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Abstract. The main result is an all-genus construction of reduced Gromov–
Witten invariants for a large class of GIT quotients. This extends earlier

results, limited to genus one and two.

The main tool involves blowings-up of sheaves. More precisely, given F a
coherent sheaf on a Noetherian integral algebraic stack P, we give two con-

structions of stacks P̃, equipped with birational morphisms p : P̃ → P such
that p∗F is simpler:

(1) in the Rossi construction, the torsion free part of p∗F is locally free;
(2) in the Hu–Li diagonalization construction, p∗F is a union of locally free

sheaves.

The construction in item 1 above is an extension of the Nash blow-up and
certain flattenings of sheaves to Noetherian integral Artin stacks. We show that

reduced Gromov–Witten invariants obtained from each of the constructions

above coincide.
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1. Introduction

Overview of the problem. Let X be a smooth projective variety. We denote
by Mg,n(X, d) the moduli space of genus g, degree d ∈ H2(X;Z) stable maps

to X (see [Kon95]). By [LT98, BF96], the stack Mg,n(X, d) has a virtual class

[Mg,n(X, d)]
vir ∈ A∗(Mg,n(X, d)). Gromov–Witten invariants of X are defined as

intersection numbers against this virtual class. They are related to counts of curves
in X of genus g and class d, but they often encode contributions from degenerate
maps with reducible domains. These degenerate contributions can be explained by
the geometry of the moduli space of stable maps.

We have little information about moduli spaces of stable maps to a variety X,
even when X is complete intersection, but the moduli spaces of stable maps to
projective spaces are better understood. The space of genus zero stable maps to a
projective spaceM0,n(Pr, d) is a smooth Deligne–Mumford stack and the resulting
genus zero Gromov–Witten invariants are enumerative. For g > 0, the moduli space
Mg,n(Pr, d) has several irreducible components and moreover, in genus one and two,

we have explicit local equations forMg,n(Pr, d): see [Zin09c, HL10, HLN12]. The
existence of components consisting of maps with reducible domain is reflected by
Gromov–Witten invariants: these components contribute in the form of lower genus
invariants.

In order to define invariants which do not have contributions from degenerate
maps with reducible domains, we need to define a virtual class on the closure of
the locus of maps with smooth domain. It is not possible to do this directly, we
need to replace this component by a birational one which admits a virtual class.
In genus one and two, there are several such constructions [Zin09c, VZ08, HL10,
RSPW19a, HLN12, BC23, HN19, HN20]. The resulting numbers are called reduced
Gromov–Witten invariants.

Main result 1.0.1. We define reduced Gromov–Witten invariants in any genus
for:

(1) hypersurfaces in projective spaces when d > 2g−2 (see Definition 7.4.4 and
Assumption 7.2.1);
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(2) more generally, certain GIT quotients of vector spaces (see Definition 8.2.2,
Assumption 8.2.1 and Section 8.1).

A precise statement which implies this result is Theorem 1.0.3 below. In genus
one and two, our reduced Gromov–Witten invariants of complete intersections in a
projective spaces agree with the reduced invariants defined previously.

The main tool in the proof of Main result 1.0.1 is the general flattening re-
sult of Theorem 1.0.2. It allows to understand the components of the total space
Spec Sym (F) of a coherent sheaf over an integral scheme or stackP, up to birational
modifications of P. Generically, F has rank r. One can birationally modify P so
that there is a closed subscheme of Spec Sym (F) which is flat over P. More specifi-
cally, we make the torsion-free part Ftf := F/tor(F) locally free, so Spec Sym (F) has
a main component flat over P. Other components supported in higher codimension
are then given by the torsion part of F. We can iterate this process to obtain a
decomposition of Spec Sym (F) into a main component and other irreducible com-
ponents corresponding to vector bundles of higher rank over closed subschemes of
P of higher codimension. Since the Gromov-Witten moduli space can be viewed
as an open in the total space of a coherent sheaf, the above construction, roughly
speaking, allows us to decompose it into components with well-defined virtual fun-
damental classes.

Theorem 1.0.2 below provides two different such birational modifications for P,
each of which can be used to give a definition of reduced Gromov–Witten invari-
ants. In Proposition 7.4.3 we show that reduced Gromov–Witten invariants are
independent of the birational modification of P. In particular, both constructions
give rise the same reduced Gromov–Witten invariants.

Theorem 1.0.2 (See Theorems 5.2.1, 5.2.2 and 5.2.6). Let P be an integral Noe-
therian Artin stack with affine stabilizers admitting an integral presentation and F
be a coherent sheaf on P.

There exist integral Noetherian Artin stacks BlFP and BlHLF P together with

representable proper birational morphisms π : BlFP → P and ρ : BlHLF P → P sat-
isfying the following universal properties:

(1) For any morphism of stacks p : Y → P such that (p∗F)tf is locally free of
the same generic rank as F, there is a unique morphism p′, which makes
the following diagram 2-commutative

Y BlFP

P

∃!p′

p
π

(2) For any morphism of stacks f : Y → P such that f∗F is diagonal of the
same generic rank as F, there is a unique morphism f ′, which makes the
following diagram 2-commutative:

Y BlHLF P

P

∃!f ′

f
ρ
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(1) We call BlFP the Rossi blow-up. This is a stacky version of the Raynaud-
Gruson flattening [RG71]. This construction does not change torsion sheaves.

(2) We call BlHLF P the Hu–Li blow-up. The Hu–Li construction also produces a
sheaf p∗F whose torsion-free part is locally free. In addition to this, p∗F also has a
well-behaved torsion in the sense of Definition 4.1.1. For schemes, this is achieved
by a construction of Hu and Li [HL11] and of Grivaux [Gri10, Proposition 12].

The first construction is a minimal birational modification of P. This is suffi-
cient to define reduced Gromov–Witten invariants. However, in view of existing
proofs of Conjecture 1.0.5 it is convenient to work with the Hu–Li blow-up. More
explanations on this can be found in Section 7.5.

Approach. In a first step, we use the geometry of Mg,n(Pr, d) in the following

way. The moduli space of stable maps admits a mapMg,n(Pr, d)→ Pic, where Pic
denotes the stack which parameterises genus g curves with nmarked points together
with a line bundle of degree d. One important observation is that Mg,n(Pr, d) is
an open substack in an abelian cone Spec SymF, with F a sheaf on Pic (see (24)
and (25)).

In a second step, we choose a desingularization of the sheaf F (Definition 3.1.1),

i.e. a stack P̃ic together with a birational morphism p : P̃ic → Pic such that
the torsion free part of p∗F is locally free. By base-change along p, this gives

p̄ : M̃g,n(Pr, d)→Mg,n(Pr, d), and M̃g,n(Pr, d) allows us to define reduced Gromov–
Witten invariants as follows.

We fix d > 2g− 2 (see Assumption 7.2.1 for details). We denote byM◦
g,n(Pr, d)

the closure in Mg,n(Pr, d) of the locus of maps with smooth domain. The con-

dition on d ensures that M◦
g,n(Pr, d) is generically smooth and unobstructed. As

before, we define M̃◦
g,n(Pr, d) as the closure in M̃g,n(Pr, d) of the locus with smooth

domain.
We have the following result, which allows us to define reduced Gromov-Witten

invariants in all genera.

Theorem 1.0.3 (See Theorem 7.5.1). Let M̃g,n(Pr, d) = ∪θ∈ΘM̃g,n(Pr, d)θ, with
M̃g,n(Pr, d)θ irreducible components of M̃g,n(Pr, d). Then the following statements
hold:

(1) The stack M̃g,n(Pr, d) admits a virtual class.
(2) The morphism p̄ is proper, and we have

p̄∗[M̃g,n(Pr, d)]vir = [Mg,n(Pr, d)]vir.

(3) For any θ ∈ Θ, M̃g,n(Pr, d)θ is smooth over its image in P̃ic; in particular,

M̃◦
g,n(Pr, d) is smooth over P̃ic.

(4) Let π̃θ : C̃θ → M̃g,n(Pr, d)θ denote the universal curve. Then for any k,

the sheaf π̃θ∗ev
∗O(k) is a locally free sheaf on M̃g,n(Pr, d)θ; in particular,

π̃◦
∗ev

∗O(k) is a locally free sheaf on M̃◦
g,n(Pr, d).

Concretely, we take P̃ic to be either the Rossi blow-up BlFPic or the Hu-Li

blow-up BlHLF Pic. In general, the Rossi construction is different from the Hu–Li
construction (see Example 4.6.1). By Example 9.1.4, the Rossi construction gives
a new moduli space which is different from the Vakil–Zinger blow-up from [VZ08].
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However, by Proposition 7.4.3 this does not change the reduced invariants: they
are the same for all birational models of Pic.

Relation to previous approaches. The structure of this paper is different from
the ones in [VZ08, HL10, HLN12, HN19, HN20]. In the mentioned papers, the

authors have a three-step strategy to constructing the stack M̃◦
g,n(Pr, d) which

compactifies the locus of maps with smooth domain:

(1) they find equations of local embeddings of charts Wi → Mg,n(Pr, d) in
smooth spaces Vi;

(2) they blow up Wi to obtain W̃i;

(3) they show that W̃i glue to a (smooth) stack M̃◦
g,n(Pr, d).

The first step becomes involved already in genus two, due to the rather complicated
geometry of the moduli space of stable maps. Steps 2 and 3 are done by constructing
an explicit blow-up of Pic (or Mg,n). Finding a candidate for this blow-up is the
hardest part of the constructions in [VZ08] and [HLN12].

In this work, we omit Step 1 completely. For us, Step 2 is minimal in a suitable
sense – it is given by a universal property. The main ingredient in Step 3 is that
the (local) constructions proposed in Section 3 and in Section 4 commute with flat
pullbacks and this allows us to glue them. Explicit equations of the charts Wi are

thus not necessary to construct M̃◦
g,n(Pr, d). The advantage of this approach is

that the gluing is conceptual and straightforward. This is similar to what Hu and
Li do in [HL11] – our construction heavily relies on their ideas.

