic rank. (I

Theorem 4.3.2 (Universal property of diagonalization [HLIT]). Letp : E~! — EY
be a morphism of locally-free sheaves on a Noetherian integral scheme X. Let
F = Coker(p) and let BI;ILX as in Construction . Then, the natural projec-
tion p: Bl;.-ILX — X is a diagonalization of . Moreover, p satisfies the following
universal property: for any morphism f :Y — X such that f*p is locally diag-
onalizable and rk(f*F) = rk(F), there is a unique morphism ' :Y — BlgLX
factoring f.

Proof. Follows immediately from Theorem [4.3.1] and Proposition 4.1.6 (]

4.4. Properties of the Hu—Li blow up. We collect properties of BlgLX.

Proposition 4.4.1. Let f : Y — X be a morphism of Noetherian integral schemes
and let F be a coherent sheaf on X of generic rank r. If f*F has generic rank r
then there is a unique morphism

BIFLY -2, Bl X

| !

y — 1 x

making the diagram commute.
If, moreover, f is flat, then the square is Cartesian.
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Proof. A unique morphism fvmaking the diagram commute exists by the universal
property Theoremm To see that diagram is Cartesian we apply [Sta22] Lemma
0805] to each of the blow-ups defining BlgLX , using that the formation of Fitting
ideals is compatible with pullbacks. O

Proposition 4.4.2. Let X be a Noetherian integral scheme, let F a coherent sheaf
on X and let L be a line bundle on X. Then there is a unique isomorphism

BIAH(X) ——%—— BIZL . (X)

N

X

which makes the diagram commute.

Proof. By Theorem a unique factorization 5 of p through ¢ exists if and
only if F;(p*(F ® L)) is locally principal for all ¢, and this holds because F;(p*F)
is locally free for all i. Indeed, choose an open cover of X trivializing £. The
preimage by p of this cover induces a cover of Blz(X) where p*(F ® L) ~ p*F.
This shows that F,(p*(F ® L)) ~ F;(p*F) locally, so ¢ exists. The same argument
shows there is a unique factorization of ¢ through p, which must be the inverse of
5 by uniqueness. ([l

Proposition 4.4.3. Let X be a Noetherian integral scheme and €, F,G be coherent
Ox -modules. Assume that we have an exact sequence 0 — & — F — G — 0.

(1) If the sequence is locally split and € is locally free, then there is an isomor-
phism BIF* X ~BIJFX.
(2) If G is locally free, then there is an isomorphism BIZF X ~ BIZL X,

Proof. Tt is enough to prove the statement locally, so we may assume that we have
F ~ & ®G. With this, we have that

(7) F(eG)= Y Fu()Fu(9)
k+k'=¢

by [Sta22l Lemma 07ZA]. If G is locally free, the sequence is locally split, therefore
by symmetry it is enough to show one of the statements. Without loss of generality,
suppose that G is locally free, therefore Fy/(G) = 0 for all ¥’ < rk(G) and Fy/ (G) =
Ox for all ¥’ > rk(G) by [Sta22, Lemma 07ZD]. Combining this fact with the chain
of inclusions Fy(£) C F1(€) C .., it follows that

0 if £ < rk(G)

F(F)=Fl(E®G) = {Fz_rk(g)(g) if £ > rk(G)

This means that the collection of Fitting ideals of F and & agree, so BlgLX ~
BIFLX. O

Proposition 4.4.4. Let X be a Noetherian integral scheme and F a coherent Ox -
module. Then for every positive integer n

BIZEX = BIZE, X.
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Proof. There is a natural morphism BlgL X — Blgg%nX over X. To see this, let
p: BlgLX — X be the natural projection. Then p*F is diagonal and it follows
from Definition that p*(F®") = (p*F)®" is diagonalizable too. Then apply
Theorem to get the desired morphism.

Conversely, we show that there is a natural morphism BI%%, X — BIZFX over
X, which is enough to conclude the proof by the universal properties of both blow-
ups. Remember that

BIz"X = Bly, 5,7 X

where the product is over all non-trivial Fitting ideals of F, and similarly Bl;%nX is
the blowup of X along [], Fx(F®™). By [Moo(1l, it suffices to show that [], F¢(F)
divides a power of [], Fy(F®") as fractional ideals. Actually, we show that every
Fitting ideal Fy(F®") is a product of certain Fitting ideals Fy(F), with each k
appearing at least once as ¢ varies, and this is clearly enough.

By [BVS8S8, Lemma 10.10], if A is any Q-algebra, if M = (a; ;) is any matrix with
coefficients in A and if A; denotes the ideal generated by all minors of M of size
i X i, then

AN C A A
whenever i < j — 2. From this, we can conclude that if ¢ = ds + r with r €
{0,...,s—1}

(8) S T2 =4a5an.

Gt Aje=t i
To conclude, remember that locally F is the cokernel of a morphism ¢: E~1 — E°,
that F;(F) is the ideal A,,_;(p) of minors in ¢ of size ro — i, where ry = rk(E°),
and the expression for Fitting ideals of direct sums Equation @ O

Ezample 4.4.5. Take n = 2 in Proposition Then Equation is equivalent
to
F? if ¢ =2k
F(FoF) = Y F(F)Fu(F)=q" .
Lo Fry o Fry oy if0=2k+1
where 75 the maximal rank of F as in Construction

Proposition 4.4.6. Let X be a Noetherian integral scheme and F a coherent sheaf
on X. Then there is a natural morphism BlgLX — BlgX.

Proof. Let 7: BlgLX — X be the natural projection and let » = rk(F). By
Theorem m it suffices to check that (7*F) is locally free of rank 7. This can
be checked locally. If X = Spec(R) for a local ring R, the result follows from
Proposition [2.2.6 a

4.5. The filtration of a diagonal sheaf. Given a diagonal sheaf F, we construct
a filtration Fo such that F;/F;_1 is locally free on a Cartier divisor D; (Construc-
tion . This filtration will be used in Section to describe the irreducible
components of the abelian cone of a diagonal sheaf (see Theorem [6.3.1)).

Lemma 4.5.1. Let F be a diagonal coherent sheaf of generic rank r on a Noetherian
integral scheme X. Then there is a short exact sequence

0>K—=F—>FT=0

with F* locally free of rank r on X and K a diagonal coherent sheaf of generic rank

0.
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Proof. Let K = tor(F). Then F* is locally free by Remark and K is diagonal
by the proof of Proposition |4.4.3 (]

Construction 4.5.2 (c.f. [Sta22l Tag OESU]). Let F be a diagonal coherent sheaf
of generic rank zero and mrk(F) = n on an integral scheme X. In the following,
we construct an increasing filtration F,:

OZFO CFC...Fp1 CF,=F
and effective Cartier divisors D; such that for each 4, the sheaf
Fif Ficx

is locally free of rank 7 on the closed locally principal subscheme defined by D;.

Our formulation differs from the one in the reference, so we present the con-
struction of the filtration in our context. We can work locally and assume that F
has a presentation which is diagonalizable in the sense of Definition that is
p: OF" — OF" where ¢ is the diagonal matrix

n na Nk

()OZDlag fla'"7f17f27"'7f2a"'7fk)a"'7fk:

with ng +--- 4 ny = n and non-zero f;’s satisfying (fi11) & (fi). Note that locally
F may not attain its maximal rank n, but we can always choose f; to be a unit to
obtain a presentation of the correct rank.

Since F is diagonal, it has tor dimension at most 1 by Remark therefore
it admits a presentation by a square matrix ¢.

Since we are working over a domain, (f;+1) C (f;) is equivalent to f;|fi11. We

can define effective Cartier divisors Dy, ..., D,, by taking ratios of successive entries
of ¢:

Dn = L'pn—1— (fl)

Di _ (‘pn—i-ﬁ-l,n—i—i—l) )
(Pnfi,nfi

In other words, D; is the ideal generated by the ratio of the entries in position
n—1t+1and n — 7 in . Note that, while the generators of the ideals are only
well-defined up to a unit, the ideals themselves are well-defined and do not depend
on the chosen presentation of ¢. In fact, they can be expressed as differences of the
Fitting ideals of F, which are independent of the chosen presentation.

The divisors D; give closed locally principal subschemes of X, which are defined
by (fet1/fr) ifi=n— Z?Zl ny and are empty otherwise.

We define the increasing filtration of F, as follows. We set F,, := F, and define
Fn—1 as the cokernel of the morphism ¢’ := ¢/ f;. That is,

0 0 (Ox/(f1)E" —s Fo/Fn1 — 0
9) 0 oyt ——— oF" T 0

id] h AidT ]

’

0 oy —~ ogr Fpg —— 0.
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As Op, = Ox/(f1), the graded piece F,,/F,—1 is locally free of rank n on D,,.
Now, ¢’ can be given by the diagonal matrix

ni na Nk

@/:Dia’g 17"'51,f2/f17'-'7f2/f17'-'afk/f17"'afk/fl

We can pass to ¢ : 02"~ — OF" ! by removing the first entry. Clearly, F,,_; =

Cokery”. Then we can iterate the construction in @, factoring our multiplication
by the first entry ¢! of "

0 0 (Ox/(@1)E Y —=s Fo i/ Fug — 0

0 Og?nfl o O?énfl anl 0
id]\ q:’l/-id]\ T

0 — 081 7, pen-t Fos 0,

This defines the next subsheaf F,,_s in the filtration and the new morphism ¢'”.
If ny > 1, (¢f) = (1), so we will have F,,_o = F,,_1 and D,,_; defining the empty
subscheme. Note that the sub-schemes defined by D,,_1, ..., Dy,_p, 41 are all empty,
and the filtration is constant until F,,_,, 1, which is the cokernel of

PEn—nq P dn—nq
OX OX

with

no ns Nk

w:Dlag 17"'717f3/f27'-'7f3/f27"'7fk/f2)"'afk/f2

and D,,_,, = (f1/f2). Tterating this construction clearly provides a filtration and
a collection of effective divisors which satisfy the claims in the lemma.

The divisors D; are defined globally in terms of Fitting ideals, and do not depend
on the local expression of the matrix. In fact, unpacking the argument above, we
can check that

1 2 n—1 n
£, 1 2 n—1 D,
anl 1 ) Dn
1
Then,
1 -2 1
D, Fy
(11) = 1 -2 1 :
D, 1 -2 F, 1
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With the notations of Construction [£.5.2] the associated graded sheaf to this
filtration is
£=Dé
i

where Ez = fz/fz_l
We present an example to illustrate Construction [4.5.2)

Ezample 4.5.3. Take R = C[z,y, 2], X = Spec R. Let F = M be the diagonal sheaf
defined by

z 0 O 0
0 = O 0
Zlo 0 ay 0O
0 0 0 ayz

0— R® R®* - M — 0.
The divisors from the statement of Construction are given by the ideals
Dy, = (z),D3=(1),D3 = (y), D1 = (2).
As a sanity check for Equation , we see that indeed
Fo = Dy + 2Dy +3D3 + 4D, = (z*y*2),
Fy = Dy +2D5 + 3Dy = (%),
Fy = D3 + 2Dy = (2°y),
F5 =D, = ().

Now, all the elements of ¢ are divisible by D,, which is the ideal generated by
the first entry. We set 74 = F. To obtain the next step in the filtration, F3, we
consider the decomposition ¢ = z - ¢’ below

0 R®4 £, RO4 M 0
idT / z-idT T
0 R® 2, Ro4 M; 0

we set F3 = ]/\237 the module defined by

10 0 O
;|0 1 0 0
Zlo oy o
0 0 0 yz
or equivalently as the cokernel of
1 0 0
=0 y O
R@S 00 Y= REBS.
Similarly, F» = M, will be defined by
y O
0 yz
0—>R®2 >~ " 73y R®2 4 M, —0
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and F; = Z\Z by

0 REN R My 0.

Finally, My = 0. In conclusion, we obtain the filtration
0 0
0 0
z 0
0 =z
M = My = (R/())** ® R/(xy) ® R/(xyz) +———— M3 = R/(y) ® R/(yz) =

0 v)

~ My, =R/(y)®R/(yz) «——= M; = R/(z) + 0 = M,.
The graded pieces are

&y = Fa)Fs = (R/(z))®*

E3=TF3/Fa=0
£ = Fo Fy = (R) ()
& =R/(2)

and each of the sheaves &; is locally free of rank 7 on the subscheme defined by D,.
Note that, for ¢ = 3, such subscheme is empty.

Theorem 4.5.4. Let F be a diagonal coherent sheaf of generic rank r and mazimal
rank ro on a Noetherian integral scheme X . Then we have a filtration

.FDIC:K:Ter:)’C”,T,l3-'-:)’(:0:0

such that
Fr=F/K
is locally free of rank r and
& =Ki/Ki1

is locally free of rank i on the effective Cartier divisor D;.
Proof. Immediate by Lemma [.5.1] and Construction [1.5.2] O

4.6. Remarks on minimality. We saw in Remark that blowing up the first
non-zero Fitting ideal of F is, in general, not the minimal way to make F* locally
free. Similarly, blowing up all the Fitting ideals of F is not the minimal way to
turn (F |p,)" into locally free sheaves for all 4. This is illustrated in the following
examples.

Ezample 4.6.1. Take X = Spec (R) and F = M for M = R/I with I C R a non-
principal ideal. The only non-trivial Fitting ideal of F is Fy(F) = I. Note that
M = 0 is locally free and M lv(ry is locally free of rank 1. This means that F
already has the desired property on X. However, blowing up all the Fitting ideals
of F results in Bl;(X), which is isomorphic to X if and only if I is invertible.
This example also shows that given a coherent sheaf F on an integral scheme
X, the blow up Blx(X) from Definition and BlgLX are different in general.
Indeed, on the one hand, Blx(X) = Bly(X) = X because M* = 0 is locally
free. On the other hand, the only non-trivial Fitting ideal of M is Fy(M) = I, so
BI;ILX = Bl X. Therefore both blow ups agree if and only if I is invertible.
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Ezample 4.6.2. Let P be the origin in A2 , and consider the embedding i: A7 | —
A3 . (z,y) = (x,9,0). The image of i is the plane II = {z = 0}. Let I = (z,y)
be the ideal of P in A2 and consider the module M = i, in A3.

Note that M has generic rank 0, M* = 0 and that M |1 is the ideal I, which
is torsion-free. This means that M* = 0 is already locally free, but (M |)t =
M |n= 1 is not locally free over II.

To compute BI{FA3, we start with the following resolution of M

(12) R} L R? M 0
where R = C[z,y, z] and

The Fitting ideals of M are

o Fo(M) = z(x,y,2),

o (M) = (,y,2),

o F,(M) =R, foralln >3
This reflects the fact that M has rank 0 on A3\ II, rank 1 on IT\ P and rank 2 on
P, as per Proposition 2.2.2] Then

BIJ/Y A3 = Blp, (ar). (1) A% = Bl 2)2A% = Bl(,,, .)A® = BlpA®

is simply the blowup of the origin in A3. Note that Blf/[LA3 is distinct from
BlyA3 = A3 in this example as the latter does not flatten (M |r7)*t.