Relation to Gromov–Witten theory. Genus one reduced invariants for varietes
of any dimension are related to Gromov–Witten invariants [Zin08]. For threefolds
the relation is conjecturally much simpler. Let X be a threefold under the assump-
tions in Section 8.1 and let γ ∈ H∗(X)⊕n be a collection of cohomology classes
of X. Let Ng

β (γ) be the genus g and degree β Gromov–Witten invariants of X

with insertions given by γ, and let rgβ(γ) be the corresponding reduced invariants.
In particular, for a Calabi-Yau threefold X, the moduli space has virtual dimen-
sion 0 and one defines the Gromov–Witten invariants and reduced Gromov–Witten
invariants withouth insertions as Ng

β and rgβ .

Conjecture 1.0.4. [Zin09a], [HL11, Conjecture 1.1] Let X be a Calabi–Yau three-
fold. Then, there are universal constants Ch(g) ∈ Q, such that for deg(β) > 2g−2,
we have

Ng
β =

∑
0≤h≤g

Ch(g)r
h
β .

When X is the quintic threefold, the above formula in genus one is the formula
in [Zin09a, LZ09]

(1) N1
d =

1

12
N0
d + r1d.

If X is a Fano threefold, the reduced invariants are expected to be equal to
Gopakumar–Vafa invariants. Indeed, the Gopakumar–Vafa invariants are by defi-
nition related to Gromov–Witten invariants by a formula which takes into account
degenerate lower genus and lower degree boundary contributions. For Fano vari-
eties, there are no lower degree contributions. Boundary contributions were com-
puted by Pandharipande in [Pan99]. The conjectural equality between reduced
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Gromov–Witten invariants and Gopakumar–Vafa invariants (see [Pan99, Section
0.3]) for Fano threefolds gives the following.

Conjecture 1.0.5. [Zin09a, Zin11] Let X be a Fano threefold and let CXh,β(g) be
defined by the formula∑

g≥0

CXh,β(g)t
2g =

(
sin(t/2)

t/2

)2h−2−KX ·β

.

Then, we have the following

Ng
β (γ) =

g∑
h=0

CXh,β(g − h)rhβ(γ).

The above should also hold in the Calabi–Yau case, where CXh,β(g) do not depend
on X and β.

The above conjectures have been proved in genus one and in genus two for
quasimaps [LLO22]. These are the only cases in which a definition of reduced
invariants existed prior to this work.

The conjecture in low genus was proved with symplectic methods [LZ07] [LZ07]
and algebraic methods [CL15], [LLO22]. The main idea of the algebraic proof is
to use an additional space of maps with fields, whose geometry is similar to the
geometry of the moduli space of stable maps to a projective space. After a sequence
of blow-ups, the moduli space of maps with fields becomes a union of components
which are well understood: they are smooth of dimension greater or equal to the
expected dimension. This allows an expression of the virtual class on the moduli
space of maps with fields as a sum of classes on the components of the moduli space.
An analysis of these classes then gives the relation between standard and reduced
Gromov–Witten invariants. The Hu–Li blow-up of Pic provides such an auxiliary
moduli space to tackle the conjecture in all genera.

History and related works: Gromov–Witten Theory. Reduced genus 1 in-
variants are the output of a long and impressive project. Reduced invariants in
genus one were defined using symplectic methods and compared to Gromov–Witten
invariants by Zinger [Zin08, Zin07, Zin09b, Zin09a]. Li–Zinger showed [LZ07, LZ09]
that reduced genus one Gromov–Witten invariants are the integral of the top Chern
class of a sheaf over the main component of Mg,n(Pr, d). This is an analogue,
for reduced genus 1 invariants, of the quantum Lefschetz hyperplane property
[LZ07, LZ09]. In view of [Zin09b], this also gives a proof of the formula (1). The
algebraic definition requires a blow-up construction for the moduli space of stable
maps to projective space, due to Vakil and Zinger [VZ08, VZ07]. See [Zin20] for a
survey from the symplectic perspective.

Explicit local equations for the Vakil–Zinger blow-up in genus one are given in
[Zin09c, HL10] and in genus two in [HLN12]. It is expected that the methods used
in low genus could provide local equations for general moduli spaces of stable maps
to projective spaces, but the combinatorics are likely to be quite involved.

In [HL10, HLN12, HN19, HN20] the authors give a modular interpretation of
reduced invariants in terms of graphs of degenerate maps. A modular interpretation
via log maps has been given by Ranganathan, Santos-Parker and Wise [RSPW19a,
RSPW19b].
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Hu and Li introduce the diagonalization construction in [HL11]. They use this
construction to define an Euler class on the moduli space of stable maps to projec-
tive spaces. This gives a non-intrinsic definition of reduced invariants of complete
intersections. Conjecture 1.0.5 is hard to approach with this definition. In this
paper, we rework their construction.

In a different direction, instead of replacing the moduli space of maps with a space

which dominates M̃◦
g,n(X, d), one can construct a space dominated by M̃◦

g,n(X, d).
This has been done by moduli spaces of maps from more singular curves, such as
in [BCM20, BC23]. A modular interpretation comes for free with this approach,
which makes these constructions particularly beautiful. A relationship between
reduced invariants and invariants from maps with cusps was established in [BCM20].
Battistella and Carocci introduce a compactification of genus two maps to projective
spaces [BC23]. An example of this compactification is given in [BC22].

More recently, reduced invariants for the quintic threefold have been compared
to Gromov–Witten invariants using algebro-geometric methods by Chang and Li
[CL15]. Chang–Li define reduced invariants as the integral against the top Chern
class of a sheaf but, as discussed above, this gives the same reduced invariants as
[Zin09b]. The algebraic comparison relies on the construction of maps with fields
due to Chang and Li [CL12], and on Kiem–Li’s cosection localised virtual class
[KL13]. This method has been employed in [LO22, LO21] to extend the genus
one relation between absolute and reduced Gromov–Witten invariants of complete
intersections. In genus two, a similar work is done in [LLO22].

Zinger has computed reduced genus one invariants of projective hypersurfaces via
localisation [Zin09a]. The computations in [Zin09c] and [Zin08] have been extended
to complete intersections by Popa [Pop13].

Shortly after our work was completed, Nesterov defined Gopakumar–Vafa in-
variants [Nes24] by proving a relation between Gromov–Witten invariants and in-
variants defined using the moduli space of unramified maps [KKO14]. In view of
this, reduced invarants of Fano threefold conjecturally agree with unramified maps
invariants. We expect these invariants to be different for varieties which are not
Fano.

History and related work: Flattening and Nash transformations. Given a
scheme (or a stack) P and F a coherent sheaf on it, in this paper we loosely refer

to a birational map P̃ → P such that the pull-back of F is better behaved as the
blow-up of P at F. This is compatible to the notion of blow-up of a ring at a module
in [Vil06]. We do not define general blow-ups of schemes (or stacks) at a sheaf, but
we use the notation BlFP for certain more specific birational transformations.

Blow-ups of sheaves have an interesting history: they appear in different contexts
and they seem to have been re-discovered several times. As a consequence, the same
constructions appear in the literature with different names. Given their scattered
appearance, we decided to review some of these constructions in detail and to
discuss relations between them.

The first construction that we are aware of is a blow-up of a sheaf in the analytic
category, introduced by Rossi. It is a short geometric construction in the little
known paper [Ros68] from 1968. The main focus of Rossi’s paper is different and
his blow-up is just a technical tool. A more general, relative version was proved later
by Hironaka [Hir75]. Perhaps the most influential flattening theorem was proved by
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Raynaud–Gruson [RG71] in great generality. Their result is relative to a possibly
non-Noetherian base scheme and their proof is involved. The Noetherian case is
treated also in [Ray72]. On an integral Noetherian scheme, Rossi’s construction
is also known as the Nash transformation of a sheaf [OZ91]. In the particular
case when the sheaf is the cotangent of the given scheme, it is called the Nash
blow-up [Nob75]. In addition to these, Rossi’s geometric construction was recently
re-introduced in [CM13] by Curto and Morrison. They call it a Grassmann blow-up.
None of these authors seemed to be aware of Rossi’s paper1.

The most established term in the literature appears to be flattening (or occa-
sionally flatification). However, we consider the construction by Rossi, Nash, and
Curto–Morrison a significant special case of the Raynaud–Gruson and Hironaka
flattening, deserving its own name: it stands out as simple and geometric. While
we acknowledge the contributions of each of the authors above, we have decided to
refer to it as the Rossi construction or Rossi blow-up.

Of particular interest to us are blowings-up which enjoy a universal property.
A universal property is already mentioned in [RG71, Ray72], where they also es-
tablished the connection with Fitting ideals under additional assumptions. This
connection became more explicit in [OZ91, Vil06].

A diagonalization construction was introduced in [Gri10] for analytic manifolds
and in [HL11] for algebraic stacks. This has similarities with the Rossi construction,
although its flavour is more algebraic. One of its advantages is that it is quite simple.
Our approach is greatly influenced by their construction.

Nash blow-ups appear naturally in singularity theory. We mention [Nob75,

Spi90, CDLÁL24] from a vast literature. The history of this problem is explained
in [Spi20]. The Raynaud–Gruson flattening was also used in birational geometry.
For example, Curto and Morrison conjectured that the Grassmann blow-up gives a
theoretical way of constructing all smooth 3-fold flops. This was proved in [GI18].
In [RV23] the authors discuss singularities of certain Raynaud–Gruson blow-ups of
surfaces.

The result of Raynaud–Gruson received further interest very recently: it has
been reproved by Guignard [Gui21] and we have been informed by Rydh that he
is working on generalisations to stacks [Ryd09, Ryd16]. After our paper was made
available, a generalisation to stacks was also proved by McQuillan [McQ24].

Our result is a stacky construction of a particular case of the Raynaud–Gruson
flattening. More precisely, in notation as in [RG71, Theorem I.5.2.2] we prove the
result forX = S andX an integral Noetherian Artin stack. Rydh’s and McQuillan’s
proofs are more general and very different from ours. To our knowledge, our result
is the first stacky instance of a Raynaud–Gruson flattening.

Outline of the paper. In the following we give an outline of the paper and we
highlight the main results.

In Section 2 we fix notation and briefly recall the background notions used, such
as Fitting ideals and abelian cones.