Remark 4.6.3. If the sheaf F has projective dimension < 1, then the Rossi con-
struction is equal to the blow-up of the first non-zero Fitting ideal. In this case,
blowing up all of the proper non-zero ideals as in the Hu—-Li construction gives a
minimal resolution with the property that (F |p,)" is locally free for all of the D;’s
defined in terms of Fitting ideals by . For an ideal having projective dimension
1 is equivalent to being principal.

Remark 4.6.4 (Extension of sheaves). Let X be a scheme, let Y be a closed
subscheme an let Fy be a coherent sheaf of rank r on Y. In order to find a minimal
blow up of this torsion sheaf, one may try to extend Fy to X as a sheaf which is
not a torsion sheaf and perform a repeated Rossi construction. One can find an
open cover of X and blow-ups of the charts such that on the blow-up the torsion
free part of the pull-back of F is locally free on the support. However, the blown
up charts may not glue to a global construction. Below we explain that it is always
possible to find local blow-ups.

Let X be an affine scheme and let Y be a closed subscheme. Let Fy be a coherent
sheaf of rank r on Y and assume that we have an exact sequence

_ M
Oggyr — O;‘?gy — ]:Ur‘]Y — 0,

where M € M, ,_,(I'(Oy)). We may assume that U = SpecR and Y N U =
Spec R/I, where R is a ring and I is an ideal. Let M = (fij), with fij € R/I. We
now choose f;; € R a lift of fzJ and we denote by M the matrix (f;;). Then we

. M
have a morphism OE‘?" T OE‘?” and an exact sequence

dn—r M dn
OF" " — OF" = Fy =0,
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where Fy denotes the cokernel of the map induced by M. Then, we have that
Fuly = Fy and the resolution above induces a morphism

U --+ U x Gr(r,n).

Since there is no canonical choice for the lift M, the above morphisms do not glue
in general.

5. DESINGULARIZATION AND DIAGONALIZATION ON STACKS

In this section, we show that the constructions introduced so far in Section [3]
and Section 4| make sense for algebraic stacks, since they are both local and they
commute with flat base-change (see respectively Proposition and Proposi-
tion . Thus we define the desingularization and the diagonalization of a co-
herent sheaf on a Noetherian integral Artin stack and we establish properties of
both constructions.

We will require our integral stacks to admit an integral presentation. As pointed
out to us by David Rydh, it is unclear whether an integral stack always admits a
presentation by integral schemes or algebraic spaces. However, all of the stacks we
apply this construction to in this work admit such a presentation. We will only
introduce repeated blow-ups of smooth algebraic stacks, which have an integral
presentation by construction.

5.1. Construction of Bl and BlgL‘B. So far, we have only constructed BlzX
and Bll]L_-ILX for an affine (Noetherian, integral) scheme X. In this section we gen-
eralize these constructions over a stack 8 which we assume admits a presentation
by affine integral groupoid schemes, that is, it can be presented by a groupoid
[U; = Up] with Uy, Uy affine integral schemes. In particular, this holds if 3 is a
normal Noetherian integral algebraic stack with affine stabilizers.

It is possible to obtain similar constructions for more general 8 (locally Noe-
therian, no restriction on the stabilizers), but it requires a two-step process of first
generalizing the construction to algebraic spaces and then to stacks.

Denote by B a Noetherian, integral Artin stack with affine stabilizers which
admits a presentation by integral schemes. Consider a smooth presentation of 3,
i.e. a groupoid in affine schemes (Uy, Uy, s,t,m) whose associated quotient stack
[U1 = Up] is P. Here [U; = Up] denotes the stackyfication of a category fibered
in groupoids [U; == UplP™. Recall that Uy, Uy are affine schemes m : Uy X,
U, — U is the composition of arrows, s,t : Uy — Uy are respectively source and
target morphism and they are smooth morphisms. They satisfy some compatibility
conditions that we will not use explicitly here (See [LMBO00, §(4.3)] or [Sta22]
Definition 0441].

The reader can think of P being the Picard stack *Bic, ,,. Recall, that a S-point
of Pic, ,, is a couple (C, L) where C is a nodal curve of genus g with n distinct
smooth marked points and L is a line bundle over it. It is well known that Bic, ,
is a smooth Noetherian Artin stack over Spec (C) of locally finite type.

Let § be a coherent sheaf on B, i.e. we have a coherent sheaf Fy on Uy and also
a coherent sheaf F; on U; with two fixed isomorphisms

(13) s"Fo~ Fr~t"Fy
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that satisfy the cocycle condition on U; ,x, U;. We refer to the article of Olsson
[OIs07, Proposition 6.12] for the equivalent definitions of coherent sheaves on an
Artin stack.

We now proceed to use the smooth presentation of P to define a stack BlzB
desingularizing the coherent sheaf §. All of the following discussion holds formally
identical when we consider the procedure that diagonalises § instead. The stack
we obtain with the second procedure is denoted Bl? L‘B.

Later, we prove that the blow-up stacks obtained in both cases are algebraic and
come equipped with a representable (by a scheme), proper and birational morphism
to P.

With the theory developed in §E we can construct Blr, U; and Blg Uy. Note
that to apply the results in that section we require Uy, U; to be affine integral
Noetherian schemes. However, running these arguments once with Uy, U; affine
schemes shows that the blow-up construction glues for non-affine schemes and more
generally algebraic spaces.

Since the morphisms s,t : Uy — Uy are smooth (hence flat), we apply flat
base change for blowup of sheaves (see Proposition to s,t and we get 3,1 :
Blg, Ui — Blg,Up. Using the fix isomorphisms (13]), we obtain the following Carte-
sian diagrams

Bly, Uy —— Blz,Up Bl U; —— Bly,Up
r r
(14) lq l” lq lp
U1 — Uo U1 —t> Uo.

In addition, using Cartesian diagrams on a cube, we construct a map
m : Blg, Uy x:Blg Uy — Blg Us.
More precisely, we have
Blr Uy x;Blx Uy ~ (BI}'OUO X Ul) EX;(BI}‘OUO Xt Ul)

~ Blr,Up , x5 Ur 4%, Uy

— Blg,Up , % Uz by applying m : Uy ;x, Uy — Uy

=~ Blz, U; by the Cartesian diagram .
We obtain a smooth groupoid in schemes

(Blz,Uo, Bls, U1, 3,1, )
with a morphism of groupoids to (Uy, Uy, s,t,m). This defines a 1-morphism
p: [Blr, Uy = Blg, Ui P — [Uy = Uy P
Let Blz*P denote the stackyfication of [Blx, Uy = Blz, U1]P™. By universal property,
the morphism discussed above lifts to a morphisms of stacks
m: Bl — ‘B.

Remark 5.1.1. We thank David Rydh for also pointing out that the same con-
struction of desingularization of sheaves on Artin stacks can be realized by adapting
the Grassmannian interpretation of Rossi. One can view Blg3 as the closure of
a morphism from $ C P to the relative Grassmannian of rank r quotients of g,
Grg(§, 7). A more general version of the relative Grassmannian of Section was
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constructed by Hall and Rydh, who introduce a more general Quot scheme over al-
gebraic stacks with mild assumptions in [HRI15]. However, we prefer to include this
explicit gluing argument as it is not immediately clear to us that their assumptions
hold for the stacks we need in our applications.

5.2. Properties of Bl and BI?L‘B. We collect some properties of BlzB and
Bl? L3, including those of Sections and which naturally extend to stacks.

Theorem 5.2.1. Let [Uy = Uy] — P be an integral Noetherian Artin stack with
affine stabilizers and an integral presentation, and let § be a coherent sheaf on it.

(1) The stacks BlyP = [Blr, Uy = Blr,Up] and BIY "B = [BI£ U, = BIE U]
are integral Noetherian Artin stacks.

(2) The morphisms Blg3 — P and Blé{L‘B — B are representable proper and
birational.

Proof. Once again, we will only discuss BlzJ3, as the argument for Blg LB is iden-
tical, mutatis mutandis.

Part (2), together with the properties of the respective constructions on schemes,
implies part (1) of the theorem. To establish part (2), it suffices to compute the
fiber Uy xq Blz and show that it is Blx,Uy. Since Blr,Uy — Uy is representable
by a scheme, so will be the morphism Blz3 — .

Now consider the 2-Cartesian diagram of categories fibered in groupoids

X Uo

e | i

[Blr, Uy = Blg, UplP —2— [U; = Up)P™e

where by abuse of notation, Uy is the category fibered in sets associated to this
algebraic space. One computes (see the discussion around [Sta22l |Tag 04Y4]) that
the groupoid X is given by (U, Uy, s',t’, m') where
U(/) =U; Xt,Uo,p Bl]:OU()
U{ = U1 Xt,Ug,p-s B1_7-‘1U1
!/

s (z,y) = (2,5(y))
t': (2,y) = (m(z, p(y)), ty))

By (14),
Ui = Ur X¢,04,ps (U1 Xs,00,p Blr,Up)
= (Ul Xt,Uo,S Ul) xt~pT‘2,Uo,p BI}—QUO
s ((z,y),2) = (z,2)
t': ((z,y), 2) = (y,2)

From this expression, X is a banal groupoid whose stackyfication is equivalent to
the scheme Blg, Uy, as the relations s',¢" identify all the points of the U; factor.
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Then the stackyfication of gives us a 2-Cartesian diagram:

Bl]:OUO L) Uy

uw R

Bl ——— B

This discussion proves that 7 is representable. Recall that a morphism of stacks
is birational if there exists an isomorphism on dense open substacks on source
and target (see [CMWTI2]). By Definition we deduce that 7 is proper and
birational. O

Now we prove that our construction satisfies a universal property. In particular,
it will then be independent of the choice of a groupoid presentation.

Theorem 5.2.2 (Universal property of the Rossi desingularization). Let 7 : Bl —
B be as in Theorem |5.2.1. Then

(1) The sheaf (m*F)Y is locally free of the same generic rank as .

(2) The morphism 7 : Blg*B — ‘B satisfies the following universal property: For
any morphism of stacks p : Y — P such that (p*F) is torsion-free of the
same generic rank as §, there is a uniqud’| morphism p’, which makes the
following diagram 2-commutative

Proof. Choose a smooth presentation of B by (Up, Us, s,t,m) with Uy an affine
Noetherian, integral scheme and construct the blow-up via this presentation as in
the previous section. For the first statement we use the fact that m is representable
and that by the proof of Theorem q : Blr,Uy — BI3*B is a smooth covering
by a scheme. So it suffices to prove that ¢*((7*F)") is locally free of the correct
rank. But this is just (7*F5)" with the notation of (I6), so the result follows by
Theorem

For the second statement, by fppf descent it suffices to prove that for any flat
morphism from an affine Noetherian integral scheme T — ) we can construct a
morphism

BIg'B

T 59— .
g

By using the groupoid scheme presentations of 3, Blz*3 we have fixed above, we
pull back to the smooth covering Uy — B,

Blz,Up
(17) s

To =T xq Up —2— U.

2To be precise, there exists a morphism p’, unique up to a unique 2-morphism.
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Since T' — Q) is flat, we have that (¢g*F)" is locally free of rank r, for Ty we have

To L Uy
ol
T —2— 5.
Then
9 (F5) = (964"F)" = (b'g"F)" = 0" ((¢"®)")
because ¢ and g are flat. So g¢(Fgf) is locally free of rank r. By Theorem
there is a unique morphism ag: Ty — Blz, Uy over go:

Blz, Uy
N

Ty —2— U, BlzB

Js |

T g PB.

Now, to show that this map descends to a : T — Blz*3 we need to give a map
of groupoids [T1 = Tp] to [Blr, U = Blg,Up], where these are the groupoid pre-
sentations induced by [U; = Up]. That is, we need to specify in addition to ag
constructed above, a map

al T Xy U1 = T1 — Blgm Xy U1 = Bl]:lUl

over g1 : T7 — U; and show that ag and a; are compatible with the source and
target maps. We can choose U; to be an affine scheme, then the same argument we
applied above to lift gy to ag produces a unique lift of g; to a;. The compatibility
of (ag,a1) with the source and target maps of [T7 = Tp] and [Blr, Uy = Blg, U]
then follows by uniqueness.

O

Having established the universal property, we can now talk about the blow-up
Blx*B without specifying a presentation for 3, as all choices will produce canonically
isomorphic blow-ups.

Proposition 5.2.3. Let § be a coherent sheaf on P, a Noetherian integral algebraic
stack with affine stabilizers and admitting an integral presentation.
(1) For any line bundle £ on P, we have Blzg P = BlzB and also Bl?@gg‘ﬁ =
BIZLp.
(2) Let &, F,® be coherent Og-modules. Assume that we have an exact se-
quence 0 > € - F — & — 0.
(a) If the sequence is locally split and € is locally free, then there are
isomorphisms Blz X ~ Blg X and BlgLX ~BIZLX.
(b) If & is locally free, then there are isomorphisms BlzX ~ BleX and
BIYYX ~ Bl X.
Proof. For the first part of 1, let p': BlggeP — B and p: Bl — P be the natural
projections. By the Universal Property, Theorem to show that BlzgePB =

BIs it suffices to show that ((p')*F)" and (p*(F @ £))* are locally free. These
statements can be checked locally and they follow from Proposition [3.4.2
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Similarly, all the other statements are local, so they follow from the same state-
ments on schemes with the two different blow-ups. For the Rossi blow-up Blz*B, the
schematic statements are Propositions [3.4.2] and |3.4.3| and for the Hu—Li blow-up
BlgHL‘,TS, it follows from Propositions 4.4.2| and 4.4.3l [

From the beginning of Section {4 (Definitions and Proposition [4.1.6]),

we can define the notion of diagonal sheaves or locally diagonalizable morphism of
sheaves on Artin stacks as follows.

Definition 5.2.4. (1) A coherent sheaf § on P is diagonal if for any scheme
S and morphism f : S — P, the sheaf f*§ is diagonal, that is, its Fitting
ideals F;(f*§) are locally principal.

(2) A diagonalization of a coherent sheaf § is a morphism 7 : 8 — B such that
7§ is diagonal.

Remark 5.2.5. Using the presentation of 3, we could also define that § is diagonal
if .7:0 is.

Theorem 5.2.6 (Universal property of the diagonalization). Let 3 a Noetherian,
integral, normal Artin stack admitting an integral presentation. Letw : BlgL% — B
be as above. Then

(1) The sheaf T*F is diagonal of the same generic rank as §.

(2) The blow-up BI?L‘B satisfies the universal property: For any morphism
of stacks f : ) — P such that f*F is diagonal of the same generic rank
as §, there is a unique morphism f', which makes the following diagram
2-commutative:

Proof. The statement follows from the universal property of the Hu-Li blow-up
for schemes, Theorem [£31] and the compatibility of the Hu-Li blow-up with
flat pullback, Proposition 4.4.11 The argument is the same as the proof of Theo-
rem [5.2.2) ([l

Remark 5.2.7. If 8 has the resolution property in the sense of [Tot04], then we
have that 7 : Bl — ‘B is projective. Indeed, if ¥ has the resolution property,
then we have a global locally free sheaf & with a surjective morphism

¢ —>F—0.

This allows us to define BlxB via the graph construction and thus the resulting
stack is projective over 8. Note that projectivity is not local on the target, and
thus, even though the local construction is projective, m may not be projective.
By [Tot04] stacks which are not global quotient stacks do not have the resolution
property. Many of the stacks that we work with are not global quotients. For more
details on stacks which are not a global quotients see [Kreld].
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6. COMPONENTS OF ABELIAN CONES

Let F be a diagonal sheaf on an integral Noetherian scheme, we study the ir-
reducible components of C(F). We show that C(F) has finitely many irreducible
components, which we consider with their natural reduced structure. Each irre-
ducible component is a vector bundle supported on a closed integral subscheme.
All of the cones in this section are taken over X, unless otherwise specified by the
notation Chase(sheaf).

6.1. The main component of an abelian cone. We start our study of compo-
nents of cones with the main component of an abelian cone. Our study is motivated
by [AM98|, Proposition 2.5], which we recall below as Proposition It states
that if 7: C' = Spec(A) — X is a cone with X integral and with A torsion-free
outside of a closed Z C X, then the closure of C'\ 771(Z) inside C is equal to
Spec (AY).

In general, Spec (A') need not be irreducible, see Example However, if
the cone is abelian, that is, if A = Sym F for a coherent sheaf F, then Spec (A) is
an irreducible component that we call the main component of C'(F) = Spec Sym F.
Note that (Sym F) and Sym (F*f) need not agree in general (see Remark [6.1.6)),
but they do if F* is locally free by Lemma In particular, they agree for
diagonal sheaves by Remark

Let X be an integral Noetherian scheme, let A be an Ox-algebra with the
assumptions of Definition and let

m: C =Specx(A) = X

be the cone associated to A. The natural surjection A — A induces a closed
embedding
Spec (A') < Spec (A),

which we want to understand geometrically.

Notation 6.1.1. Let X be a scheme and let U C X be an open subscheme. We
denote by clxU the closure of U in X, with its reduced induced structure, and by
cI5"U the schematic closure of U in X. If U is reduced, then cI$*U = clxU by
[Sta22, Lemma 056B]

The following result is proven in [AMO98] in the analytic category, but the proof
holds for schemes as well.

Proposition 6.1.2 (See Proposition 2.5 [AM98]). Let U C X be a non-empty open
such that A |y is torsion free and let m: C' = Spec x(A) — X. Then

Spec x (A") = clgpec x () (7 H(U)).
Furthermore, if n=Y(U) is reduced, then

Spec x (A™) = . 4 (x 1 (U)).

Spec x
In general, Spec x (A'f) may not be irreducible, see Example

Ezample 6.1.3. The cone Spec x (A') may not be irreducible. For example, let
R = C[z] and let A = R[Y,Z]/(YZ) viewed as a graded R-algebra with Y, Z in
degree 1. This is a cone over A! = Spec (R). It is clear that A has no torsion as an
R-module but Spec (A) has two irreducible components.
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Now we focus on abelian cones. Firstly, we show in Proposition [6.1.4] that if
A = Sym F, then Spec x (A%) is an irreducible component of Spec x (A).

Proposition 6.1.4. Let X be an integral Noetherian scheme and let F be a co-
herent sheaf on X. Then Spec (Sym F)" is an irreducible component of C(F) =
Spec Sym F.

Proof. Let U C X be a non-empty open such that F is locally free on U. Then,
for m: C(F) — X the projection, we have that 7=!(U) is a vector bundle over U,
thus it is integral. Let Z be the unique irreducible component of C(F) containing
7~ Y(U). Then
cdgm (T (U)) = el (a1 (U) = Z,

where the first equality follows from Lemma [7.2.4] and the second one is a ba-
sic property of the Zariski topology that the closure of an irreducible open in an
irreducible space is the whole space. [

Definition 6.1.5. Let X be an integral Noetherian scheme and let F be a coherent
sheaf on X. We say that Spec (Sym JF)" is the main component of the abelian cone
C(F) = SpecSym F.

Remark 6.1.6. With the assumptions of Definition [6.1.5} it is not true in general
that the main component of C'(F) = Spec Sym F is equal to C(F*f) = Spec Sym (F!).
In fact, C'(F*) need not be irreducible (see Example . The underlying reason
for this discrepancy is that Sym and torsion-free part do not commute in general
(see Remark . A particular case where C(F*) is clearly irreducible is if F*
is locally free. In that case,

(Sym F)* = Sym (F').
by Lemma [6.2.1] and so
(18) Spec (Sym F)* = Spec Sym (F*).
In particular, the equality is true for a diagonal sheaf F by Remark

Example 6.1.7. This is an example of a torsion free sheaf G on an integral Noether-
ian scheme X such that Spec Sym G is not irreducible. Let X = Spec (C[z,y]) be
the affine plane, let T = (z,y) be the ideal of the origin 0 and let M = I @ 1.
Then Sym (M) ~ Clz,y, A1, As, B1, Ba]/(yA1 — xAs,yB; — xB3), so C(M) =
Spec Sym (M) has two irreducible components: one of them is V(A B1—A1 By, yB1—
xBg,yA; — xAs), which is the closure of the restriction of C'(M) to X \ 0; and the
other one is V(z,y), the fibre of C'(M) at 0. Both components have dimension 4.

6.2. Abelian cones as a pushout of their main component. We restrict now
our study of components of cones to the special case of an abelian cone C'(F) with
F* locally free. We first show that Sym and torsion-free part commute in that
case (Lemma, therefore the main component is C(F*), which is also abelian.
We show that C(F) admits a description as a pushout with C(F*) as one of the

factors (Proposition [6.2.5)).

Lemma 6.2.1. Let X be a Noetherian scheme and let F be a coherent sheaf on
X. If F* is locally free then

(Sym F)t = Sym (F*H).
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Proof. We have the following commutative diagram.

0 0 0
| L
0 —— tor(Sym F) —*— ker(p) —— ker(p”) —— 0
li’ J{z li”
f I’

0 — tor(Sym F) ——— Sym F ——— (Sym F)*f ——— 0

b ! b

0 —— tor(Sym (F1)) —— Sym (F*) —Z— (Sym (F*)* — 0
0

| |

0 0

The last two rows are clearly exact. Moreover, since F*f is locally free, we have that
tor(Sym (F*)) = 0 and ¢’ is an isomorphism. The morphism i’ is the identity on
tor(Sym F). The surjective morphism p comes from applying Sym to the surjection
F — F because Sym preserves surjections. The morphism p” is induced by p
using that tor(Sym (F*)) = 0. The first row is exact by the Snake Lemma. We
want to show that ker(p”) = 0 or, equivalently, that e is an isomorphism.

It follows from the above that we have

0 —— tor(Sym F) LN Sym F —2— Sym (Ff) —— 0,

which is exact except possibly at Sym F. We conclude if we show exactness there.
The inclusion Im(f o i) C ker(p) is clear because po f = gop’ = 0.
To show that ker(p) C Im(f o4’), we know that

tor(F) ® Sym "™ }(F) — Sym " (F) — Sym"(F%) = 0

is exact for all n > 1 by [Sta22l Lemma 01CJ]. Note that p is a morphism of graded
algebras, therefore

ker(p) = @ker(Sym "(F) — Sym"(F*)).

It suffices to show that for each n, the morphism tor(F)® Sym "~*(F) — Sym " (F)
factors through tor(Sym (F)). Locally, X = Spec(R) and F = M for some R-
module M. Given A =3~ m) ®...@mi € tor(M)® Sym™ (M), we can choose
for each j a non-zero divisor r; € R such that rjm{ =0. Thenr =7y---r;is a
non-zero divisor and rA =0, so A € tor(Sym (M)). O

Remark 6.2.2. Note that Lemma does not holds in general if we do not
assume that F*f is locally free. For example, let F = T be the ideal sheaf of a
closed point P on X. Then (SymZ)" = SymZ = D,~oZ" if and only if P is
regular. Another example is R = C[z,y] and M = I & I for I = (x,y). Indeed, M
is torsion-free but Sym M has torsion because z(x@y—y®z) = z®(zy) — (zy) @z =
yr@r—z®x)=0.

Lemma 6.2.3. Let R be a ring, I be an ideal in R and M be an R-module. If M
is locally free and I - tor(M) =0 then I - tor(Sym M) = 0.



42 A.COBOS RABANO, E. MANN, C. MANOLACHE, R. PICCIOTTO

Proof. Note that tor(Sym M) = €, 5 tor(Sym"M). In the proof of Lemma

we show that Sym™(M") ~ (Sym™M)*. The following commutative diagram is
exact by [Sta22, Lemma 01CJ].

tor(M) @ Sym "~ Y(M) —— Sym"M —— Sym"(M*'*) —— 0

! | |

0 —— tor(Sym"M) ——— Sym"M —— Sym"(M)* —— 0

The first row is exact by [Sta22l Lemma 01CJ], and the second row is also exact.
By the Snake Lemma, tor(M) ® Sym ™ 1(M) surjects onto tor(Sym™M) and the
claim follows. O

Lemma 6.2.4. Let R be a commutative ring, A be an R-algebra and I be an ideal
of R. If I-tor(A) = 0 and A% is locally free, then the following square is Cartesian
in the category of R-algebras

A A

J |

A® R/I —— A% @ R/I.

Proof. We have the following commutative diagram

0 0 0
0 IA TA

00— tor(A) / AT 0
p/ p lp//

tor(A) @ R/T —2+ A@R/T %+ AY @ R/I — 0

| | |

0 0 0

The three columns are exact because N ® R/I ~ N/IN for any R-module N and
because I - tor(A) = 0.

Observe that ¢ is injective. This is equivalent to Tory(R/I, A™) = 0, which
holds because A* is locally free. By the Snake Lemma, the natural morphism
e': TA — I A induced by f’ is an isomorphism.

In order to prove the lemma, one can show that the square in question is a
Cartesian square of R-modules and then check that it is also a Cartesian diagram
of R-algebras. Both can be achieved by routine diagram chasing using the fact that
e’ is an isomorphism. O

Proposition 6.2.5. Let X be a Noetherian scheme, F a coherent sheaf on X and
let m: C(F) = Spec (Sym F) — X be the corresponding abelian cone. Leti: Z — X
be a closed subscheme in X with ideal sheaf Tz such that Tz C Ann(tor(F)). If
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FH is locally free, then the following is a push-out of schemes

Spec Sym F = Spec (Sym F) |_| Speci.(Sym (F) |z)
Spec iy (Sym (Ftf)|z)

If, moreover, X is integral, then Spec (Sym F*) is an irreducible component of the
abelian cone Spec Sym F.

Proof. Locally, X = Spec R is affine, F = M for some finitely presented module M
over R such that M* is locally free and Z; = I is an ideal with I C Ann(tor(M)).
Let A = Sym M. Then I - tor(A) = 0 by Lemma and Lemma [6.2.1] ensures
that AY = Sym (M) is locally free. The result follows from Lemma [6.2.4

The claim about Spec (Sym F*f) being irreducible follows from PropositionlM
and Lemma 6271 O

Remark 6.2.6. Remember that the support supp (F) of a coherent sheaf F can
be defined set-theoretically by locally looking at the prime ideals where the stalk
of F is non-zero. A scheme structure on supp (F) is given by the sheaf Ann(F).
Therefore, the condition Zz C Ann(tor(F)) in Proposition implies that the
closed Z must contain supp (tor(F)).

Another natural scheme structure in supp (F) is given by Fy(F), the 0-th Fitting
ideal of F. There is an inclusion Fy(F) C Ann(F) by [Sta22l Lemma 07ZA], thus
in Proposition we can also take the particular case where 7, = Fy(tor(F)).

6.3. A decomposition of the abelian cone of a diagonal sheaf. We continue
our study of components of cones by further specializing to the abelian cone of a
diagonal sheaf F. The pushout description of C(F) in Propositionis improved
in Theorem C(F) is topologically a union of vector bundles.

Let F be a diagonal sheaf on an integral Noetherian scheme X. Remember that
F* is locally free by Proposition

First we reduce from rank r to rank 0. By Proposition and Lemma [6.2.1
we have a decomposition of C'(F) as a pushout

C(F) = C(F*) L] C (i F |supp(tor(F)))

C(tx FH | Supp(tor(F)))

Here all cones are taken over X and C(F*) is an irreducible component by Propo-
sition Replacing F by i«F|supp(tor(F)), We may assyme that F has rank
0

Let F be a rank 0 diagonal sheaf. Recall that, by Construction F has
a filtration with quotients supported on some effective Cartier divisors D; for i =
1,...,n. Consider the finite collection of closed integral subschemes {Z};, which
are the irreducible components of D; taken with reduced structure. These are in
the support of F and we will see in Lemma that (F|,,)" is locally free. Note
that these collections are not necessarily disjoint for different i’s. We denote the
inclusion of Z in X simply by ¢, without keeping track of the indices when it is
not necessary.

Theorem 6.3.1. Let F be a diagonal sheaf of rank 0 on an integral Noetherian
scheme X. The cone of F 1is topologically a union of finitely many irreducible
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components
cF) = (FlnT)ux
0]
where each C ((]—' |Zj)tf) a vector bundle supported on the integral subscheme Z}.
Lemma 6.3.2. With the previous notations and assumptions, the cone
Cp ((F 1)) = 2
is a vector bundle of rank 17, where

= ml?,x{Zl-j C Dy}.

Proof. Since tor(F|y) = tor(F)|y for U C X open, it is enough to prove it locally.
We assume that F is the cokernel of a diagonal matrix

Diag(fla'"7f17f23"'af27"'3fs)7

where fp divides fy41. Observe that, if fi |,;= 0, then f; |,; also vanishes for all
¢ > k. Take 17 as in the statement of the theorem: Z7 is a component of D,; and

the latter divides the last r{ entries.
Then the matrix presentation of F on Z] looks like Diag(f1 |yi,---,ft |4

,0,...,0) where f; | ,;7# 0. Since Zg is not, by assumption, a component of Z( f;) we

see that the cokernel of Diag(f; | . ft | ;1) is a torsion sheaf and the torsion-free

Zg, .
part of F |, is locally free of rank r/. O

Proof of Theorem|[6.3.1. To check the claim set-theoretically, it suffices to argue
that any closed point of C'(F) is contained in at least one of the cones. Let v € C(F),
the projection to X is z € X. Then v is specified by some section z — Fle. If
z ¢ U, Z], Flz = 0, so we are done. Otherwise, we need to argue that F|, =
((]:|Z;)tf)\z for some 1, j.