1In line with previous authors, but less excusably in the age of the internet, we started this
project unaware of the various constructions in the literature. Jarod Alper, Ananyo Dan, Evgeny

Shinder and Michael Wemyss kindly brought several references to our attention.
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In Section 3 we introduce the desingularization of a sheaf on a stack (Section 3.1)
and we review the minimal desingularization, due to Rossi (Section 3.2). In Sec-
tion 3.3 we give an algebraic desingularization in terms of Fitting ideals in the
affine case, due to Oneto–Zatini and Villamayor. We show in ?? that the Rossi
and Villamayor constructions agree. We show several properties of the minimal
desingularization of a sheaf in Section 3.4.

In Section 4.1, we introduce the notion of diagonal sheaf (see Definition 4.1.4).
In Section 4.2 we recall Construction 4.2.4, due to Hu and Li, which gives the
minimal diagonalization of a sheaf. This is formalized in Section 4.3 via a universal
property (Theorem 4.3.2). In Section 4.4, we collect properties of the Hu–Li blow-
up, such as the existence of a morphism from the Hu–Li blow-up to the Rossi
blow-up in Proposition 4.4.6. The two blow-ups are not isomorphic in general, as
shown in Example 4.6.1. In Section 4.5 we construct a filtration of a diagonal sheaf
under certain conditions (see Theorem 4.5.4). This filtration will then be used in
Section 6 to describe the irreducible components of the abelian cone of a diagonal
sheaf. Finally, in Section 4.6 we collect some remarks and examples regarding the
minimality of the Hu-Li blow-up.

In Section 5 we generalize the Hu–Li and Rossi blow-ups to Artin stacks. These
are constructed in Section 5.1, by first applying the Rossi and Hu–Li constructions
for schemes to an atlas and then gluing. This works because the Hu–Li and Rossi
constructions are local, they have a universal property, and they commute with
flat base-change by Propositions 3.4.1 and 4.4.1. We extend to stacks the results
on the schematic versions of these blow-ups, such as the universal properties of
desingularization in Theorem 5.2.2 and of diagonalization in Theorem 5.2.6.

Section 6 is devoted to the study the irreducible components of the abelian
cone C(F) of a diagonal sheaf. Given a coherent sheaf F on an integral Noether-
ian scheme X, we introduce the main component (Definition 6.1.5) C(F tf) of the
abelian cone C(F) in Section 6.1. General cones need not have a main component
(Example 6.1.3). Furthermore, if F tf is locally free, then C(F) is a pushout of its
main component, which is a vector bundle (see Proposition 6.2.5). The remaining
components are studied in Section 6.3. The best result is obtained for F a diagonal
sheaf: each component of C(F) is a vector bundle over its support (Theorem 6.3.1).

In Section 7 we use the notion of desingularization of a sheaf on a stack to define
reduced Gromov Witten invariants in all genera: see Definition 7.4.4. In Section 7.1
we recall how Mg,n(Pr, d) can be naturally embedded as an open substack in an
abelian cone over Pic following [CL12]. In Definition 7.2.2 we introduce the main
component of Mg,n(Pr, d), which is compatible with the open embedding in an
abelian cone by Proposition 7.2.3. In Section 7.3 we consider a desingularization

P̃ic → Pic and use it to base change Mg,n(Pr, d) to a new space M̃g,n(Pr, d).
These space is used in Section 7.4 to define reduced Gromov-Witten invariants
in any genus for a hypersurface in projective space (Definition 7.4.4). We also
show independence of the chosen desingularization in Proposition 7.4.3. Finally, in

Section 7.5 we recall maps with fields and consider the analogue of M̃g,n(Pr, d) for
p-fields. These spaces can be used to compute reduced Gromov-Witten invariants
(Proposition 7.5.3). In Theorem 7.5.1 we describe the irreducible components of
the blown-up moduli spaces.

In Section 8 we extend the definition of reduced invariants to a large class of
GIT quotients (see Section 8.1) and to quasimaps. In particular, we define reduced
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invariants for complete intersections, toric varieties and Grassmannians. For con-
venience, we review quasimaps to these GIT quotients in the first part of Section 8.

In Section 9 we compare the moduli spaces obtained from the Rossi desingular-
ization and the Vakil–Zinger blow-up. While reduced invariants are independent
of the birational model of Pic, the induced moduli spaces can be different. We

study charts of M̃g,n(Pr, d) and we show that the Rossi construction in genus one
is different from the Vakil–Zinger blow-up.

How to read this paper. Sections 2–6 are self-contained and of independent
interest. The schematic version of the results in Section 5 are explained in Sections
3–4. The reader interested in reduced Gromov–Witten invariants can take the
results in Section 5 for granted and read Section 7 to Section 9 directly.

Further work. Our desingularizations do not come with a modular interpretation.

It would be nice to have a modular interpretation of the resulting stack M̃g,n(Pr, d),
either in the spirit of [HL10, HLN12, HN19, HN20], or a log interpretation as in
[RSPW19a]. It would be perhaps better to have a space of maps with more singular
domains, as in [BCM20, BC23].

While a modular interpretation would be very interesting from a theoretical
point of view, higher genus computations as done by Zinger in [Zin09a] are likely

to be hard. The genus two blow-up M̃g,n(Pr, d) already involves several rounds
of blow-ups, and a localisation computation would inherit the complexity of the
blow-up. We hope that our construction sheds new light on this beautiful problem
and will encourage more mathematicians to work on it.

On the positive side, we expect this construction to be enough for proving Con-
jecture 1.0.5. The main difference with [HL11] is that we blow up Pic, instead of
blowing upMg,n(Pr, d). The advantage of blowing up Pic is that now we have the
ingredients used by Chang–Li, Lee–Oh and Lee–Li–Oh to prove Conjecture 1.0.5
(and therefore Conjecture 1.0.4) in genus one and two. More precisely, we have fairly

simple moduli spaces of maps with fields over P̃ic, and these can be used to split

the virtual class on M̃g,n(Pr, d). We hope to be able to prove Conjecture 1.0.5

without having explicit equations of Mg,n(Pr, d), or a modular interpretation of

P̃ic. We will address this problem in future work.
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2. Background

In this section we recall several basic constructions and fix the notation used
throughout the paper.

2.1. The relative Grassmannian. LetX be a scheme with a fixed quasi-coherent
sheaf E . The Grassmannian functor GrrX(E) : ((Sch)/X)op → (Set) is given on
objects by

(2) T 7→ {ET ↠ Q |Q is locally free of rank r }

with ET := E ⊗OX
OT .

This functor is represented by a scheme GrrX(E) over X, which is projective if
E is finitely generated. Moreover, the Grassmannian functor is compatible with
base-change. In particular

GrrX(O⊕n
X ) ∼= Gr(n, r)×X

where Gr(n, r) is the usual Grassmannian of (n − r)-dimensional subspaces of Cn
relative to a point. Since it represents a functor, the relative Grassmannian GrrX(E)
comes with a universal sheaf and a universal quotient sheaf, which is locally free of
rank r:

EGrrX(E) ↠ QGrrX(E).

The relative Grassmannian admits a The Plücker embedding:

λn,r : GrrX(O⊕n)→ Gr1X

(
r∧
O⊕n

)
∼= Pm−1

X ,

with m =
(
n
r

)
. For the last isomorphism, consider an X-scheme T . A point of

Gr1X(O⊕m)(T ) is a surjection

O⊕m
T ↠ L

with L a line bundle on T . This is a pair of a line bundle and an m-tuple of
generating sections, which is an object of Pm−1

X (T ).

2.2. Fitting ideals.

Definition 2.2.1. LetM be a finitely presented R-module. Let F
φ−→ G→M → 0

be a presentation with F and G free modules and rk(G) = r. Given −1 ≤ i < ∞,
the i-th Fitting ideal Fi(M) ofM is the ideal generated by all (r−i)×(r−i)-minors
of the matrix associated to φ after fixing basis of F and G. We use the convention
that Fi(M) = R if r − i ≤ 0 and F−1(M) = 0.

Intrinsically, Fi(M) is the image of the map
∧r−i

F ⊗
∧r−i

G∗ → R induced

by
∧r−i

φ :
∧r−i

F →
∧r−i

G. The i-th Fitting ideal is well-defined in that it
does not depend on the chosen presentation. Since determinants can be computed
expanding by rows and columns, it follows that there are inclusions

0 = F−1(M) ⊂ F0(M) ⊂ F1(M) ⊂ . . . ⊂ Fk(M) ⊂ Fk+1(M) ⊂ . . .
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It follows from the definition and right-exactness of tensor product that Fitting
ideals commute with base change. That is, given R → S ring homomorphism and
M a finitely presented R-module, then

Fi(M ⊗R S) = Fi(M) · S.
Similarly, for a scheme X and F a quasi-coherent OX -module of finite presentation,
we have ideal sheaves

0 = F−1(F) ⊂ F0(F) ⊂ · · · ⊂ Fn(F) ⊂ · · · ⊂ OX
which can be defined locally as described above. For f : Y → X a morphism of
schemes, we have

f−1Fi(F) · OY = Fi(f
∗F).

Fitting ideals describe the locus on X where the sheaf F is locally free of some rank.
More precisely, we recall the following standard result (see for example [Sta22, Tag
05P8]).

Proposition 2.2.2. For any n, the sheaf F is locally free of rank n on the locally
closed subscheme V (Fn−1(F)) \ V (Fn(F)) of X.

We also have the following result [Sta22, Lemma 0F7M] (cf [Lip69, Lemma 1])
relating Fitting ideals to the projective dimension of a module and the local freeness
of its torsion-free quotient.

Proposition 2.2.3. Let R be a ring and M be a finitely presented module over R.
Let r ≥ 0 be such that Fr(M) = (f) for some non zero divisor f ∈ R and Fr−1 = 0.
Then

(1) M has projective dimension ≤ 1.

(2) M(f) = ker(M
·−→ fM) has projective dimension ≤ 1.

(3) M/M(f) is locally free of rank r.
(4) M =M/M(f)⊕M(f).

The result in [Lip69, Lemma 1] also gives the following useful partial converse.