Let 7 be such that z € Zf for some j but z ¢ Z} for all k > 4 and all £. Then
x € D; but x ¢ Dy, for any k > i.

By the construction of the D;’s, we know that supp (tor(F|,i)) C Uiy Zf.
Then (.T-““ij)|r = F|z, and we are done.

The morphism J; ; C((]:|Zg)tf) — C(F) of topological spaces, given by the
universal property of push-outs, is continuous and closed for the Zariski topology.
Since we have just checked that it is also bijective, it is a homeomorphism. O

Example 6.3.3. The following example of blowing up the origin in A? is simple, but
it captures much of the essence of the decomposition in Proposition m (see
and (20)). We present it with full detail.

Let R = k[z,y] and let I = (z,y) be the ideal of the origin. The sheaf F = I
on A% = Spec (R) is torsion-free but not locally free. Since F is an ideal sheaf,
BlrA2 = BlyA? is just the usual blow up of A? along the origin. Let p: BlgA? — A?
be the natural projection. Then p*F is not torsion-free, but (p*F)* is a line bundle.
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To see that, we start with the following resolution of F.
)
0 r " rer" Yy

Pulling back along p, we obtain a presentation of p*F:

_ey/

ez/ (ezl ey/)
Ogiya2 Ogiyaz @ Opigaz p*F 0.

Here e is a local coordinate for the exceptional divisor E C BlyA? and 2’ and 3/
correspond to the strict transforms of x and y. This induces a commutative diagram

0 ———— Coker(e)

| Ju

0 ——— Opjaz ————— Opjya2(E) ——— Coker(e) —— 0
1) (=) |
0—— OB10A2 D OB10A2 I*d> OB10A2 D OB10A2 0 0

l(x/e y'e) J{ l
p*F ——— Coker(y/, —2')} ——— 0

Applying the Snake Lemma and using that Coker(e) ~ Og(FE) and that Coker(y’, —a)
is the ideal sheaf generated by =’ and y’, we get a short exact sequence

0— Op(E) = p*F — («/,y) = 0.

It follows that tor(p*F) ~ Or(E) and (p*F)" ~ (2/,y'). In particular, p*F is not
torsion-free.

We can also describe the geometry of the abelian cones Spec Sym F and Spec Sym (p*F).
We have

7r: Spec Sym F = Spec (R[X,Y]/(zY — yX)) — A2,

which is irreducible and singular.
Next we describe Spec Sym (p*F). Let S = k[z,y,2',y']/(zy’ — yz') where the
variables z’, 7’ have degree 1 and z,y have degree 0. Then

BloA? = Proj(k[z,y, ', y']/(zy —ya')).

A local equation for E is given by e = z/2’ or e = y/y’, depending on the chosen
chart. Then

T 7 Spec Sym (p* F) = Spec S[X,Y]/(e(2'Y — y' X)) — BlpA?
is reducible. It has two components:
(19) Ty F.main: Cmain = V(2'Y — 3/ X) — BlgA?,
(20) T Faor: Cror = V(€) — BlgA?.

The main component Cpain equals Spec Sym (p*F)' and it is a vector bundle of
rank 1. Meanwhile, Cio, corresponds to tor(F), it is supported over E and it is a
vector bundle of rank 2 over its support.
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7. APPLICATION TO STABLE MAPS

In this section we apply the results in Section [5] to construct reduced Gromov—
Witten invariants.

Given X a smooth subvariety in a projective space P", there is an embedding of
the moduli space of stable maps to X in the moduli space of stable maps to P".
The moduli space of genus zero stable maps to a projective space P” is a smooth
irreducible DM stack. If X is a hypersurface of degree k (or more generally a
complete intersection) in P”, there is a locally free sheaf £ on the moduli space of
stable maps to P", such that the moduli space of maps to X is cut out by the zero
locus of a section of this sheaf. These statements are not true in higher genus. In
general, the moduli space of stable maps to P” has several irreducible components
of different dimensions. We still have a natural sheaf £ equipped with a section,
but & is not locally free: its rank is different on different irreducible components.

There are several ways to use Section [5| to fix the above problem (see Re-
mark . In this section we are concerned with finding and comparing various
blow-ups the Picard stack along certain sheaves, which fix the above problem. More
precisely, we consider PBic — Pic, such that M, ,(P", d) :== My, (P",d) xqic Pic
desingularizes &y . .

Under the assumption d > 2g — 2 (see Assumption , we define Mg (X, d)
via the following Cartesian diagram

M (X, d) —— MS,, (BT, d)
J/ r
My (X, d) —— My, (P, d),

where M° (P",d) is the main component of the cone .//\/vlg,n(IPT,d) (see Defini-

g,n

tion . We then define reduced invariants (see Definition [7.4.4]) via an obstruc-
tion theory on /’\\/l/;n(]P’T, d) relative to ‘/)%Vck (see Theorem .

We also recall maps with fields [CLI2] and then we construct a blow-up of it
which makes the resulting stack as simple as possible. The resulting stack gives
an alternative definition of reduced invariants, which is not intrinsic; the relation
between these two invariants is similar in spirit to a Quantum Lefschetz theorem.
The definition we give is more intrinsic, but working with maps with fields instead
of maps is more suited to approaching Conjecture and Conjecture [[.0.5] See
[CL15, ILO22, LO21] for the proof of Conjecture in genus one and two.

7.1. Stable maps as open in an abelian cone. We recall how the moduli space
of stable maps to projective space can be seen as an open substack of an abelian
cone, following [CLI2]. This observation motivates our study of components of
cones in Section [6] as components of the ambient abelian cone are related to com-
ponents of stable maps.

Let 91, ,, denote the stack of genus g pre-stable curves with n marked points,
that is, 91, , parametrizes connected projective at-worst-nodal curves of arithmetic
genus g with n distinct smooth marked points. Let €, , denote universal curve over

My.n. Let Pic, ,, 4 denote the Artin stack which parameterises genus g pre-stable
st

curves, with n marked points, together with a line bundle of degree d. Let Pic,, ;
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denote the open subset of Pic, ,, ; consisting of (C,p1...pn, L) which satisfy the
stability condition

(21) L® @ we (ZPZ) is ample.

i=1

Notice that M, , and Pic, ,, 4 are not separated, but they are smooth (see [Sta22]
Lemma 0E6W] and [CEKM14| Proposition 2.11]) and irreducible. The stack Pic

is locally Noetherian and the stack ‘Bic;t’n’ 4 is Noetherian.

g,n,d

Notation 7.1.1. From now on, we fix g,n,d and the stability condition and we
drop all the indices.

We define € the universal curve over Bic by the Cartesian diagram . Notice
that we also have a universal line bundle £ over €.

Pic —— M.
We form the cone of sections of £ as in Chang-Li ([CLI15], Section 2)
(23) S(m.L) := Spec Sym (R, (£* ® we /pic)) — Pic.

In the following we collect a list of remarks on the cone of sections defined above.

(1) In [CL12, Proposition 2.2], the authors show that S(m,£) is the moduli
stack parameterizing (C, L,s) with (C,L) € Pic and s € H°(C,L). Be
aware that our S(m.£) is denoted by C(m.£) in [CL12].

(2) This situation is similar to the discussion in Sectionabout the total space
of a locally free sheaf. If & is a locally free sheaf over Bic, then sections of
¢ correspond to sections of the vector bundle Tot(€&) = Spec Sym (€*) over
Pic, but the same is not true if € is not locally free.

(3) In our set-up, the sheaf Rm, £ is not locally free. However, since we work
with the universal family of curves € — Pic, sections of the sheaf R, 2
correspond to sections of the abelian cone of its Serre dual R'm,(£* ®
wWe /pic). This is proven in [CL12, Proposition 2.2].

(4) Note that RO97,.£ does not commute with base change but R'7,.£ does by
cohomology and base change.

For the rest of the section, let
(24) S = Rlﬂ'* (2* ® (AJQ/;B'[C).

Note that since 7 is proper, we have that § is a coherent sheaf on Pic. As defined
in Section we consider the stack Spec Sym §, which is an abelian cone stack
over Pic.

Let M, ,(P",d) be the moduli space of genus g, degree d stable maps, with n
marked points.
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Proposition 7.1.2. ([CL12, Proposition 2.7], [CFK10, Theorem 3.2.1]) The mod-
uli space M., (P",d) is an open substack, cut out by the basepoint-free condition,
of the stack

(25) S(m, L2 = Spec Sym (B7_,T) — Pic.

As before, a point of this cone over (C, L) € Ricis (C, L, s) with s € H°(C, L)®" 1.
Note that

r+1 times
S(m 8 = S(m L) Xopic -+ Xopic S(m L) — Pic.
We define £,C by the following Cartesian diagram

% I
= lw
S(m, 80+ E oy i
By [CL12], the complex
Or_oR*T.L
is a dual obstruction theory for the natural projection
s S(m L9 = Spec Sym (©7_,F) — Pic.
This perfect obstruction theory induces a virtual class
[ﬂg,n(Prvd)]Vir = u![‘Bic} € A*(mg,n(PT7 d)).
Proposition 7.1.3. We use Notation . For § defined in eq. , we have an
isomorphism of sheaves
3= (Rlﬁ*S* ® wg/%c)* ~ L
over Pic.
Proof. Using Grothendieck duality we have
(R L£" @ wepic) = RHompic(R*T. L% @ we mpic, Ospic)
= R°m. RHomspi(L£" ® we/qics We /pic[1])
= R*m.RHome(Oc, £ @ wg jqic ® Wepic[1])
= R*m.RHome(O¢, £[1])

(26) = R*w.L[1].
On the one hand, we have that
(27) Y R*m. L)) = . L.

In the following we look at an explicit resolution of (R*T.£* ® we pic) and
compute its h~!. This is similar to the discussion in [CFK20], Section 3.2. By
the stability condition on Pic (see Equation ), the universal curve over ‘Bic
is projective. This ensures that we have an ample section on € and we take A
sufficiently large so that RO, £*(—A) ® we /pic = 0.

We now consider the exact sequence of sheaves on the universal curve over Jic

0— 2*(*14) @ We /pic — £ @ We /pic — £ ®w¢/q3ic|A — 0.
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Pushing forward the above to Pic, we get a long exact sequence
0— R'm. 2% ® We /Pic SR, 8" ® We picla —

(28) —R'm. £ (—A) ® wepic — R'T.L" ® wepic — 0.
This gives
(29) R £ ® we jopic [RO7.£* ® We /picla — R'7.£5(-A)® We /pic)
with the complex on the right, being a complex of vector bundles supported in
[0,1]. This gives

(R £ ® we yopic)” =~ [(R'm.£5(—A)® We /pic)” — (R'7.£* ® We /picla)’]s

with the complex on the right being supported in [—1, 0].
Applying the functor Hom(—, O) to and using that it is left-exact, we get
(30)
0— (le*ﬁ* (024 wQ/‘L’ic)* — (Rl’f('*,g*(—A) ® wg/gpic)* — (RO’]T*»S* ® UJQ‘/&Bic|A)*

This together with eq. shows that

(31) B! ((R‘W*E* ® wmﬁc)*) = (R'7m&" @ we )
Equations , and imply that
(R'7.£" ®@ wepic) = ROm.L. O

Remark 7.1.4. As in the proof of Proposition we have an explicit resolution
of § (see [CFK20], Section 3.2). Let A be a sufficiently high power of a very ample
section of the morphism € — Pic such that R'm,£(A) = 0. The short exact
sequence

(32) 0— £ — £(A) = £(A)|a — 0.
induces a long exact sequence
(33) 0 — R7m.& — R'7,L(A) — R°m.L(A)|4 — R'7.L — 0,

which shows that [ROm,£(A) — R, £(A)|4] is quasi-isomorphic to R*7, L.

With our choice of A we have that ROm.£(A) and R%m,L£(A)|a are locally free
sheaves over Pic. Sequence together with the fact that Rm,£(A) is a locally
free sheaf over Pic implies that R%7, £ is a torsion-free sheaf on Pic.

Remark 7.1.5. The proof of Proposition shows that we have a resolution of
5= R'm, L* ® we spic to the left given by . The isomorphism in Equation
shows that the complex

[ROT.£* @ wepicla = R'm £ (—A) ® wempic]
is dual to
[RO7,.£(A) — R, £(A)| 4]

We will use this duality in Section [0} Hu and Li work with the resolution to the
right we have in . In the previous sections we used the resolution to the left
Equation . Since dual morphisms have the same Fitting ideals, both morphisms
give the same Hu-Li blow-up.



50 A.COBOS RABANO, E. MANN, C. MANOLACHE, R. PICCIOTTO

7.2. The main component of stable maps to P". In the following we look
at stable maps with a lower bound on the degree (see Assumption . In this
situation the moduli space of stable maps has a main (irreducible) component. We
discuss this main component and its relation to the main component of abelian
cones.

We fix the following assumption from now on.

Assumption 7.2.1. In the following we fix d > 29 — 2. For C' a smooth genus g
curve, L a line bundle of degree d, and d > 2g — 2, we have that H'(C,L) = 0.
This shows that for d > 2g — 2 the locus M, ,,(P", d) of stable maps with smooth
domain is smooth. Note that, under the degree assumption, M, ,(P",d) has a
smooth surjective morphism to the substack of Bic, ,, ; where the underlying curve
is smooth, which is connected. The fibers are open in P(H°(C, L)® 1) so they
are connected. This implies that M, ,,(P",d) is connected. Thus M, ,(P",d) is
irreducible, so its closure is an irreducible component of M ,,(P", d).

Definition 7.2.2 (Main Component). Consider the Zariski closure in M, ,,(P", d)
of the locus Mg ,,(IP",d) where the curve is smooth. We call this component the
main component and we denote it by H;H(PT, d).

We introduced the main component of an abelian cone in Definition|6.1.5} In our
next result, Proposition we show that the main component of M, ,(P",d)
is contained in the main component of Spec Sym (]_,&). By the proof of propo-
sition on ﬂ;n(ﬁw’, d) the universal curve is generically smooth and 7, L is
generically a vector bundle.

Proposition 7.2.3. We have that M;n(w, d) is an open substack of Spec (Sym &]_,,
3)tf'

Proof. Let M, ,(P",d) and Bic®™ denote the open substacks of M, ,,(P",d) and
Pic where the curve is smooth. The first step is to show that the sheaf § =
R'm, (£* ® we opic) is locally free over JBic™.

Let m5™: €™ — Pic®™ denote the universal curve and £5™ the universal line
bundle on €%™. Assumption and cohomology and base change ensure that
Rigsmgsm — (. Therefore, RO7S™£5™ has constant rank, so it locally free. Using
Serre Duality and local freeness of wysm, we see that

Rlﬂ'im(ssm* ®wﬂ_sm) ~ (ROﬂ_im((Ssm* ® wﬂ_sm)* ® wﬂsm))* ~ (Roﬂimssm)*
is locally free.
In particular, the Ogp;c-algebra (Sym @7_, ) is locally free over JPic™.
To simplify the notation, let C' = Spec Sym @7_, § and C* = Spec (Sym @&I_,

FH. By Proposition and using that Pic*™ is generically reduced, we have
that

(34) el (7 (Pic™™)) = M,

where 771 (PBic®™) denotes the fibre product PBic™ xqi C, which is open in C.
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We conclude by the following chain of equalities
Mo (BT d) =BG e gy (7 (B 0 My o (P, d))
= cIE (r T (Pie™)) xo Mo (P, d)
= th X ﬂg’nﬂpr, d).

The first equality is the definition of ﬂ;n(]}”, d), the second one is Lemma

(applied to Y = C and W, V reduced open subschemes of M, ,,(P", d) and 7~ (Pic™)
respectively), and the last one is Equation . ([l

Lemma 7.2.4. Let Y be a scheme, let V,W be reduced open subschemes of Y.
Then

PV xy W) = B3V xy W

Proof. Since V and W are reduced, so is V' Xy W. This means that the schematic
closure is just the topological closure with the reduced induced structure by [Sta22]
Lemma 056B]. Therefore the question is purely topological, and it is straightforward
using that cI$"W = cly W is the intersection of all the closed subsets C' of Y that
contain W. O

7.3. Blow-ups of the moduli space of stable maps. In this section we con-
sider a desingularization p: ‘f& — Pic of §F and the base change ./K/lvgm(IP’T,d)
of My, (P",d). By compatibility of abelian cones with pullback, ./K/lvgyn(]P’T,d) is
an open substack of C(®]_,p*F). We define the main component M;n(ﬂ‘”“,d) of
/K/lv_WL(iIJ””7 d) to be the closure of the smooth locus (see Deﬁnition. This defini-
tion ensures that M;’n(]IDT, d) is open in the main component of the ambient abelian
cone C(®]_,p*F) (Proposition, thus it is irreducible. In general, /,\\/l/;,n(IP””, d)
does not agree with the pullback of ﬂ;n(ﬂ"r,d), which might be reducible (see

Remark [7.3.4]). Finally, we induce a virtual fundamental class on /K/lvgm(IP’”, d).
We define

(35) p: Pic — Pic

to be any desingularization (as in Definition [3.1.1)) of the sheaf § (defined in
Equation ) By theorem [5.2.2] we have a proper birational map

(36) Pic — BlgPic

where BlgBic — Pic is the Rossi blow-up. We are mainly interested in ‘33\1; being
the Rossi or the Hu-Li blow-up (see Section .
We define

Myn(P d) —2 M, (PT,d)

(37) lﬁ i J#

Pic ———— Pic.
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Note that Mg,n(PT, d) is proper since p and My ,,(P", d) are proper. Let p : % —
PBic be the natural projection. Consider the Cartesian diagram

L]

Pic —— Pic

where € is the universal curve over *Pic and £ the universal line bundle. Recall that

F=R'7T.(L ®wy).

Lemma 7.3.1. In notation as before, we have an open embedding
My.n(P",d) < Spec Sym (B_yp*F) = Spec Sym (@LORlTu (@ W%)) .
Proof. By Proposition we have an open embedding
Mg, (P",d) C Spec qiSym &]_, §.
Thus, Mvg,n(PT, d) C Spec ﬁSymp*{S’@”l and p*F = R'7,(£* @ wr). O

Definition 7.3.2. Consider the closure in Mvg,,L(PT, d) of the locus where the curve

is smooth of genus g. We

it by Mg ,(P", d).

Proposition 7.3.3. The
(1) We have an open

call this component the main component and we denote

following hold:
embedding

M3 (")  Spec (Sym @7 p*§)"" = SpecSym (@] (")) -

(2) //\/lv;n(ﬁm", d) is proper and smooth over ‘BTC
Proof. By Lemma we get ./K/lv;m(IP’r,d) — Spec (Sym @7_, p*&)tf is an open

embedding. By cohomolo;

gy and base change we have p*§ ~ RlTr*(E* ® wx). The

argument in Proposition [7.2.3| applies to Rl%*(fl* ® wz) and we obtain an open

embedding

—~ ~ tf
MG, (P",d) = Spec (Sym &_y R'7. (& @ wr)) .

By construction (p*§)* is locally-free and, since the torsion-free part commutes
with direct sums, the same is true for (p*Fe+1)*. This shows that Sym &!_, (p;F)"
is locally free therefore we have an isomorphism

Spec (Sym @]_, 'p*%’)tf ~ Spec Sym (@;:0 ('p*&’)tf>

by Lemma [6.2.1

The first part implies that /T/l/;’n(IP”',d) is smooth over % since it is open in

a vector bundle. The properness of ./W;,n(]P’T,d) follows from the properness of

Mg (PT,d).

O
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Remark 7.3.4. We consider the following Cartesian diagram:

Me(P) —— M, (P, d)
(38) | i l
Pic —-— Pic.

In general, /T/l/;m(Pr,d) — MO(P) is not an isomorphism and thus the diagram
below is only commutative

M, (B d) —— M (P, d)

(39) lﬁ Jn
Pic —— L Pic.

This observation is a reflection of the fact that torsion-free part does not commute
with pullback, see Remark By pullback, Proposition induces an open
embedding

M° () < Specp” (Sym (97-8))"
which in general need not factor through Spec (Sym (@;:op*g))tf % Specp* (Sym (@;:Og))“,
Meanwhile, as in the proof of Proposition we have that
M (F",d) = Spec (Sym (@1_op"F))" N Mg (B, ).

However, MVO(P) and /K/lvg’n(]P’T, d) do give the same invariants. To see this, note
that we have commuting morphisms

M3 (BT, d) ——— M°(P)

and
(40) PuMG o (P7, d)] = 7. [M°(P)] = [M, (P, d)].

Let 7 : C — My, (P, d) be the universal curve and let g : C — C the morphism
induced by ¢. The morphism g has a dual perfect obstruction theory given by a
morphism

qf)ﬁ : Tﬁ — @;ZQR.%*Z]\*E.
This perfect obstruction theory induces a virtual class

(Mon (P, )™ i= ' [ic] € Au(Mgn(P,d),
where fi' is defined as in [ManI1].

Remark 7.3.5. While Pic is smooth, ‘:ﬁ; does not need to be smooth. This is
not a problem, all we need for a well-defined virtual class is that Bic has pure
dimension. This is true, since Bic has pure dimension and p is birational.

Proposition 7.3.6. We have the following equality
(D)« [Mg,n(]P)Ta d)]Vir = [ﬂg,n(]}»ra d)]Vir
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Proof. Note that by cohomology and base-change we have that R® TP L =D "R°T.L.
As p is birational and proper, we have p.[Bic,] = [Bic]. We now apply Costello’s
Pushforward theorem (J[HW22]) to Equation and we get

D Mgn (B, )" = (M, (P, d)]"". O

7.4. Definition of reduced GW invariants of hypersurfaces in all genera.
In this section we define reduced Gromov—Witten invariants for hypersurfaces in
projective spaces under Assumption [7.2.1] This is less straight-forward than for
projective spaces, since we have no understanding of the geometry of moduli spaces
of maps to hypersurfaces.

Let X be a smooth hypersurface on P" defined by the vanishing of a regular
section of s of O(k). We have that M, ,(X,d) is cut out in M, ,(P",d) by the
vanishing of the section m,s of 7.L%* on M, ,,(P",d). If m.L®* is a vector bundle,
we can use this to define the virtual class of M, ,,(X,d) by virtual pullback. This
generally fails for ¢ > 1, so we will use the blow-ups we developed to ensure that
the restriction of m,L%* to the main component M;H(PT, d) is locally free.

Construction 7.4.1. Let X C P" be a smooth hypersurface of degree k. Let
pr.: Pic, — Pic be any desingularization of §F = R, (£* @ w,) and RO, £&F.
We define the main component ﬂ;}n (X,d) of My, (X,d) as follows

——0 O

M, (X, d) —— ﬂg’n(]P’T, d)

w L
My (X,d) —— Mgy, (P, d).
Notice that M;’,n(x ,d) may not be irreducible, but we will still refer to it as

the main component. The main component M;n(X ,d) does not have a perfect
obstruction theory, in the following we fix this problem.

‘We define
Mg (X d) —— Mg, (B, d)
r |
(42) Myn(X,d) —— My (P, d)

where ./,\/lvgvn(IP”",d) and /f\;l/g_,n(]P’r,d) are defined in Section Since they are
defined over any desingularization of §, we can in particular replace p : ‘/ﬁl/c — Pic
of by pi : ‘fi/ck — Pic, which also desingularizes R, £®* for k the degree of
the hypersurface. Then Proposition implies /f\/lv;n(X ,d) is proper.

To sum up, we have the following diagram. Note that some of the squares are

not Cartesian (See Remark [7.3.4]).
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o

M, (X, d) M, (X, d)

(43) My (P, d) —— M, (P",d)

We need the following result, whose proof we delay for reasons of exposition until
after Proposition [7.4.7]

Proposition 7.4.2. Let i : .//\‘/l/;,n(X7 d) — ./WZW(IP”“,d) as in and let @ : C —
./K/lvgm(Pr,d) be the universal curve. Then, 7, L is locally free on .//\/lv;m(IP’T, d).

We define
(44) ME, (X, &)V =7 [MS, (P, d)]

where 7 : .//\/lv;,n(X7 d) — ./K/lv;m(]P’T,d), as in Proposition Note that for any
1 < j <n we have morphisms

M (P d) = My, (P, d) =2 P’

and
- ev,

My n(X,d) = My, (X,d) — X.
By abuse of notation we denote both of these compositions by ev;.

Notice that the definition of the reduced virtual class in does a priori depend
on the choice of a desingularization of Bic. The following proposition shows that
integration against this class does not depend on the desingularization. The proof
of Proposition [7.4.3|is delayed, and we first prove Lemma [7.4.5)

Proposition 7.4.3. Under Assumption let p’ : ‘/ﬁ»/c/ — Bic and p” : ‘/)i/c” —
PBic be birational proper maps such that
(P, (")), (p)* (ROm 2N and ((p")* (RO7.L2%) are locally free.

Consider /T/IJ;’,I(X, d)" and Mg ,,(X,d)" defined analogously to Mg ,(X,d) above.

Then we have
/~ Hev*% = /N Hev*%
[ [

Mg (X)) Mg (X))

Proposition [7.4:3] permits us to define the reduced Gromov-Witten invariants as
they are independent of the blowing-up of Jic.
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Definition 7.4.4. For d > 2g — 2, we call reduced Gromov-Witten invariants of
X, the following numbers

/ H ev*y;.
(Mg, (X, d)]vi

g,n

In order to prove Proposition [7.4.3] we first prove the following.

Lemma 7.4.5. Consider a commutative diagram of Artin stacks

‘Btc _ &Btc

N,

and let ./T/l\g,n(]P’T, d) and ./{/lvgm(]ll”"7 d) be the corresponding fiber products Mg, (P, d) X qic
Pic, respectively My ,(P",d) Xspic Pic.

(1) We have a diagram with Cartesian squares

— —

Mg (P, d) —— My,
| | |

@ ‘flli Pic.

)

(2) Suppose that @ and Pic are desingularizations of §. Let M\n(]}”, d) be

the main component of ./T/l\g,n(IP”", d) in the sense of Definition . Under
Assumption the we have a commutative diagram

—0

M (B d) —— MG, (BT d) —— M, (P",d)

| | |

@ ‘ﬁl/c Pic.

Proof. The first statement follows from the fact that the square on the right and
the big square are Cartesian. This shows that the square on the left is Cartesian.

For the second statement, we apply point 1 and we consider the following ex-
tended diagram in which all squares are Cartesian

Me(PT)

ME(PT) ——— M*(
B N
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By the definition of the main component of the moduli space of stable maps in
Definition we have solid maps in the diagram

—

MP(PT) ———— M°(P") —— M, (P, d).

The dashed arrow is the identity on maps with smooth domain. Since the map
MP(P") — MP°(P") is proper it maps closed substacks to closed substacks, and
thus the identity map extends to a map

Mo (", d) — M

g,n

(P, d). O

Proof of Proposition[7.4.3. Let Pic denote the closure inside the fiber product
— ——/
Pic xgpic Pic of locus of smooth curves. We then have a commutative diagram

— ——
Pic —— Pic

| g
A:/// p// J‘/
Pic —— Pic.
We define A//ngn(X ,d) by the following Cartesian diagram

M (X, d) —— My (X, d)

| |

Pic —— Pic
and similarly we define

Myn(X,d) —— My (X,d) Mgy (X,d) — Mgn(X,d)

R

—/ P . povatll P .
Pic ——— Pic Pic ———— Pic

Using the notation in and Lemma [7.4.5] part 2, we obtain a commutative
diagram

M, (X, d)
- L
(45) M. (X, d) o (X, d)"
\O /
M, (X, d)
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By Proposition we have that p’ and p” are proper. In the following we
show that they are virtually birational.

Recall from Construction that we have diagrams with Cartesian squares on
the left

— I

(Pr,d) —— Pic

N ST

(P, d) —— Pic

and

ol —

@ T

which give

(48)
MG (X, )] = (@) M, (P7,d)] and - [Mg (X, )] = (i) [M;,, (", d)].
Since /\/l° (X, d) and /\/lo o(P",d) are irreducible and have an isomorphic open

subset, we have that 7/ and 7" are birational. By Proposition [7.3.3] they are also
proper and thus we have

(49) LM, (P",d)] = M} ,(P",d)] and r[[M] ,(P",d)] = M, (P", )]
Using (48)), and commutativity of pullbacks with push-forwards in eq. (46 and
eq. (37), we get

PLIMG (X, ) = [MG (X, )™ and

PLMG (X, )™ = (Mg, (X, d)]

Intersecting both equations above with [] ev*y; we get the conclusion. O

(50)

In the following we discuss several ways of blowing up Pic to desingularize
RO, £9F.
Lemma 7.4.6. Given F, G sheaves on an integral scheme X, with G torsion free
and f: F — G a morphism, we have that f factors through
F—-FT g
Proof. Since X is integral and G is torsion free, we have that the composition

Tor(F) — F — G is zero. The claim now follows from the universal property of
quotients. O

Proposition 7.4.7. In notation of Section[7.3, we have the following:
(1) An isomorphism
Y (p*ROm, )Y — RF, L.
(2) Blgiy, co-rgu, Bic is a desingularization of ROm, £2%, for any integer k >
0.
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Proof. 1. As in Remark let A a section of € — PBic such that R'7.(£(A)) = 0.
By abuse of notation we denote by A the pull back of A to €. We have exact
sequences on Pic which fit into a commutative diagram

PROTLE — 5 p*ROm, (£(A)) —— p*ROm, (£(A)|4) —— p*R'm & — 0

| | |

0 —— RF,& — R%,(£(A)) —— ROF,(£(A)|4) —— R'F.& —— 0,
where the vertical arrows are obtained by cohomology and base change and the solid
arrows are isomorphisms.