Notation 2.2.4. Let R be an integral domain and let M be an R module. We
denote the the torsion free part of M by M tf :=M/tor(M).

Proposition 2.2.5. If R is a local ring and M is a finitely presented module of
projective dimension ≤ 1 with M/tor(M) locally free of rank r, then Fr(M) is
invertible and Fr−1(M) = 0.

In fact, we shall make use of the following result.

Proposition 2.2.6. If R is an integral domain andM is a finitely presented module
of projective dimension ≤ 1 with M/tor(M) locally free of rank r, then Fr(M) is
locally free and Fr−1(M) = 0.

Proof. By Proposition 2.2.5, all we need to do is to check that the assumptions are
preserved by localization at maximal ideals of R.

By [Rot02, Proposition 11.154], 1 ≥ pd(M) ≥ pd(M ⊗R Rm) for every maximal
ideal m in R.

Let m be a maximal ideal in R. Then Rm is a flat R-module by [Rot02, Theorem
11.28] and tor(M ⊗R Rm) = tor(M) ⊗R Rm because R is integral. It follows that
(M ⊗R Rm)tf = (M)tf ⊗R Rm is locally free. □

https://stacks.math.columbia.edu/tag/05P8
https://stacks.math.columbia.edu/tag/05P8
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2.3. Abelian cones. Let X be a Noetherian scheme. We recall the notions of cone
and abelian cone over X and collect some basic properties.

Definition 2.3.1. Let A =
⊕

d≥0Ad be a graded sheaf of OX -algebras such that
the canonical map OX → A0 is an isomorphism and such that A is locally generated
by A1 as an OX -algebra. The cone of A is the scheme SpecX(A) equipped with
the natural projection

SpecX(A)→ X.

The cone of A is abelian if the natural morphism Sym (A1)→ A is an isomorphism
of OX -algebras. A morphism of cones is a morphism over X induced by a graded
morphism of sheaves of OX -algebras.

Definition 2.3.2. Let F be a coherent sheaf on X. The abelian cone associated
to F is

CX(F) = SpecX(Sym (F))
equipped with the natural projection to X.

We will omit the subscript X in the formation of relative spectra and cones
whenever it is possible to do so without introducing ambiguity.

Definition 2.3.2 is related to the total space of a locally free sheaf. If E is a
locally free sheaf, then C(E) is a vector bundle, but some authors (e.g. [Ful13,
B.5.5]) prefer to define the total space of E as

Tot(E) := C(E∗) = Spec (Sym (E∗)),
so that the sheaf of sections of Tot(E) over X is (E∗)∗ ≃ E by Lemma 2.3.3. When
working with sheaves that may not be locally free, it is advisable to use C(F)
instead of C(F∗), see Lemma 2.3.3 and Example 2.3.4.

To an abelian cone π : C(F) → X we can associate two natural sheaves of OX -
modules. The sheaf of sections Sect(C(F)) of the projection π is given by

U 7→ HomU (U,C(F) |U ).
The sheaf of functionals Fun(C(F)) is given by

U 7→ HomAb(C(F) |U , U × A1),

where HomAb denotes morphisms of abelian cones.

Lemma 2.3.3. Given a coherent sheaf F in a Noetherian scheme X, there are
natural isomorphisms of OX-modules

(1) Sect(C(F)) ≃ F∗ and
(2) Fun(C(F)) ≃ F .

Proof. It is enough to prove the statements in the affine case and for global sections.

Let X = SpecR and F = M̃ for a Noetherian ring R and a coherent R-module M .
For 1, we see that

HomX(X,C(F)) = HomX(X,Spec SymF) ≃ HomR−alg(SymM,R)

≃ HomR−mod(M,R) ≃M∗.

For 2 we have that

HomAb(C(F), X×A1) = HomGrR−mod(SymR,SymM) ≃ HomR/mod(R,M) ≃M,

where HomGrR−mod denotes morphisms of graded R-modules and where we used
that X × A1 ≃ CX(OX). □
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Example 2.3.4. Let X = Spec (R) with R = C[x] and let I = (x) be the ideal of the
origin 0 and let M = R/I viewed as an R-module, that is, M is the skyscrapper
sheaf supported at 0. Then

C(M) ≃ Spec (C[x, y]/(xy)) ⊆ X × A1.

According to Lemma 2.3.3, C(M) has no non-zero sections because M∗ = 0. On
the other hand, C(M) has non-zero functionals

C(M)→ X × A1 : (x, y) 7→ (x, λy)

for any λ ∈ C.
The cone of the dual is trivial, in fact M∗ = 0, so C(M∗) = X, which has no

non-zero sections or functionals.

Lemma 2.3.5. For a cone π : C = Spec (A)→ X, the following are equivalent:

(1) C is a vector bundle over X,
(2) C is abelian and A1 is locally free over X,
(3) π is smooth.

Proof. The implication 1 ⇒ 3 is clear and the equivalence 1 ⇐⇒ 2 is standard.
The implication 3 ⇒ 1 can be found in [BF96, Lemma 1.1]. □

3. Desingularizations of coherent sheaves

In this section we introduce several constructions which “desingularize” a coher-
ent sheaf F on a base scheme X.

3.1. Definition of desingularizations on stacks. We define our notion of desin-
gularization and prove that it behaves well with composition. This part can be
formulated directly for algebraic stacks instead of schemes, which will be useful
later.

Definition 3.1.1. Let F be a coherent sheaf on an integral algebraic stack X. A

desingularization of F is a morphism p : X̃→ X such that

(1) X̃ is integral,
(2) p is birational and proper,
(3) (p∗F)tf is a locally free sheaf.

Let us explain why a morphism as in Definition 3.1.1 deserves to be called a
desingularization. The surjection F → Ftf induces a closed embedding C(Ftf) ↪→
C(F) of abelian cones over X. By Lemma 2.3.5, the morphism C(Ftf) → X is
smooth if and only if Ftf is locally free. Therefore, Item 3 in Definition 3.1.1 is

equivalent to saying that the morphism CX̃((p
∗F)tf)→ X̃ is smooth.

Remark 3.1.2. If X is a scheme and F is a non-zero coherent ideal sheaf, the usual
blow-up of X at the closed subscheme defined by F is a desingularization of F.

Lemma 3.1.3. Let X be an integral algebraic stack and F a coherent sheaf on X.

Let p : X̃→ X be a desingularization of F and let q : Y→ X̃ be a proper birational
morphism. Then, the composition p ◦ q : Y→ X is a desingularization of F.

Proof. The composition r := p ◦ q is birational and proper, so all we need to prove
is that (r∗F)tf is locally free. In the following we show that

(r∗F)tf ≃ q∗((p∗F)tf).
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We have a commutative diagram of sheaves on Y

0 // K1
//

��

q∗p∗F //

��

q∗((p∗F)tf) //

��

0

0 // K2
// q∗p∗F // (q∗p∗F)tf // 0

where the map q∗p∗F→ q∗((p∗F)tf) is the pull-back of the surjective map

p∗F→ (p∗F)tf ,

K1 and K2 are the corresponding kernels and the solid vertical map is the identity.
Since the image of the composition K1 → (q∗p∗F)tf is generically zero and X is
irreducible, we have that the morphism K1 → (q∗p∗F)tf is zero. By the universal
property of cokernels this map factors through q∗((p∗F)tf), which gives the right
vertical map in the diagram. The universal property of kernels gives the left vertical
map in the diagram. We have that K1 and K2 are torsion sheaves. Let K3 be the
cokernel of K1 → K2. By the Snake Lemma, we have an exact sequence

0→ K3 → q∗((p∗F)tf)→ (r∗F)tf → 0.

By assumption (p∗F)tf is locally free, so q∗((p∗F)tf) is locally free. Since X is
irreducible and K3 is a torsion sheaf, we get that K3 = 0. This proves the claim. □

3.2. Rossi’s construction. In the following we describe the desingularization con-
struction proposed by Rossi in the analytic setup in [Ros68], which is very geometric
in nature. The same construction was studied by Oneto and Zatini in the algebraic
setup in [OZ91], under the name of Nash transformation. It gives a way of desin-
gularizing coherent sheaves on Noetherian schemes taking the closure of a graph
into a Grassmannian. We present Rossi’s construction for Noetherian schemes; for
stacks it will be presented in Section 5.

Remark 3.2.1. We thank David Rydh for pointing out this more concise version
of the construction.

Theorem 3.2.2. Let X be a reduced Noetherian scheme, F a coherent OX-module,
and U ⊂ X a schematically dense open subset where F is locally free of constant

rank r. Then there exists a projective morphism f : X̃ → X such that X̃U
∼= U and

(f∗F)tf is locally free of rank r. Moreover, X̃ → X is universal for the following
property: if g : X ′ → X is any morphism of schemes such that (g∗F)tf is locally

free of rank r, then there exists a unique morphism X ′ → X̃ over X.

Proof. Consider the relative Grassmannian

π : GrrX(F) −→ X,

which parametrizes rank-r locally free quotients of F . This scheme is projective
over X.

On the open subset U ⊆ X, the sheaf F|U is locally free of rank r, so it determines
a section

s : U −→ GrrX(F).
Let X̃ be the scheme-theoretic closure of s(U) inside Grr(F). By construction,

f : X̃ → X is projective and restricts to an isomorphism over U .
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Over X̃, the universal quotient on the Grassmannian restricts to a quotient

φ : f∗F ↠ G,

with G locally free of rank r and f∗F|U ∼= G|U . Since G is torsion-free and U is
schematically dense, φ descends to φ : (f∗F)tf → G. On the other hand, the kernel
of φ is supported away from the schematically dense U , so it is torsion. Hence
G = (f∗F)tf .

For the universal property, let g : X ′ → X be a morphism such that (g∗F)tf
is locally free of rank r. Then the quotient g∗F ↠ (g∗F)tf determines a unique
morphism s′ : X ′ → GrrX(F) by the universal property of the Grassmannian. To

see that s′ factors through X̃ we take V the inverse of the maximum open subset
of X such that F is locally free. We claim that V is schematically dense in X ′.
If V is not schematically dense, there exists Z a subscheme of X ′ which does not
intersect V and which is mapped in the complement of U . By replacing Z with
the reduced structure, we may assume that Z is reduced. Then, by the maximality
of U , (g∗F)|Z has higher rank. This contradicts (g∗F)tf is locally free. Thus
g−1(U) is schematically dense. Then particular, s′ and s ◦ g agree on g−1(U), so

this determines the morphism and we see that it factors uniquely through X̃, the
closure of s(U). This establishes the claimed universal property.