By Lemma we have a morphism
¢ (p*ROm, &) — R%, £
which sits in a commutative diagram

(51) p* RO, & —— (p* RO7, &) —— p* RO7,.(£(A))

J J

0 ——— ROF, & —— RO, (£(A)).

Since the Image of the map (p* RO7,£)" — p* ROm,(£(A)) is equal to the kernel of
p* RO, (£(A)) — p*RO7,(£(A)|4), and the Image of R°7, £ — RO, £(A), is equal
to the kernel of RO, (£(A)) — RO%,(£(A)|4), the isomorphisms in the diagram
show that

(52) T ((p"R°m.£)" - p*ROm.(£(A))) ~ Im (RO%*E - RO%*(E(A))> .

Since p*Rm, £ — p* R, (£(A)) and p*Rm, & — RO, £ are generically injec-
tive we have that (p*Rm, L)% — p*RO7,.(£(A)) and (p*R°7, &) — ROT,.£ are
injective. This together with shows that 1) is an isomorphism.

2. Without loss of generality we assume that £ = 1. Let p : Blgir, ¢xgw. Pic —
Bic denote the projection. By cohomology and base change we have p*(R'm, £* ®
wx) ~ R'%,£* @ ws. With this, we have that (R'7, £* @ wz)' is locally frec.

Since .

((Rl%*ﬁ)tf) ~ (R'%,8)"
and (Rl%*g* ® wz)¥ is locally free, we get that (Rl%*;:)* is locally free.

By Propositionvve have that RO%, € ~ (R'%,£* ®wz)*. This together with
the above shows that RO%*E is locally free. The claim now follows from the first
part of the proposition. O

Proof of Proposition[7.4.2 By construction we have that (pjm,£%*)t is locally free
on Pic and by Proposition we have

(pim, L8 ~ 7, g%k,
This gives that T, L0k ig locally free on ‘ft/c Since p : Mo

cohomology commutes with base change and thus

u*%*ﬂ‘g’k ~ %*u*£®k.

5.n(P",d) — Pic is smooth,
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Since ,u*E ~ [ this shows that 7, L& is locally free on ./,\/lv;n(]P”’7 d). O

Proposition 7.4.8. In notation of Section[7.3, we have that BlzBic is a desingu-
larization of RO, £®k,

Proof. For k = 1, the statement holds by the proposition above.

In the following we show that Blgo,_¢ic is a desingularization of R0, £2¥, for
any k > 0.

Locally we choose B a section such that £2% ~ £(B). Taking A such that
Rm,£(A) = 0, we have a diagram

0— > RO, 8 ——4 4 ROz, £(A)

J |-

0—— RO, £(B) —— R'm,£(A + B).

Let U be the subset of PBic, where R'7,. £ = 0. Since we work under the assumption
[72d] U is a non-empty open subset. Then on U we have the following exact
sequences

0— R'7.& =R L(B) —» R'7.&(B)|p — 0
(53) 0 — R, £(A) R, &(A+ B) = R°7,£(A+ B)|gp — 0.
By possibly shrinking U, the section A may be chosen to avoid B. With this, we
have that multiplication with A induces an isomorphism
R1,.£(B)|p ~ R°m.L(A + B)|5.

By possibly shrinking U, we may assume that ROm,£(A4) and R'7,£(A + B) are
trivial, and that the sequences in are split. The claim now follows from Corol-

lary
(]

In genus one, following [VZ08| [HL10], one can define reduced Gromov-Witten
invariants of degree-k hypersurfaces on Blg*ic. Below we give a direct proof of this
fact. The proof below does not generalise to higher genus.

Proposition 7.4.9. Let ¢ = 1. Then for every k > 1, the sheaf m.ev*O(k) is
locally free on the main component M3, (P",d) of My, (P",d).

Proof. Fix k > 1. By Equation , we need to show that RO7, (L£®%) is locally
free over the image Z° of My ,,(P",d) in Pic via the forgetful morphism.

In a neighbourhood of (CN', Z) € ‘f&l we can choose a section A of £2¥~1. This
gives an exact sequence

(54) 0 — R°%.€ -2 ROF,(£9%) = R°7,(€%%| 1) — R'F. £ 5 R'%, (£9F) = 0.
If L is non-negative on each component of C, as is the case in Z°, we have the
equality

h'(C,L) = h'(C,L®*)
by a Riemann-Roch computation. Since cohomology in degree 1 commutes with
base change and the map Hl(é, E) — Hl(é7 E®k) is an isomorphism, we have that
the last arrow in sequence (54)) is an isomorphism. This shows that we have a short
exact sequence
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0 — R, £ — RY%,(£9%) — ROF,(£9%|,) — 0.

Since R7,(L£%*|4) is locally free and by Proposition the sheaf RF, & ~
(R'T,. £ ®@wz)* is also locally free on Z°, we get that RO7,(£%¥) is locally free. O

Remark 7.4.10. Above we denoted by ﬁt/c any desingularization of §. We collect
here various blow-ups of interest.

(1) Blg%Pic in the sense of Rossi (see Section
(2) BI?L‘Bic in the sense of Hu—Li.
(3) Blgoy, corPic
(4) Bl oo BIY " Pic

We have
BIf “Bic — BlgPic and BIRL, aerBIY “Pic — Blgi,, cenBlgPic.
By Proposition and by proposition we have
BlyPic — Blyi corPic — Blgoy, gorPic.

7.5. Reduced invariants from stable maps with fields. Reduced invariants
are conjecturally related to Gromov—Witten invariants [Zin09al, [HL1Il Conjecture
1.1]. One of the main difficulties in proving such conjectures is that one needs to
understand how to split the virtual class of a moduli space of stable maps among its
irreducible components. What makes this task particularly difficult is that almost
nothing is known about the geometry of this moduli space of stable maps.

In genus one and two the existing algebraic proofs [CL15, [LL.O22, [LO21), LO22]
use an additional well-behaved moduli space of maps with fields [CL12]. In view
of these conjectures, we discuss blow-ups of maps with fields and we show that the
ingredients for the low genus proof are also available in higher genus.

Given X a hypersurface (or more generally a complete intersection) in P", the
associated moduli space of maps with fields has the following features:

(1) in genus one and two it has well-understood geometry, such as local equa-
tions and irreducible components (see [HL10, HLN12]);

(2) it has a virtual class and a localised virtual class (see [KL13], Definition 3.3);
the latter is needed because the space of maps with fields is not compact;

(3) the localised virtual class is supported on My, (X,d) and it coincides up
to a sign to the virtual class of M, (X, d) (see [KL13], Theorem 1.1).

These properties allow us to work with the well-understood moduli space of stable
maps with fields instead of M, (X, d), whose geometry is unavailable.

In the following we use the Hu—Li blow up the moduli space of maps with fields
to define reduced invariants in this context. The main theorem of this section,
Theorem [7.5.1] shows that the blown-up moduli space of maps with fields has
property (1) listed above, and even more, its irreducible components are smooth
over their image in ‘53; This is a feature of the Hu—Li construction, which does not
hold for the Rossi construction. Properties (2) and (3) are automatically satisfied.
In future work we will also investigate the (intrinsic) normal cone of the space of
maps with fields.
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7.5.1. Review of maps with fields. We recall the construction and properties of the
moduli space of maps with p-fields. This space was introduced in [CLI2] to study
higher genus Gromov-Witten invariants of the quintic threefold.

In the following we fix k € Z, k > 1, and we consider the sheaf
T (L9 & (£97F @ we pic))

on Pic and its corresponding abelian cone

p

S (77* (gt g (£®7k ® (Ug/fpic)> = Spec Sym R'm, ((2* ® wg/smc)@wrl &) £®k) 2 Pic.

Recall that, in our notation, we have already imposed on PBic = ‘Bicjmd the stability
condition in Equation . Then, the moduli space of maps with p-fields is defined

in [CLI2| Section 3.1] as an open in the abelian cone

My (P, d)P =8 (’/T* (SGBT‘H @ (£®7k & we:/q}ic))

Therefore, an element of M, ,(P",d)? over (C,L,s) € Mg, (P",d) is given by a
choice of a section p € H(C, L% @ wc).
Consider the Cartesian diagram

o —r

(55) lﬁp l?

Mgy, (P, d)P —— M, (P, d).
The complex
(56) Ext, . (brayp pic = BTL(@I_oL ® LZ7F @ wmr)

is a dual obstruction theory for the morphism p?. The stack M, ,(P",d)? is not
proper, but the perfect obstruction theory admits a cosection o, that is, a morphism

o: hl(E*) — (’)ﬂgwn(]}w’d)p.

Note that since JBic s smooth we have that the absolute obstruction of M, ,,(P", d)?
is isomorphic to h'(E*) and the cosection lifts (see [CL12, Proposition 3.5]) . This
data gives a cosection localised virtual class [M ,(P", d)P]Vr.

For X a smooth subvariety cut out by any regular section of Op-(k), [CL20,
Theorem 1.1] states that

(57)

My (B, I = (~)C IR, (X, DI € Agan (i, .y (M (X, )

The particular case where r =4 and k = 5 (therefore X is a quintic threefold) was
the motivation for introducing p-fields in the first place. In [CL12l Theorem 1.1],
the authors proved Equation at the level of invariants before it was upgraded
to classes in [CL20].
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7.5.2. Blow-ups of maps with fields. In this section we discuss a non-minimal blow-
up which has good properties.
In notation as before we consider

(58) ¢ = Rlr, £%F,
We define
(59) Pic, == BIZBIE Fopic.

Similarly to Equation , we define //\\/l/g’n(IP’T',d)p as the following Cartesian
diagram:

Mg n(PT,dy? —2y M, (P, d)P

(60) = " yp

Pic, — 2= Pic.

Since Mvg,n(IP’T,d)p is an open substack of Spec Sympj} (€ © F¥ 1), we have a
perfect obstruction theory for P exactly analogous to that in .

Indeed, let 7 : CP — Mg,n(Pr, d)P be the base-change of the universal curve of
Mg, (P",d)P, and £ be pullback of the line bundle £ on C?. The perfect obstruction
theory on ./K/lvgyn(IP’T, d)P is given by

— R _ pe= (r@dr+l o pR—k .
ER, . /e, = PRER,  er aye i = RO (£57 @ L7 @ wr)

The cosection o induces

o ="pjo:h'(E -0

M.m(u»nd)v/q’sik) Mg, n(Pr,d)P-

One then obtains a localized virtual class as in [CLI2], with the additional feature
that our ‘33\1? may be singular. The argument there can be adapted to our case with
minimal changes. We sketch the argument below, while pointing out the differences.

We do not have an absolute obstruction theory, but only one relative to Bic,
so we do not have a cosection of the absolute obstruction theory. The (absolute)
cosection is only needed to prove that the intrinsic normal cone is contained in
the kernel of the cosection. Instead of lifting the cosection as in [CLI12], we work
relatively to Pic and we show that normal cone of P is contained in the kernel
cone E(7).

For M, (P, d)P, the fact that the normal cone of uP is contained in E(o) is
guaranteed by [CLI12l Proposition 3.5]. Using the diagram in Equation and
[Man1l Remark 3.5] we have that

Q:,jp — TJ,”;CM .
As in [KL13l Corollary 4.5], it is enough to show that €z» < pj F(0) on the subset
where ¢ is surjective. With this, we have F (o) = pj E(c). This shows that

Q:ﬁp — E(a),

as required. The rest of the construction follows as in the classical case. Intersecting
the normal cone of [i? with the zero section of F(5), we obtain localised virtual

class [.//\/lvgm(IP’T,d)p]gir supported on M, (X, d) Xqic ‘i\i/ck. See [CL12| Section 3]
for details.
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Since M, (P",d) — M, ,(P",d)P by zero section, we have M;,n(IPT,d) C
./{/lvgyn(P’" d)P. Under the assumption in we have that Rlm, L2 = 0. We de-
fine the main component of/\/lg,n(IP’T d)? to be ./\/l° (BT, d) X/\’Zg,n(IF’T,d)Mg’”(PT’ d)P.
Under assumption the fibers of the cone

Moo (B d) X 5 e gy Mg (BT, ) = Mg, (" d)

are trivial and M; (P, d) is indeed a component of M gn(P", d)P; in fact, it agrees
with the main component of M, ,,(P",d)P as an abelian cone. Even though geo-

metrically the main components of Mg ,(P", d) and M g.n(P", d)? agree, the second
one carries a non-trivial virtual structure in the form of an obstruction sheaf which
is the restriction of R'7,. L F @ w= as well as a cosection.

Theorem 7.5.1. Denote by (./\/l n(P7,d)P ) sen the irreducible components of
Myn (P, d)P and (Mg, (P, d)%)gco the irreducible components of ./\/lgm(IP’T,d).
Let
7P CN 5 Mg (BT, d)P
C? = My (P, d)°

the pull-backs of the universal curve on mg,n(IP’ﬂd)p. The following statements
hold.

(1) The morphism py, of 18 proper. -

(2) The irreducible components Mg ,,(P",d)P* and M, ,(P",d)? are smooth
over their image in ‘gi/ck, In particular, /{/lvz’,’n(IP’T7 d) is smooth over ﬁk,

(3) The sheaf %\*”\ev*(’)(k) is a locally free sheaf on .//\‘/l/g)n(PT,d)p’)‘, the sheaf
7lev*O(k) is a locally free sheaf on .//\/lvgm(IF”’, d)?. In particular, Tev*O(k)
s a locally free sheaf on /K/lv;n(]P’T, d).

Proof. 1. We have that p,, is proper, as py is proper.
2. Consider the following diagram

Spec Sym p; (F" ! @ €,) —— SpecSymFE T & €

(61) i i J

Pic, P Pic.

We have that .//\/lvg,n(IP’T, d)? is an open substack of Spec Sym pj (€, & F¥" 1) and by
Theorem [6.3.1] we have that the irreducible components of the stacks

SpecSym ¥ '@ ¢, and SpecSymFE !

are smooth over their image in Picy,.
This shows that Mg, (P",d)»* and M, (P",d)? are smooth over their image
in ‘Bic,. In particular

./f\/lvgvn(IP’r, d) = Spec Sym (p;FE" 1Y is smooth over Picy,.
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3. Let p* : My (P, d)P* — Pic be the restriction of uP. Let Z* be the image
of u*. Let 7 : €* — Z* be the restriction of 7. Let Z* be the fiber product

- Py
Z)\ Pk , Z/\

(62) | J
Pic, 2= Pic.

Let 7 : € — Z* be the restriction of 7 and let q,i‘ : € = € be the restriction of
qx- By commutativity of proper push-forwards with base-change we have that

(pR)*R*m}L =~ R*7) ()" £
Again, cohomology and base-change in the Cartesian diagram

B,

-
(63) > |

N

My (P, d)N —— ZA.
gives
(64) R*7)ev*O(k) = (u)*R*7) L%k,
We have a short exact sequence

0— RFAeF — B0 4 Bl 5 RIF Bk 5 0.

By construction we have that ¢ is locally diagonal. By Equation we have that

Ay *
Re7Yen O(k) = [(1) B "7 (1) B
Since (u*)*@ is locally diagonal, Proposition implies that R'7)ev*O(k) is
locally free. -
A similar argument shows that 7%ev*O(k) is a locally free sheaf on M, (P", d)?
and in particular 77ev*O(k) is a locally free sheaf on Mg, (P, d). O

Proposition 7.5.2. The localised invariants do not depend on the blow-up of Pic,
more precisely,

(ﬁk)*[Mg,n(Pr,d)p]?r = [ﬂg,n(ﬂﬂvd)p]gir'
Proof. The arguments used in [CLI2|] and its various generalizations to establish
Equation for the cosection localized virtual class on the right hand-side can be
adapted in a straight-forward manner to establish an analogous result for the class
on the left-hand side. That is,

(65) [Mgn (BT, d)PJEr = (—1) D=9 (AL (X, d)]

The only issue with adapting the classical proof comes from the fact that the
cosection o does not lift to the absolute obstruction theory. The discussion a
the beginning of Section shows how to get around this requirement, since
in our set-up all the stacks, obstruction theories and cosections are induced by
base-changing the usual ones over the morphism py, : Pic;, — Pic. Let

Mg,n(Xv d) = mg,n(Xa d) Xepic %k
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with pry : ./T/l/g,n(X, d) — Myn(X,d). Now .//\/lvg,n(X7 d) can be given a perfect
obstruction theory by pulling back that of ﬂg,n(x ,d), and similarly to Proposi-
tion [Z.3.6] we have

(66) (pr1)«[Mg.n (X, )] = [Mg (X, d)]7
Then the result follows from Equation , Equation and Equation (65)). O

7.5.3. Reduced invariants from maps with fields. Let Eﬂg,w,(m»d)?/ﬁkgnme the
relative intrinsic normal cone of the morphism p? : Mgy, (P",d)? — Pic,, [BEIG,
Section 7]. We have € M, (P )2 e = U;&;, where €; are its (finitely many) irre-
ducible components. By the discussion above, the main component of M ,(P", d)?
is Mg, (P, d), which is smooth over Pic,. So there is only one component of the
intrinsic normal cone which is supported over an open of M? (P",d), which we

g,n

denote by &,. The cosection-localized virtual class of /f\/lvg,n (P, d)?P is defined as

Vi T vir !
[Mgm(P 7d)p}& = Og[eﬂgyn(pr’d)p/ﬁk]

where Of; denotes the cosection-localized virtual Gysin pullback. Then,

(Mo (BT, d)7J5" = > [ M (BT, )]}

for [./,\/lv_,Ln(IP”",d)p];-’ir the class corresponding to the component €;. In particular,
[Mgn(P", d)PJ§" is supported over M? , (X, d).

Proposition 7.5.3. Denote by [Mg ,,(P",d)P§" the cosection-localized virtual fun-
damental class corresponding to the cone &. We have

MG (X, ) = (1) (M (P, d)PJ5T € Au(M, (X, d)).
Proof. This follows the lines of proof of Corollary 4.4 in [CL15]. Let
E} := R*ZP(D7_oL), ES:= R*ZP(LZ* ® wsp)

and let & = h'/hO(E?) and & = h'/h°(E®). We have that &; is a vector bundle stack
on Mg ,(P",d)? and € ~ & & E,. Let U be the open subset of the main component
of Mgy,(P",d)P, with consists of maps with fields with irreducible source. On U

we have R'7, f*O(k) = 0, and thus U is also an open subset of Mg’n(IP’T', d). Using
that U is smooth and unobstructed, we see that € is isomorphic to the vector

U/Pic
bundle stack &;]y. Since the embedding € i Rt /RO (Ely) is
(E1©0)luy = (&1 @ &)l

and €57 — & is a closed embedding, we get that €, ~ &;. By the

9.0 (P7,d)P /Pic
definition of the localised cosection virtual class, we get

(Mo, (BT, )5 = 05(C0] = 0'(0g, ],
where Og, is the zero section of 52|/\7 ) By Lemma 4.3 in [CL15] with the
complex R*7V°L®F and Theorem part 3 we get

M (B DPIS = crop (R'FD°(LETF @ wane)) - M, (P, d)].
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By Serre duality we have that
c1—gira(R' TV (LY @ wan)) = (1) 7901y (ROFDLEF)
and thus
(Mo (B, d)PJ5" = (=1)' 70 a(ROFDLER) - (MG, (P, d)).
This proves the claim. O

Conjecture 7.5.4. Let X be a threefold which is a complete intersection in pro-
jective space. Then

deg[Mg..(P", d)P]¥" = ¢; deg[MS, (X, d)]'™,
for some c; € Q and g; < g.

Remark 7.5.5. The conjecture has been proved for genus one [Zin09al, [Zin09bl,
Zin08], [CL15], [LO21], [LO22] and genus two [LLO22].
In genus g = 1 and X a Calabi—Yau threefold, the conjecture translates into

- N . 1 _ .
deg[Mi (X, d)] = deg[M7 ,, (X, )] + 15 deg[Mon (X, d)]"™.

8. GENERALIZATIONS

The constructions above also work for quasi-maps. We first summarise some
of the results in [CFKI0, [CFKM14] and then extend the definition of reduced
invariants to quasi-maps and to more general targets.

8.1. Stable quasi-maps to GIT quotients of vector spaces. Let C' be a

scheme. Let V be a vector space and G a reductive algebraic group acting on

V. For P a principal G-bundle on C we define the associated V-bundle a
PxgV:=(PxV)/G.

This is a bundle with fiber V' over C. The quotient is taken by considering the

action g - (p,v) = (p-g~ ", g-v).

A morphism from C to the stack quotient [V/G] corresponds to a G-equivariant
morphism P — V from some G-torsor P over C' to V. That is, maps C — [V/G]
correspond to sections of the vector bundle P xg V — C.

Let x(G) be the character group of G and 8 € x(G) a fixed character. The
character 6 : G — C* determines a one-dimensional representation Cy of G, hence
a linearization of the trivial line bundle on V', which we denote by Lg. This is used
to construct a GIT quotient

X =V/)yG
which we assume to be proper. The GIT quotient comes with a polarization
V®xa (Lo |vs) =: O0) = V/oG.

Multiples of the chosen character define the same underlying GIT quotients with a
multiple of the polarization.
Let
VE=V?3@) and V?*° =V?*°(0)

be the open subsets of stable (respectively, semistable) points determined by Lyg.
We also assume:

(1) 0 # Vs =V55 and

(2) G acts freely on V*.
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Recall that for (C, P,u) a curve with a G-torsor P and a section u of the associ-
ated bundle P xg V', we say that (P,u) has “class” 8 € Homgz(Pic([V/G)),Z) if

is the composite map

Pic([V/G]) S Pic(C) L2, 7.

Definition 8.1.1. Let X be as before, n, g be positive integers and 8 € Homy (Pic([V/G]),Z).
An n-pointed, genus g quasimap of class 5 to X consists of the data

(Cvplw"vpnapvu)7

where

(1) (Cyp1,...,pn) is a connected, at most nodal, n-pointed projective curve of
genus ¢,
(2) P is a principal G-bundle on C,
(3) w is a section of the induced vector bundle P x¢ V on C, such that (P, u)
is of class g,
satisfying the following generic nondegeneracy condition:

e there is a finite (possibly empty) set B C C such that for every p € C\B
we have u(p) € [V*/G] C [V/G], where w : C — [V/G] is the map induced
by wu.

The quasimap (C,p1,...,pn, P,u) is called prestable if the set of base points B
is disjoint from the nodes and markings on C.

In [CFKM14, Def. 7.1.1], the authors define the length of the prestable quasimap
q at the point x € C, as follows:

Definition 8.1.2. The length of a prestable quasimap (C,p1, ..., pn, P,u) to V//oG
at x € C is

d,(u*
(67) U(zx) = min{or(us): s€ H(V, Lyng)®,u*s # 0,m > 0}.
m
Definition 8.1.3. Given a positive rational number €, a quasimap (C, p1, . .., px, P, u)

is called e-stable if it is prestable and
(1) the line bundle we (Y 1, pi) ® L€, where
L= u*(P Xa L@)
is ample
(2) el(x) <1, for any z € C.
Theorem 8.1.4. [CEKM14| Theorem 5.2.1, Theorem 7.1.6] The moduli space of e-
stable quasimaps @;n(X, B) is a proper DM stack with a perfect obstruction theory.

Let Bun denote the moduli stack of G-bundles over prestable curves, let 7 :
¢ — Bun be the universal curve and B the universal principal bundle on €. Let
£:=P xg Ly and let Bun®"* be open locus in Bun where

WW(Z pl) ® 26
is ample. By [CFKMI14, Theorem 3.2.5, and Section 4.2], we have an open sub-
stack ’Bun;t’6 C Bun, such that the forgetful morphism @;n(X ,8) — Bun factors

through %unf;’E and such that %un?’e is of finite type.
As in Notation [7.1.1] we fix g,n, 8, € and we omit the index from the notation.
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Let Vg =B xg V be the associated vector bundle on €. Let
§:=R'm.(Vy @ wr)
on Bun. By definition we have that
@;,H(X, B) C Spec Sym §
is an open subset obtained by imposing the open conditions in Definition [8:1.3]

Remark 8.1.5. Particular examples of this construction are:

e toric varieties, with Bun ~ Pic, , 4 X, .~ Xom, ,, Pic, , 4, and k the
rank of Pic(X);

e Grassmannians Gr(k,r), with Bun the moduli space of rank k-bundles over
prestable curves;

e complete intersections in projective spaces;

8.2. Reduced invariants for quasimaps to GIT quotients. In the following
we define reduced invariants for the targets in the previous section.
As in Section [7.4] we define

(68) Bun 1= BlzBun 2 Bun.
By construction (p*§)" is locally free. We define ég,n(X, B) by the Cartesian
diagram
Qgn(X, 8) = Qpn(X,5)
(69) lﬁ i lu
Bun — 5 Bun.

One can see that we have an open embedding
Qy.n(X, B) = SpecSym g, (*) = p*Spec Sym mun ().

Let7: C — @;n(X, B) be the universal curve over @;’H(X, B), P be the universal
G-torsor over C and Vp = P x¢ V. Similarly, define V3, using Pon7:C —
Qg.n(X, 5). By [CL12] the morphism p has a perfect obstruction theory equal to
R*7.Vp. By Equation the morphism & has a dual perfect obstruction theory
given by

(;Sﬁ : Tﬁ — R.%*Vﬁ
As before, these perfect obstruction theories induce virtual classes
Qg (X, B = 4! [Bun] € A.(Q, (X, 5))

and

[Qg.n (X, B)]"™ = [i'[Bun] € A (Qyn(X, B)).

The following is a generalisation of Assumption [7.2.1

Assumption 8.2.1. In the following we assume 8 € Homy(Pic([V/G]),Z) is such
that
HY(C,PxgV)=0

for any C' smooth.
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From now on we work under the Assumption Let @;n(X ,B) be the
closure the locus in @;n(X, B) which consists of points (C,p1,...pn, P,u), with C
a smooth curve. We call this the main component of @;n(X ,B3). We define the

main component @;’H(X, B) of @g,n(X, B) as the closure of the locus which consists
of points (C,p1,...pn, P,u), with C a smooth curve. Note that this makes sense
even when ﬁ; does not have a modular interpretation, since p is birational. Note
that we have a commutative diagram

Q5 ,(X,8) —2= 0 .(X,B)

(70) J/;Zo J/uo
Bun ———— Bun.

By Assumption 1° is a smooth morphism, in fact it is just the projection of
a geometric vector bundle. This makes Qg , (X, 3) a smooth stack over Bun, and
thus an equidimensional DM stack, so we define

(98 (X, B =[5 (X, B)] € A(Q5 (X, B)).

Definition 8.2.2. Let v; € A*(X), we call reduced quasimap invariants of X, the
following numbers

/~ H ev* ;.
[Q5, (X, B)]

We deduce the following proposition analogous to Proposition [7.4.3| which states
that these invariants do not depend of the choice of the blow-up.

—/ — /!
Proposition 8.2.3. Let p’ : Bun — Bun and p”’ : Bun — Bun be birational pro-
jective maps such that (p* .5 (resp. (p"*m.3)%) and for any i € {1,...,m}.
Consider Qg ,,(X, )" and Qf (X, B)" defined analogously to Qg , (X, ) above.

Then we have
~ evty; = /~ ev*y;.
\/['Q;,H(X’/B)/]Vir H [Qg,n(xﬁ)”]"" H

Remark 8.2.4. Note that as in Remark there are different ways of defining
the main component of the moduli space of maps (or quasimaps) and we use both
definitions.

Definition and Definition [7.4.4] are related, but possibly different in the
following sense:

(1) Assumption is usually stronger than For example for a rational
curve with normal bundle Op:(—d) ® Op:(—d) Assumption is not
satisfied, while is satisfied for large d.

(2) The main components é;’n(X, B) in Construction and in Section

are the same when X is a projective space.

(3) The main components @;n (X, B) in Construction and in Section

are usually different when X is a complete intersection.

We make the following conjecture.
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Conjecture 8.2.5. If X is Fano, then the reduced quasimap and reduced Gromov—
Witten invariants agree.

Remark 8.2.6. To see the intuition behind the conjecture above we first use that
for Fano varieties GW and quasimap invariants agree [CFK20]. Then we consider
the difference between standard and reduced invariants: this is conjecturally given
by maps (or quasi-maps) from curves with components C; of genus g; > 0 and of
degree d;, such that H*(C;,d;) # 0. The moduli space of stable maps have more
such components than the space of quasimaps, namely maps from curves with
a rational curve with no marked points glued to higher genus curves. All these
contributions are expected to be zero.

Since GW and quasimap invariants are different for non-Fano varieties, we expect
the corresponding reduced invariants to be different if X is not Fano.

9. DESINGULARIZATIONS IN GENUS ONE

In genus one, reduced Gromov—Witten invariants were originally defined using
the desingularization constructed in [VZO08]. It consists of a sequence of blow-
ups determined by the geometry of the moduli space M ,(P",d). In [HLI0], local
equations for the blowup are determined. We aim to compare this desingularization
with the one obtained using the Rossi blow-up BlzBic, with § as in Equation .
In particular, we describe BlzJic locally in the spirit of [HLIO].

9.0.1. Charts. In genus one, the original definition of refined Gromov—Witten in-
variants comes from [VZ0§|. The main is idea is to apply a sequence of blow ups
to My.n(P",d) in order to desingularize the main component. Strictly speaking,
the sequence of blow ups takes place in the stack 9% of genus-1 prestable curves
endowed with a weight. Let ©) denote the closure of the loci in 9M¥* of curves
with k trees of rational curves attached to the core. Then one should blow up 9y
along the loci ©1, O3, ©3 and so on in order to produce a stack 53?71”. This process
induces a blowup Mvg,n(]P’T, d) of Mg ,,(P",d) via fibre product.