□

If X is an integral Noetherian scheme, a coherent sheaf F is locally free over the
unique generic point ξ ∈ X. We define the generic rank of F :

rk(F) := rk(F|ξ) = r.

Taking this as U in Theorem 3.2.2 above gives a construction desingularizing F .
In particular, the morphism X̃ → X is proper and birational.

Definition 3.2.3 (The Rossi blow-up). Let X be an integral Noetherian scheme
and F a coherent sheaf. Theorem 3.2.2 applied to U the generic point of X defines
the Rossi blow-up BlFX → X, a proper birational morphism. We call it the blow-up
of X at the coherent sheaf F .

A classical example of this construction is the Nash blow-up of X, which is the
particular case F = Ω1

X . This case is related to resolution of singularities, see
[Spi20]. The general case appeared in [OZ91] under the name of Nash transform.

If F is a non-zero coherent ideal sheaf on X, then BlF (X) is the usual blow-up
and the above recovers its construction as a relative Proj.

The Rossi blow-up thus defined is a desingularization of F in the sense of Def-
inition 3.1.1. In fact, it is the minimal desingularization of F in the sense of the
universal property in Theorem 3.2.2.

3.3. Local descriptions. The geometric construction of Section 3.2 has some use-
ful affine-local characterizations, which we shall use in Section 3.4 to establish some
properties of this construction. That these are local descriptions of the Rossi blow-
up presented in the previous section follows from comparing the universal property
in [Vil06] to that of Theorem 3.2.2. The first characterization, for affine integral
Noetherian schemes follows closely the the original construction by Rossi [Ros68].

Let X = SpecR, and F = M̃ be the coherent sheaf associated to a coherent
R-module M . We can find for some n a surjective morphism of sheaves

(3) f : O⊕n
X ↠ F .
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Restricted to a non-empty open subscheme U where F is locally free, f gives a
U -point of GrU (O⊕n

U , r), which is a morphism

Γf : U → GrU (O⊕n
U , r).

Then BlFX is the closure of Γf (U) in GrX(O⊕n
X , r) with the reduced induced

structure, equipped with the morphism

p : BlF (X) = Γf (U)→ X

obtained by restricting the natural projection GrX(O⊕n
X , r)→ X. This is a Zariski-

local description of Definition 3.2.3, and can be seen to be independent of the choice
of presentation of F , see [Ros68]. It is sometimes useful to work with this more
explicit affine construction, as we do in the proof of Proposition 3.4.2.

Another construction of the blow-up BlFX can be given in terms of Fitting ideals
of the sheaf F . This construction applies to an affine integral Noetherian scheme
X. Most of this ideas first appeared in [OZ91]. We follow the exposition in [Vil06].

Fitting ideals (see Section 2.2) are related to ranks of modules and flatness.
Indeed, the local rank of M at a prime ideal P of R is r if and only if F−1(M) ⊆
F0(M) ⊆ . . . ⊆ Fr−1(M) ⊆ P but Fr(M) ̸⊂ P . As a corollary, if R is a domain
then the generic rank of M is r if and only if Fr(M) is the first non-zero Fitting
ideal, and moreover M is flat if and only if it is free, if and only if Fr(M) = R and
Fr−1(M) = 0.

The relationship between Fitting ideals and local freeness of the torsion-free part
comes from Lipman’s theorem (Proposition 2.2.6).

In particular, the proposition shows that blowing up the first non-trivial Fitting
ideal ofM will make (p∗M)tf locally free (with p the blow-up morphism). However,
it is possible that M tf is already locally free on SpecR even though its first non-
trivial Fitting ideal is not principal. See Remark 3.3.2 for an example. Only if the
projective dimension of M is at most one, is the blow-up of the first non-trivial
Fitting ideal the minimal desingularization of the corresponding sheaf. In order to
find a minimal transformation of Spec (R) on which M tf is locally free, Villamayor
proposes in [Vil06] the following construction.

Given a finitely presented module M of generic rank r over a domain R with
fraction field K, define its norm to be the fractional ideal

(4) JMK = Im

(
r∧
M → K ≃

r∧
M ⊗R K

)
.

Definition 3.3.1 (Villamayor’s blow-up). Let R be a Noetherian integral ring, let
X = SpecR and let M be a finitely presented R-module of generic rank r. The
blow-up of X along M is

p : BlMR := BlJMKR→ R,

where JMK is the norm of M from (4).

Remark 3.3.2. In general, BlMX is not obtained by blowing up the first non-zero
Fitting ideal of M . Indeed, let I ⊂ R be an ideal and M = R/I. On the one hand,
M tf = 0 is locally free of rank 0, which is the rank of M , so BlMX = X. On the
other hand, the first non-zero Fitting ideal of M is F0(M) = I, so BlF0(M)X =
BlMX if and only if I is principal.

However, if M has generic rank r and projective dimension ≤ 1, then BlMX =
BlFr(M)X.
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Note that any two ideals I, J of R which are isomorphic to JMK as fractional
ideals define the same blow-up, up to unique isomorphism.

The same ideas apply in [Vil06] to any (Noetherian) ring R if we restrict to
finitely presented R-modules M such that M ⊗R K(R) is a free K(R)-module,
where K(R) is the total quotient ring of R. However, for our purposes, we shall
not need that generality.

Below, we explain the connection between this definition and the theory of Fit-
ting ideals.

Construction 3.3.3 ([Vil06, Remark 2.1]). Let R be a domain and let M be a
finitely presented R-module of rank r. Choose generators m1, . . . ,mN forM . Then
there is a short exact sequence

0→ P → RN →M → 0.

SinceM has rank r, there are elements p1, . . . , pN−r in P which induce a morphism
RN−r → RN of rank N − r. Let P1 ≃ RN−r be the free module generated by
p1, . . . , pN−r and let M1 = RN/P1, that is, the following is exact

0→ P1 → RN →M1 → 0.

Then M1 has projective dimension at most 1, rk(M1) = rk(M), there is a natural
surjection M1 →M and M1/tor(M1) =M/tor(M).

Lemma 3.3.4. Under the assumptions of Definition 3.3.1, let M1 be the R-module
associated to M in Construction 3.3.3. Then Fr(M1) and JMK are isomorphic as
fractional ideals over R. In particular,

BlJMKX = BlFr(M1)X.

Proof. See [Vil06, Proposition 2.5]. □

Remark 3.3.5. It is straight-forward to check that the algebraic definition of
Definition 3.3.1 is equivalent to the local version of the Rossi construction by taking
the Plücker embedding of the relative Grassmannian. We omit the details, which
are present in a previous draft.

3.4. Properties of the Rossi blow-up. In light of Remark 3.3.5, from now on
we will identify the Rossi and Villamayor blow-ups of a coherent sheaf F on an
affine integral Noetherian scheme X, both of which are local descriptions of Defi-
nition 3.2.3. In this section, we collect some properties of BlFX.

Proposition 3.4.1 (Blow-up commutes with flat pullbacks). Let f : Y → X be
a morphism of Noetherian integral schemes and let F be a coherent sheaf on X of
generic rank r. If f∗F has generic rank r then there is a unique morphism

Blf∗F (Y ) BlF (X)

Y X

∃!f̃

f

making the diagram commute. If, moreover, f is flat, then the square is Cartesian.

Proof. A unique morphism f̃ making the diagram commute exists by the universal
property of BlF (X), which is Theorem 3.2.2. To show that the diagram is Cartesian,
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we work locally with Villamayor’s description. We use [Sta22, Lemma 0805], which
is the analogous result for blow-ups along ideal sheaves. This requires checking that
f−1JFK · OY = Jf∗FK, which holds since F and f∗F have the same rank and the
norm J·K is a determinantal ideal.

Indeed, we can work locally. Then we have X = Spec (A), Y = Spec (B), a ring

homomorphism f# : A→ B and F = M̃ for some finitely presented A-module M .
To compute JFK, we take a presentation

Am An M 0,Γ

we choose a submatrix Γ′ of Γ consisting of n − r columns of Γ and then JFK is
represented by the ideal generated by all the minors ∆i(Γ

′) of size (n− r)× (n− r)
of Γ′. The choice of Γ′ must be so that this ideal is non-zero and such a choice exists
because rk(F) = r. Then f−1JFK ·B is the ideal in B generated by f#(∆i(Γ

′)) for
all i. On the other hand, tensoring by ⊗AB we get a presentation

Bm Bn M ⊗A B 0.
f∗Γ

Since f∗F = M̃ ⊗A B and since rk(f∗F) = r, we can compute Jf∗FK in the
same manner, i.e., taking all the minors of size (n − r) × (n − r) of a submatrix
(f∗Γ)′′ consisting of n− r columns of f∗Γ. This means that Jf∗FK is generated by
∆i((f

#Γ)′′). We can actually choose Γ′ and (f∗Γ)′′ so that they consist of the same
columns, and in that case we are done because f# is a ring homomorphism. □

Proposition 3.4.2. Let X be an integral Noetherian scheme and L a line bundle
on X. Then we have a unique isomorphism

BlF (X)
∃!ϕ̃

//

p
##

BlF⊗L(X)

q
zz

X

which makes the diagram commute.

Proof. Work locally for affine X. Let f : O⊕n
X → F be a surjective morphism, let

S denote the kernel of f and let U an open subset of X such that S is a vector
bundle. We thus obtain a short exact sequence

0→ S ⊗ L|U → O⊕n
U ⊗ L|U

f⊗id→ F ⊗L|U → 0.

By possibly shrinking U we may assume we have an isomorphism g : L|U ≃ OU .
We thus obtain a commutative diagram

Γf //

��

GrX(O⊕n
X , r)

��

Γf⊗id // GrX(O⊕n
X , r)

where the right vertical arrow is induced by g. This gives a morphism ϕ̃ : Γf →
Γf⊗id and proves the claim. □

Proposition 3.4.3. Let X be a Noetherian integral scheme and E, F ,G be coherent
OX-modules. Assume that we have an exact sequence 0→ E → F → G → 0.
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(1) If the sequence is locally split and E is locally free, then there is an isomor-
phism BlFX ≃ BlGX.