Given a stratum /(/lvg’n(IE"T7 d)~ corresponding to a weighted graph =, local equa-
tions of ./,\/lvg,n(PT, d) and the local description of ©f in that stratum are described
explicitly in [HLI0]. The purpose of this section is to summarize such local descrip-
tion, give coordinates for the new approach locally and compare both.

It may be helpful to keep in mind the following diagram, described below.

¢

&y E,

0 1

(F=0) — (,=0) v,
T ¢

u % / %

! o ¢

U 9, D,

1l O 4

Myt e My
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Fix a weighted graph « with root o. Let Ver(y), Ver(y)! and Ver(y)* denote the
vertices, the terminal vertices (or leaves) and the non-rooted vertices of 7, respec-
tively. We take the natural ordering in Ver(y) making the root o the minimal
element. We assume that the weight in v is non-negative on every vertex and that
v is terminally weighted, meaning that the vertices with non-zero weights are ex-
actly those in Ver(y)t. Let 9% is the stack of genus-1 prestable curves endowed
with a weight. Remember that every element C' parametrized by %! has a dual
(weighted) graph ~, which can be made terminally weighted and rooted by first
declaring the root to be the (contraction of) the core of C' and then pruning along
all non-terminal positively weighted nodes. We will denote by o the root of any
terminally weighted rooted tree, and by a,b, ... the remaining vertices.

In the diagram, 9%t denotes the blow up of 9% described above and D1 is
the stack of stable pairs (C, D) with D an effective Cartier divisors supported in
the smooth locus of C. Fix a point (C,D) in ®; and a map in M, ,(P",d) with
underlying curve C. Then U is a small open around the fixed map in M, ,(P", d),
V is a smooth chart around the point (C, D) in ©; containing the image of U and
&y is the total space of the sheaf p,L(A)®" on V.

Let V,, = H'UGVcr('y)* A be an affine space that serves as model for local equa-
tions. We denote by z,,2,... the natural coordinates in V,. Similarly, E, =
Vy X I lpever(y) (A1)" and the coordinates on the affine space (A!)” corresponding
to a € Ver(y)" will be denoted by wg.1,...,ws,. The ideal &, = (P 1,..., D)
will be described explicitly in Equation . The smooth morphism ¢ comes from
the natural coordinates on V), associated to the smoothing of each of the disconnect-
ing nodes in C' (which are in natural bijection with Ver(vy)*). The map Y — (F = 0)
is an open embedding. Finally, 5 is induced by ¢ and F = ;5* ®,. It is in this sense
that we can think of @, as the equations of M ,,(P", d),.

Following [HL10], given a terminally weighted rooted graph +, the ideal ®, =

(®y,1,...,Py,) inside V, can be described as

(71) o= Y. Zpowes 1<i<m
vEVer(y)?t

where

Zv,0] = II Za-

o<a=v

Note that, for fixed 4, the variables w,; only appear in the i-th equation @, ;.
Due to the symmetry of the equations and the fact that all blow ups take place in
V., which has coordinates {z4}aever()+ (but not the wg ), in the examples below
we will not write down the index ¢ in the equations @, ; nor in the variables wq ;.
For example, in the study of the equations ®,, ; after blowing up, it will be clear that
the index i is irrelevant, in the sense that the way that ®, ; changes is independent
of 1.

9.1. Local equations of desingularizations. The local equations of the loci that
must be blown up are described, following [HL10].

Firstly, we describe how to assign an ideal I, to any semistable terminally
weighted rooted tree . Here, semistability of v means that every non-root ver-
tex with weight zero has at least two edges.
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The trunk of v is the maximal chain 0 = vy < v1 < ... < v, of vertices in 7y such
that each vertex v; with 1 < i < r has exactly one immediate descendant and v,. is
called a branch vertez if is it not terminal. Note that v is a path tree if and only if
it has no branch vertex.

Definition 9.1.1. Let v be a semistable terminally weighted rooted tree with
branch vertex v and let aq,...,ar be the immediate descendants of v. To v we
associate the ideal

Iy = (Zays -+ %ay)
in V,.

First, we must blow up V, along the ideal I,. To describe the remaining steps
we need to introduce the following operations.

Definition 9.1.2. Let v be a terminally weighted semistable rooted tree.

e The pruning of v along a vertex v is the new tree obtained by removing
all the descendants of v (and the corresponding edges) and declaring the
weight of v to be the sum of the original weight of v plus the weights of all
removed vertices.

e The advancing of a vertex v with immediate ascendant ¥ in v is a new
tree obtained by replacing every edge (U,v") with v' # v by an edge (7,v)
and pruning along all positively weighted non-terminal vertices as long as
possible. In Section we will denote by 7, the advancing of v in v and
by 7, the same tree before pruning.

e Suppose v has a branch vertex v. A monoidal transform of v is a tree
obtained by advancing one of the immediate descendants of v. The set of
monoidal transforms of v is Mon(7).

It turns out that the ideal ®, behaves nicely under monoidal transforms. Indeed,
let v be a semistable terminally weighted rooted tree with branch vertex v and let
a=ay,as,...,a, be the immediate descendants of v. Let v, be the tree advancing
of ain 7. Let 7: \7; — V,, be the blow-up of V, along the ideal I, = (za,, ..., Zay)-
We view f/; embedded inside V;, x P*=1. There is a natural way to associate to each
generator z,, of I, one chart of P*=1 and thus also of f/: We denote such chart by
17%%. Let mg: ‘7%,1 — V, be the restriction of the natural projection, where a = a;.
Then, by the proof of [HL10, Lemma 5.14], one of the following must hold

e cither v, is a path tree, and then the zero locus of 7 (®,) has smooth
components;
® or 7, is not a path tree and then

(72) Ta(®y) = Dy,

The whole blow-up process is summarized as follows. Fix «. First blow up V,
along I,. The pullback of ®, is controlled by Mon(vy). If Mon(7y) consists only
of path trees, we are done. Otherwise, for every element 4" in Mon(y) which is
not a path tree, blow up the chart of 17; corresponding to 4/ along I,,. Continue
recursively. The process concludes by [HL10, Lemma 3.12].

Now we want to describe BlgBic locally. Namely, we want to describe which loci
inside Pic we are blowing up locally. We have an exact sequence

0 — pu L — pL(A) = pL(A) |4
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by Equation (33). The change of notation is due to the fact that Equation was
global in Pic, but we now work locally.

After a careful study of the second morphism, [HLI0, Theorem 4.16] concludes
that p, L is the direct sum of a trivial bundle with the kernel of the morphism

(73) @ Pu: 05 = Oy,
vEVer(y)t

where £ is the cardinality of Ver(y)" and ¢, = [],, <, Cv, With ¢, the smoothing
parameter of the disconnecting node corresponding to the vertex v.

By Proposition the sheaf § can be described locally as the dual of Equa-
tion . In particular, by Remark we have that Blz9ic agrees, locally,
with the blowup along the ideal generated by the entries (©y)yever(y)t- In local
coordinates, this ideal can be described as follows.

Definition 9.1.3. Let v be a semistable terminally weighted rooted tree with
Ver(y)! = {v1,...,v:}. To v we associate the ideal

ny = (Z[vl,o]y . aZ[vt,o])~
Similarly to Equation , in the same setup we have that
To(Jy) = Jy,s

a

independently of whether ~, is has a branch vertex. This follows again from the
proof of [HL10, Lemma 5.14].

9.1.1. Ezamples. For two concrete trees v, we compute the equations @, as well
as the ideals I, and J,. We describe the blow up process of Hu and Li and show
that the result indeed desingularizes the main component of M, ,(P",d) locally.
Furthermore, we check that the ideal J, becomes locally principal in Hu-Li’s blow-

up.
Example 9.1.4. Consider the following labelled graph:

v= o
o~ O, = zowq + 2p(2cwe + Zawa),
a b I’y = (Zaa Zb)7
P
c d J’y = (Za; ZbZc, szd)~

Let /Y}; be the blow up along I, that is the zero locus of 242, — 22, inside

4 xPi{,ﬁ o The chart associated to a is that where z/, # 0. Dehomogenizing

Zay”bs%cr”d

amounts to the change of variables 2z, = z;z,. By doing so, we get that

*

T (D) = za(wa + 25 (2cwe + zqwa))

and that

*

7o (Jy) = (Zas Za2p2es 2a2p2d) = (2a)-
This means that the zero locus of 7} (®,) already has smooth components, so no
further blowups are needed on this chart, and that 7 (J,) is principal on this chart
too.

Below are the trees 7/, obtained by advancing a without pruning, and ~, obtained
by advancing a. We know that n;J, = J,_, but we check it in this example.
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Ya =
Jra = (2a)-

L — O

Similarly, we now look at the chart associated to b, where z, # 0. The change
of variables is now z, = zpz,,. It follows that

WZ(CI)’Y) = Zb('z(/zwa + zZcwe + ZdU)d)
and that
3 (Jy) = (2624, 2b%c, 20%7d) = 2b(24), Ze, Zd)-

This means that we still need to blow up. This time the tree ~;, obtained by
advancing b in 7 (no pruning is needed) is not a path tree. We also check the
identities J,,, = n}J, and 7} () = @5, .

0
\ D, = 2p(2Wq + 2cWe + 2ZqWa),
/I')\ I'yb = (Zaa Zes Zd)a
a ¢ d Jy, = 20(2a, 2ey 2d)-

To conclude the example, we need to blow up along the ideal (zq, 2., z4). We

collect the result below.
Advancing a, or equivalently looking at the chart z/, # 0, we have

Toa = O ,
[‘) Pyb,a - (‘)
‘ b ﬂ;ﬁl;k((b’y) = 7-‘-Z(CI)’YI;) = ZaZb(’U)a + zcwe + Zdwd)7
a ‘ J’Yb,a = (Zazb)'
A~ a
c d

Advancing ¢, or equivalently looking at the chart z/ # 0, we have
!
’yb,c =

0]

b (@) = (@) = B2e(Fata + we + 2awa),
‘ J%,c = (ZbZC)~

C

And finally, advancing d, or equivalently looking at the chart z/, # 0, we have
’7}l>,d = 0 ,

l\) Yod = O

‘ b (@) = mi(®y,) = 2za(zawe + 2ot + ),

d ‘ J’Yb,d = (szd)'

o~ d

a c
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Remark 9.1.5. Example shows that the Rossi blow-up process of M, ,,(P", d)
is not equal to the Vakil-Zinger blow-up. This is compatible with Remark 4.4. in

[ANT9]. Indeed, the Rossi blowup around 7 is given by Bl V,, and the Vakil-Zinger
one is the iterated blow-up Bl Bly V. We know there is a natural morphism

BII% Bl[,Y V’Y — BlJ_Y V’Y

over V,, either by Proposition or because we checked that J, pulls back to a
principal ideal in BII%BIIW V.. By contradiction, if there is a morphism

f:BLV, = Bl Bl V,
over V, then we get a morphism
f: Bl V, = Bl V,

over V,. By [Moo0O1], there is a fractional ideal K in V, and a positive integer o
such that
L,-K=JJ.

4

This is not true for I, = (24, 2p) and Jy = (24, 2p2¢, 2p24) in Vo, = A7 .

Example 9.1.6. We do a similar study for the following labelled graph ~:

0
P D, = 2o (2cWe + 2qwa) + 2(2ewe + zfwy),
@ b I’Y = (ZCH Zb)7

P P

c d € f ‘] = (ZaZC,ZaZd,ZbZe,Zbe).

After blowing up, there are two charts, corresponding to the advacings of a and
b respectively.

Ya = o
|
a (I)’Ya = Za(zcwc + zZqwq + Zb(Ze’we + Zf’LUf))7
T Ly, = (26, 2c, 2a),
c d b ¢
PN Ya = Za(zcﬂzdazbzeazbzf)'
e f
Yo = o
|
b D, = 2(2a(2cWe + 2aWwa) + Zewe + zpwy),
/[\ L, :(za7ze7zf)7
a e f B
PN Yo T Zb(ZaZC7Zazdaze7Zf)~
c d

By symmetry, it is enough to understand how to proceed in one of the charts.
We choose the one corresponding to a. We get three new charts corresponding to
the vertices ¢, d and b.
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Ya,c = o
\
a Ya,e = O
‘c (‘Z To @, = Zaze(We + 2qwa + 2 (2ewe + zpwy)),
d/\b | yae = (Zaze).
c
P
e f
7;,11 = 0
\
a Ya,d = O
c‘l (‘1 Ty ®ry, = ZaZd(2eWe + wa + 26 (2ewe + zpwy)),
- c‘i Trara = (ZaZa)-
c
P
e f
Ya,b = o
|
a D, = Zazp(2eWe + 2qWq + ZeWe + Zpwy),
l‘) I’Ya,b = (ZC,Zd,Ze,Zf),
N e = Za2b(2c, 24, Ze, 25 )-
c d e f

To conclude, we need to blow up the last chart along I, ,. This produces four
new charts corresponding to ¢,d,e and f. We will only write down one of them
since the rest are very similar.

r
’ya,b,c - o
‘ Ya,b,e = O
a |
| a o
b | Mo @y, , = ZaZp2c(We + 2qWa + ZeWe + zfw}§),
‘ b Syape = (Za2bzc)-
¢ \
TN c
d e f

9.1.2. Smoothness. In genus one, an (P7, d) xspic Blg*Bic has simple normal cross-
ings following the same argument as in [HL10, Theorem 5.24]. It is enough to show
that the zero locus of the ideal ®., becomes a simple normal crossing in the blow-up
f/'; of V,, along the ideal J,.

Remember that &, = (4 1,..., P, ) with

yi= > Zpowni 1<i<r
vEVer(y)?

Zlv,0] = H Za,

o<a=v

where
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and that

Jy = (z[v,o])vEVer('y)t'
For given v" € Ver(v)*, the pullback of the equation @, ; on the chart corresponding
to v’ is equal to

2o’ 0] | Wo'si + Z Zlv,0]Wh,i
v’ #vEVer ()t
by [HLI10, Lemma 5.14]. This proves the claim.

9.1.3. Maps between blowups. By Proposition[4.4.6]there is a morphism from Vakil-
Zinger’s blowup to Rossi’s blowup. In genus one, we can check it locally: it is
equivalent to the fact that the pullback of the ideal J, to each chart V. of the
Hu-Li blowup of V, is principal. We have checked this in Example and
Example More generally, we can give a proof for every v as follows.

By Equation if z, is any of the generators of I, then 7} (J,) = J,, where 7,
is the advancing of @ in ~. In particular, it is enough to show that all the (natural)
charts of f/; correspond to path trees, which is proven in [HL10, Lemma 3.14].
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