(2) If G is locally free, then there is an isomorphism BlFX ≃ BlEX.

Proof. It is enough to prove the statements locally. Indeed, if pF : BlFX → X
and pG : BlGX → X are the natural projections, then BlFX ≃ BlGX if and only if
(p∗FG)tf and (p∗GF)tf are locally free, and these are local statements.

Therefore, we may assume that we have F ≃ E ⊕ G. With this, we have that

(5) ∧topF = ∧topE ⊗ ∧topG.
From the alternative description of Definition 3.3.1, or from composing with a

Plücker embedding, it’s clear that BlGX ≃ Bl∧topGX and BlFX ≃ Bl∧topFX ≃
Bl∧topE⊗∧topGX using Equation (5). Suppose now that E is locally free, then ∧topE
is a line bundle and we conclude that BlFX ≃ BlGX by Proposition 3.4.2.

If G is locally free, the sequence is locally split and a similar argument to the
one above shows that BlFX ≃ BlEX. □

In the following we discuss a more general situation, when we have an open
U ⊂ X such that 0→ EU → FU → GU → 0, with EU locally free.

Proposition 3.4.4. Let F and G sheaves of ranks r+a and r on an integral scheme
X and On+a → F and On → G surjective morphisms. Suppose there exists U ⊂ X
an open subset and a commutative diagram

0 0

OnU G|U 0

On+aU F|U 0

OaU EU

0 0

i f

h

with the columns split short exact sequences and h an isomorphism. Then, we get
an induced morphism

BlGX → BlFX.

In particular, BlGX is a desingularisation of F .

Proof. It suffices to prove this for X affine. The diagram in the hypothesis gives a
commutative diagram

U //

��

X ×Gr(n, r)

��

U // X ×Gr(n+ a, r + a)

where the vertical map Gr(n, r)→ Gr(n+ a, r + a) is

(V ↠ Q) 7→ (V ⊕W ↠ Q⊕ h(W )).
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Here we denoted the fiber of the vector bundle OaU by W and (by a slight abuse
of notation) the induced map by h. This gives a morphism between the closures
BlGX → BlFX.

□

We record here a fairly immediate corollary of the above proposition, which will
be useful as stated in Section 7.

Corollary 3.4.5. Let F and G sheaves of ranks r+ a and r on an integral scheme
X and On → F and On+a → G surjective morphisms. Suppose there exists U ⊂ X
an open subset and a commutative diagram

0 0

0 G∗|U OnU

0 F∗|U On+aU

E∗U OaU

0 0

g q

h

with the columns split short exact sequences and h an isomorphism. Then, we get
an induced morphism

BlGX → BlFX.

In particular, BlGX is a desingularisation of F .

Proof. This follows by dualising the statement in Proposition 3.4.4. Note that g is
not the dual of f , but the dual of a splitting of f .

Alternatively, one can copy the proof above. The only difference is that a map
Gr(r, n)→ Gr(r + a, n+ a) is

(S ↪→ V ) 7→ (g(S)⊕W ↪→ V ⊕ h(W )). □

Remark 3.4.6. In general, BlFX is not isomorphic to BlF∗X. For example let
X be a normal scheme and F an ideal sheaf. Then F∗ is reflexive and it has rank
one, so it is an invertible sheaf. This shows that BlF∗X ≃ X. If F is not locally
free (see e.g. Example 6.3.3), then we have BlFX ̸= X.

4. Diagonalization

This section may be skipped for a first reading. The Rossi construction suffices
to prove the main result Main result 1.0.1. We add this new blowup because we
believe that this is a first step for proving Conjecture 1.0.5.

The diagonalization process for certain coherent sheaves is introduced by Hu and
Li in [HL11] and by Grivaux in [Gri10]. A coherent sheaf F on an integral Noe-
therian scheme X can locally be written as the cokernel of a morphism of locally
free sheaves φ : E−1 → E0. Blowing up all the Fitting ideals of F desingularizes
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both F and the kernel of φ, and makes the morphism φ diagonalizable (see Defini-
tion 4.1.1). We summarize the construction for schemes and its universal property
and explore the possibility of finding a minimal blow-up which also desingularizes
all the components of the abelian cone associated to F . Applied to the moduli
space of maps, this construction will be used in Section 7 to desingularize all the
components ofMg,n(Pr, d). All schemes are assumed to be Noetherian and integral
in this section.

4.1. Diagonalizable morphisms and diagonal sheaves. We recall the notion
of diagonalizable morphism of locally free sheaves from [HL11] and introduce the
notion of diagonal sheaf. We show that these two notions are equivalent in Proposi-
tion 4.1.6, in the sense that a morphism is diagonalizable if and only if its cokernel
is diagonal.

Definition 4.1.1 (Diagonalizable morphism [HL11, Definition 3.2]). Let X be a

scheme. A morphism φ : O⊕p
X → O⊕q

X is diagonalizable if there are direct sum
decompositions by free sheaves

(6) O⊕p
X = G0 ⊕

ℓ⊕
i=1

Gi and O⊕q
X = H0 ⊕

ℓ⊕
i=1

Hi

with φ(Gi) ⊆ Hi for 0 ≤ i ≤ ℓ such that

(1) φ |G0
= 0;

(2) for every 1 ≤ i ≤ ℓ, there is an isomorphism Ii : Gi → Hi;
(3) the morphism φ |Gi

: Gi → Hi is given by fiIi for some 0 ̸= fi ∈ Γ(OX);
(4) (fi+1) ⫋ (fi).

More generally, a morphism φ : E−1 → E0 of locally free sheaves on X is locally di-
agonalizable ifX admits an open cover which trivializes E−1 and E0 simultaneously
and on which φ is diagonalizable.

Example 4.1.2. If X = Spec (R) for a principal ideal domain R, then every mor-
phism φ : Rp → Rq is diagonalizable in the sense of Definition 4.1.1 and the diagonal
form associated to φ is called the Smith normal form of φ.

We will be interested in the coherent sheaves arising as kernels and cokernels of
such diagonalizable morphisms.

Proposition 4.1.3. Let X be a Noetherian integral scheme and let φ : E−1 → E0

be a locally diagonalizable morphism between locally free sheaves on X. Then ker(φ)
is locally free.

Proof. The question is local, so we can assume that E−1 = O⊕p
X and E0 = O⊕q

X ,
and that they admit decompositions as in Equation (6). Then ker(φ) = G0 is free.

□

Definition 4.1.4. We say that a coherent sheaf F on a scheme X is diagonal if
all the Fitting ideal sheaves Fi(F) are locally principal.

Remark 4.1.5. By Proposition 2.2.6, if F is diagonal then F tf = F/tor(F) is
locally free and F has tor-dimension at most 1.

Proposition 4.1.6. A morphism φ : E−1 → E0 of locally free sheaves is locally
diagonalizable if and only if the coherent sheaf Coker(φ) is diagonal.
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Proof. This result is contained in the proof of [HL11, Proposition 3.13]. Observe
that the Fitting ideals Fi(F) are just the determinantal ideals ∆(q−i)×(q−i)(φ),

where q = rk(E0). If φ is locally diagonalizable, take an open where it is of the
form (6). Then the Fitting ideals of F are generated by products of the fi’s, so are
principal in this open.

On the other hand, if F is diagonal, we can cover X by affine opens where all
Fi(F) are principal and where the Ei’s are simultaneously trivialized. We quickly
sketch how [HL11, Proposition 3.13] produces a decomposition as in (6), by possibly
further restricting. In the affine open Spec (R) ⊂ X, the morphism φ is given by

Γ = (ai,j)

i ∈ {1, . . . , p}, j ∈ {1, . . . , q}, ai,j ∈ R. The Fitting ideal Fq−1(F) = ∆1×1(Γ)
is principal if and only if, after further localization, there is an entry ai0,j0 which
divides every other entry ai,j . In that case, one can perform row and column
operations to put Γ in the following form

ai0,j0 0 . . . 0
0
... Γ′

0


with Γ′ a matrix of smaller size. The same argument works recursively since the
remaining Fitting ideals of F and those of Γ′ differ by the principal ideal (ai0,j0). □

Example 4.1.7. Any smooth curve X can be covered by affine open subschemes of
the form Spec (R) with R a principal ideal domain. Therefore every coherent sheaf
on X is locally diagonal and every morphism of locally free sheaves on X is locally
diagonalizable.

We are interested in morphisms that transform a given coherent sheaf in a diag-
onal sheaf.

Definition 4.1.8. (1) Given a scheme X and a coherent sheaf F , a diagonal-

ization of F is a morphism f : X̃ → X such that f∗F is diagonal.
(2) Given a scheme X and a morphism of locally-free sheaves φ : E−1 → E0,

a diagonalization of φ is a morphism f : X̃ → X such that f∗φ is locally
diagonalizable and rk(Coker(φ)) = rk(f∗Coker(φ)).

Remark 4.1.9. From Proposition 4.1.6, we see that diagonalizing a coherent sheaf
F is equivalent to diagonalizing any presentation E−1 → E0 ↠ F by locally free
sheaves.

Remark 4.1.10. If φ : E−1 → E0 is a locally diagonalizable morphism on a
scheme X, and f : Y → X is any morphism of Noetherian schemes, f∗φ is locally
diagonalizable.

Similarly, if F is diagonal, f∗F is diagonal.
Note that the generic ranks of F and f∗F will be different in general for non-

dominant morphisms.

4.2. Construction of the Hu–Li blow-up. We recall the construction of the
minimal diagonalization of a sheaf, introduced in [HL11], which we call the Hu-Li
blow-up of a scheme along a sheaf.
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Definition 4.2.1 (Maximal rank). Let X be an integral Noetherian scheme and
F a coherent sheaf of generic rank r. The maximal rank mrk(F) is

mrk(F) = max
p∈X
{rk(F|p)} ≥ r

which is the maximum rank of F when restricted to a closed point of p ∈ X. Equiva-
lently, mrk(F) is such that the Fitting ideals Fmrk(F)(F) is OX and Fmrk(F)−1(F) ̸=
OX , with the convention that F−1(F) = 0.

Remark 4.2.2. The above mrk(F) is finite. Indeed, the ascending chain condition
on the Fitting ideals

F−1(F) ⊂ F0(F) ⊂ · · · ⊂ Fn(F)
guarantees that there is some mrk(F) such that Fmrk(F)(F) = Fmrk(F)+1(F) = . . . .

Moreover, for any affine open U ⊂ X, the ascending chain of Fitting ideals

stabilizes at OU , since F|U = M̃ for a finitely generated module M . So the chain
above must stabilize at OX .

Remark 4.2.3. There is a closed point q ∈ X such that rk(F|q) = mrk(F), and
such that we have a resolution

O⊕p
q → O⊕mrk(F)

q → F|q → 0.

However, F may not be generated globally by mrk(F) sections. Indeed, it may not
be globally generated at all!

Construction 4.2.4 (Hu–Li blow-up). Let X be an integral Noetherian scheme
and F a coherent sheaf of general rank r and maximal rank r2. Recall from Sec-
tion 2.2 that the Fitting ideals of F satisfy a chain of inclusions F−1(F) ⊆ F0(F) ⊆
. . ., that Fr2(F) = OX and that F0(F) = . . . = Fr−1(F) = 0 because F has rank
r.

Let
p : BlHLF X = BlFr(F)·...·Fr2−1(F)X → X

By [Sta22, Lemma 080A], BlHLF X can also be constructed by successively blowing
up X along (the total transforms of) the Fitting ideals of F , that is

BlHLF X = Xr . . . Xr2−2 Xr2−1 X
pr pr2−2 pr2−1

where

• Xr2−1 = BlFr2−1(F)X,
• Xr2−2 = BlFr2−2(p∗r2−1F)Xr2−1 = Blp−1

r2−1Fr2−2(F)OXr2−1
Xr2−1 and

• Xi = BlFi(p∗i p
∗
i+1...p

∗
r2−1F)Xi+1 for all i with r ≤ i ≤ r2 − 2.

Each pi is the natural morphism coming from the blow-up construction and we
denote by p the composition pr2−1 ◦ . . . ◦ pr.

4.3. The universal property of the Hu–Li blow-up. We are now ready to
state the minimality properties for Construction 4.2.4. We can formulate a universal
property for the morphism φ or, in light of Remark 4.1.9, we can formulate it to
only depend on the cokernel sheaf F .

Theorem 4.3.1 (Universal property of BlHLF X [HL11]). Let X be a Noetherian
integral scheme and F a coherent sheaf on X of generic rank r. The natural pro-
jection p : BlHLF X → X satisfies that
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(1) the sheaf p∗F has generic rank r and
(2) the Fitting ideal Fi(p

∗F) is locally principal for all i.

Moreover, p : BlHLF X → X satisfies the following universal property: for any mor-
phism f : Y → X of Noetherian integral schemes such that

(1) the sheaf f∗F has generic rank r and
(2) the Fitting ideal Fi(f

∗F) is locally principal for all i,

there is a unique morphism f ′ : Y → BlHLF X factoring f .

Y BlHLF X

X

f

∃!f ′

p

Proof. Let r2 denote the maximal rank of F . Then r = r2 if and only if F is locally
free, in which case BlHLF X = X clearly has this property.

Otherwise, we must have r2 ≥ r, so BlHLF X is defined by the sequence of blow-
ups in Construction 4.2.4. By construction, p is dominant and each Fitting ideal
of p∗F is locally principal. The universality follows from the universal property of
the usual blow-up as in [Har77, Proposition 7.14], using that Fi(f

∗F) is non-zero
for all r ≤ i ≤ r2, which holds by the assumption that f∗F and F have the same
generic rank. □

Theorem 4.3.2 (Universal property of diagonalization [HL11]). Let φ : E−1 → E0

be a morphism of locally-free sheaves on a Noetherian integral scheme X. Let
F = Coker(φ) and let BlHLF X as in Construction 4.2.4. Then, the natural projec-

tion p : BlHLF X → X is a diagonalization of φ. Moreover, p satisfies the following
universal property: for any morphism f : Y → X such that f∗φ is locally diag-
onalizable and rk(f∗F) = rk(F), there is a unique morphism f ′ : Y → BlHLF X
factoring f .

Y BlHLF X

X

f

∃!f ′

p

Proof. Follows immediately from Theorem 4.3.1 and Proposition 4.1.6. □

4.4. Properties of the Hu–Li blow up. We collect properties of BlHLF X.

Proposition 4.4.1. Let f : Y → X be a morphism of Noetherian integral schemes
and let F be a coherent sheaf on X of generic rank r. If f∗F has generic rank r
then there is a unique morphism

BlHLf∗FY BlHLF X

Y X

∃!f̃

f

making the diagram commute.
If, moreover, f is flat, then the square is Cartesian.
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Proof. A unique morphism f̃ making the diagram commute exists by the universal
property Theorem 4.3.2. To see that diagram is Cartesian we apply [Sta22, Lemma

0805] to each of the blow-ups defining BlHLF X, using that the formation of Fitting
ideals is compatible with pullbacks. □

Proposition 4.4.2. Let X be a Noetherian integral scheme, let F a coherent sheaf
on X and let L be a line bundle on X. Then there is a unique isomorphism

BlHLF (X)
∃!ϕ̃

//

p
##

BlHLF⊗L(X)

q
zz

X

which makes the diagram commute.

Proof. By Theorem 4.3.1, a unique factorization ϕ̃ of p through q exists if and
only if Fi(p

∗(F ⊗ L)) is locally principal for all i, and this holds because Fi(p
∗F)

is locally free for all i. Indeed, choose an open cover of X trivializing L. The
preimage by p of this cover induces a cover of BlF (X) where p∗(F ⊗ L) ≃ p∗F .
This shows that Fi(p

∗(F ⊗L)) ≃ Fi(p∗F) locally, so ϕ̃ exists. The same argument
shows there is a unique factorization of q through p, which must be the inverse of

ϕ̃ by uniqueness. □

Proposition 4.4.3. Let X be a Noetherian integral scheme and E, F ,G be coherent
OX-modules. Assume that we have an exact sequence 0→ E → F → G → 0.

(1) If the sequence is locally split and E is locally free, then there is an isomor-

phism BlHLF X ≃ BlHLG X.

(2) If G is locally free, then there is an isomorphism BlHLF X ≃ BlHLE X.

Proof. It is enough to prove the statement locally, so we may assume that we have
F ≃ E ⊕ G. With this, we have that

(7) Fℓ(E ⊕ G) =
∑

k+k′=ℓ

Fk(E)Fk′(G)

by [Sta22, Lemma 07ZA]. If G is locally free, the sequence is locally split, therefore
by symmetry it is enough to show one of the statements. Without loss of generality,
suppose that G is locally free, therefore Fk′(G) = 0 for all k′ < rk(G) and Fk′(G) =
OX for all k′ ≥ rk(G) by [Sta22, Lemma 07ZD]. Combining this fact with the chain
of inclusions F0(E) ⊆ F1(E) ⊆ . . ., it follows that

Fℓ(F) = Fℓ(E ⊕ G) =

{
0 if ℓ < rk(G)
Fℓ−rk(G)(E) if ℓ ≥ rk(G)

This means that the collection of Fitting ideals of F and E agree, so BlHLF X ≃
BlHLE X. □

Proposition 4.4.4. Let X be a Noetherian integral scheme and F a coherent OX-
module. Then for every positive integer n

BlHLF X = BlHLF⊕nX.
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Proof. There is a natural morphism BlHLF X → BlHLF⊕nX over X. To see this, let

p : BlHLF X → X be the natural projection. Then p∗F is diagonal and it follows
from Definition 4.1.1 that p∗(F⊕n) = (p∗F)⊕n is diagonalizable too. Then apply
Theorem 4.3.2 to get the desired morphism.

Conversely, we show that there is a natural morphism BlHLF⊕nX → BlHLF X over
X, which is enough to conclude the proof by the universal properties of both blow-
ups. Remember that

BlHLF X = Bl∏
ℓ Fℓ(F)X

where the product is over all non-trivial Fitting ideals of F , and similarly BlHLF⊕nX is
the blowup of X along

∏
ℓ Fℓ(F⊕n). By [Moo01], it suffices to show that

∏
ℓ Fℓ(F)

divides a power of
∏
ℓ Fℓ(F⊕n) as fractional ideals. Actually, we show that every

Fitting ideal Fℓ(F⊕n) is a product of certain Fitting ideals Fk(F), with each k
appearing at least once as ℓ varies, and this is clearly enough.

By [BV88, Lemma 10.10], if A is any Q-algebra, ifM = (ai,j) is any matrix with
coefficients in A and if ∆i denotes the ideal generated by all minors of M of size
i× i, then

∆i∆j ⊆ ∆i+1∆j−1

whenever i ≤ j − 2. From this, we can conclude that if ℓ = ds + r with r ∈
{0, . . . , s− 1}

(8)
∑

j1+...+js=ℓ

∏
i

∆ji = ∆s−r
d ∆r

d+1.

To conclude, remember that locally F is the cokernel of a morphism φ : E−1 → E0,
that Fi(F) is the ideal ∆r2−i(φ) of minors in φ of size r2 − i, where r2 = rk(E0),
and the expression for Fitting ideals of direct sums Equation (7). □

Example 4.4.5. Take n = 2 in Proposition 4.4.4. Then Equation (8) is equivalent
to

Fℓ(F ⊕ F) =
∑

k+k′=ℓ

Fk(F)Fk′(F) =

{
F 2
r2−k if ℓ = 2k

Fr2−kFr2−k−1 if ℓ = 2k + 1

where r2 the maximal rank of F as in Construction 4.2.4.

Proposition 4.4.6. Let X be a Noetherian integral scheme and F a coherent sheaf
on X. Then there is a natural morphism BlHLF X → BlFX.

Proof. Let π : BlHLF X → X be the natural projection and let r = rk(F). By
Theorem 3.2.2, it suffices to check that (π∗F)tf is locally free of rank r. This can
be checked locally. If X = Spec (R) for a local ring R, the result follows from
Proposition 2.2.6. □

4.5. The filtration of a diagonal sheaf. Given a diagonal sheaf F , we construct
a filtration F• such that Fi/Fi−1 is locally free on a Cartier divisor Di (Construc-
tion 4.5.2). This filtration will be used in Section 6.3 to describe the irreducible
components of the abelian cone of a diagonal sheaf (see Theorem 6.3.1).

Lemma 4.5.1. Let F be a diagonal coherent sheaf of generic rank r on a Noetherian
integral scheme X. Then there is a short exact sequence

0→ K → F → F tf → 0

with F tf locally free of rank r on X and K a diagonal coherent sheaf of generic rank
0.
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Proof. Let K = tor(F). Then F tf is locally free by Remark 4.1.5 and K is diagonal
by the proof of Proposition 4.4.3. □

Construction 4.5.2 (c.f. [Sta22, Tag 0ESU]). Let F be a diagonal coherent sheaf
of generic rank zero and mrk(F) = n on an integral scheme X. In the following,
we construct an increasing filtration F•:

0 = F0 ⊂ F1 ⊂ . . .Fn−1 ⊂ Fn = F

and effective Cartier divisors Di such that for each i, the sheaf

Fi/Fi−1

is locally free of rank i on the closed locally principal subscheme defined by Di.
Our formulation differs from the one in the reference, so we present the con-

struction of the filtration in our context. We can work locally and assume that F
has a presentation which is diagonalizable in the sense of Definition 4.1.1 that is
φ : O⊕n

X → O⊕n
X where φ is the diagonal matrix

φ = Diag

 n1︷ ︸︸ ︷
f1, . . . , f1,

n2︷ ︸︸ ︷
f2, . . . , f2, . . . ,

nk︷ ︸︸ ︷
fk, . . . , fk


with n1 + · · ·+ nk = n and non-zero fi’s satisfying (fi+1) ⫋ (fi). Note that locally
F may not attain its maximal rank n, but we can always choose f1 to be a unit to
obtain a presentation of the correct rank.

Since F is diagonal, it has tor dimension at most 1 by Remark 4.1.5, therefore
it admits a presentation by a square matrix φ.

Since we are working over a domain, (fi+1) ⊆ (fi) is equivalent to fi|fi+1. We
can define effective Cartier divisors D1, . . . , Dn by taking ratios of successive entries
of φ:

Dn = Fn−1 = (f1)

Di =

(
φn−i+1,n−i+1

φn−i,n−i

)
.

In other words, Di is the ideal generated by the ratio of the entries in position
n − i + 1 and n − i in φ. Note that, while the generators of the ideals are only
well-defined up to a unit, the ideals themselves are well-defined and do not depend
on the chosen presentation of φ. In fact, they can be expressed as differences of the
Fitting ideals of F , which are independent of the chosen presentation.

The divisors Di give closed locally principal subschemes of X, which are defined

by (fk+1/fk) if i = n−
∑k
j=1 nk and are empty otherwise.

We define the increasing filtration of F• as follows. We set Fn := F , and define
Fn−1 as the cokernel of the morphism φ′ := φ/f1. That is,

(9)

0 0 (OX/(f1))⊕n Fn/Fn−1 0

0 O⊕n
X O⊕n

X Fn 0

0 O⊕n
X O⊕n

X Fn−1 0.

∼

φ

φ′

id f1·id
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As OD1
= OX/(f1), the graded piece Fn/Fn−1 is locally free of rank n on Dn.

Now, φ′ can be given by the diagonal matrix

φ′ = Diag

 n1︷ ︸︸ ︷
1, . . . , 1,

n2︷ ︸︸ ︷
f2/f1, . . . , f2/f1, . . . ,

nk︷ ︸︸ ︷
fk/f1, . . . , fk/f1

 .

We can pass to φ′′ : O⊕n−1
X → O⊕n−1

X by removing the first entry. Clearly, Fn−1 =
Cokerφ′′. Then we can iterate the construction in (9), factoring our multiplication
by the first entry φ′′

1 of φ′′

0 0 (OX/(φ′′
1))

⊕n−1 Fn−1/Fn−2 0

0 O⊕n−1
X O⊕n−1

X Fn−1 0

0 O⊕n−1
X O⊕n−1

X Fn−2 0.

∼

φ′′

φ′′′

id φ′′
1 ·id

This defines the next subsheaf Fn−2 in the filtration and the new morphism φ′′′.
If n1 > 1, (φ′′

1) = (1), so we will have Fn−2 = Fn−1 and Dn−1 defining the empty
subscheme. Note that the sub-schemes defined byDn−1, . . . , Dn−n1+1 are all empty,
and the filtration is constant until Fn−n1−1, which is the cokernel of

O⊕n−n1

X

ψ−−→ O⊕n−n1

X

with

ψ = Diag

 n2︷ ︸︸ ︷
1, . . . , 1,

n3︷ ︸︸ ︷
f3/f2, . . . , f3/f2, . . . ,

nk︷ ︸︸ ︷
fk/f2, . . . , fk/f2


and Dn−n1

= (f1/f2). Iterating this construction clearly provides a filtration and
a collection of effective divisors which satisfy the claims in the lemma.

The divisors Di are defined globally in terms of Fitting ideals, and do not depend
on the local expression of the matrix. In fact, unpacking the argument above, we
can check that

(10)

 F0

...
Fn−1

 =



1 2 · · · n− 1 n
1 2 · · · n− 1

. . .
. . .

...

1 2
1


D1

...
Dn

 .

Then,

(11)

D1

...
Dn

 =


1 −2 1

. . .
. . .

. . .

1 −2 1
1 −2

1


 F0

...
Fn−1

 .
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With the notations of Construction 4.5.2, the associated graded sheaf to this
filtration is

E =
⊕
i

Ei,

where Ei = Fi/Fi−1.
We present an example to illustrate Construction 4.5.2.

Example 4.5.3. Take R = C[x, y, z], X = SpecR. Let F = M̃ be the diagonal sheaf
defined by

0→ R⊕4

φ=


x 0 0 0
0 x 0 0
0 0 xy 0
0 0 0 xyz


−−−−−−−−−−−−−−−−−→ R⊕4 →M → 0.

The divisors from the statement of Construction 4.5.2 are given by the ideals

D4 = (x), D3 = (1), D2 = (y), D1 = (z).

As a sanity check for Equation (10), we see that indeed

F0 = D1 + 2D2 + 3D3 + 4D4 = (x4y2z),

F1 = D2 + 2D3 + 3D4 = (x3y),

F2 = D3 + 2D4 = (x2y),

F3 = D4 = (x).

Now, all the elements of φ are divisible by D4, which is the ideal generated by
the first entry. We set F4 = F . To obtain the next step in the filtration, F3, we
consider the decomposition φ = x · φ′ below

0 R⊕4 R⊕4 M 0

0 R⊕4 R⊕4 M3 0

φ

φ′

id x·id

we set F3 = M̃3, the module defined by

φ′ =


1 0 0 0
0 1 0 0
0 0 y 0
0 0 0 yz


or equivalently as the cokernel of

R⊕3

φ′=


1 0 0
0 y 0
0 0 yz


−−−−−−−−−−−−→ R⊕3.

Similarly, F2 = M̃2 will be defined by

0→ R⊕2

y 0
0 yz


−−−−−−−→ R⊕2 →M2 → 0
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and F1 = M̃1 by

0→ R
(z)−−→ R→M1 → 0.

Finally, M0 = 0. In conclusion, we obtain the filtration

M =M4 = (R/(x))⊕2 ⊕R/(xy)⊕R/(xyz)


0 0
0 0
x 0
0 x


←−−−−−−↩ M3 = R/(y)⊕R/(yz) ∼=

∼=M2 = R/(y)⊕R/(yz)

(
0 y

)
←−−−−−↩ M1 = R/(z)← 0 =M0.

The graded pieces are

E4 = F4/F3 = ˜(R/(x))
⊕4

E3 = F3/F2 = 0

E2 = F2/F1 = ˜(R/(y))
⊕2

E1 = R̃/(z)

and each of the sheaves Ei is locally free of rank i on the subscheme defined by Di.
Note that, for i = 3, such subscheme is empty.

Theorem 4.5.4. Let F be a diagonal coherent sheaf of generic rank r and maximal
rank r2 on a Noetherian integral scheme X. Then we have a filtration

F ⊃ K = Kr2−r ⊃ Kr2−r−1 ⊃ · · · ⊃ K0 = 0

such that
F tf = F/K

is locally free of rank r and
Ei = Ki/Ki−1

is locally free of rank i on the effective Cartier divisor Di.

Proof. Immediate by Lemma 4.5.1 and Construction 4.5.2. □

4.6. Remarks on minimality. We saw in Remark 3.3.2 that blowing up the first
non-zero Fitting ideal of F is, in general, not the minimal way to make F tf locally
free. Similarly, blowing up all the Fitting ideals of F is not the minimal way to
turn (F |Di

)tf into locally free sheaves for all i. This is illustrated in the following
examples.

Example 4.6.1. Take X = Spec (R) and F = M̃ for M = R/I with I ⊂ R a non-
principal ideal. The only non-trivial Fitting ideal of F is F0(F) = I. Note that
M tf = 0 is locally free and M |V (I) is locally free of rank 1. This means that F
already has the desired property on X. However, blowing up all the Fitting ideals
of F results in BlI(X), which is isomorphic to X if and only if I is invertible.

This example also shows that given a coherent sheaf F on an integral scheme
X, the blow up BlF (X) from Definition 3.2.3 and BlHLF X are different in general.
Indeed, on the one hand, BlF (X) = BlM (X) = X because M tf = 0 is locally
free. On the other hand, the only non-trivial Fitting ideal of M is F1(M) = I, so

BlHLF X = BlIX. Therefore both blow ups agree if and only if I is invertible.
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Example 4.6.2. Let P be the origin in A2
x,y and consider the embedding i : A2

x,y →
A3
x,y,z : (x, y) 7→ (x, y, 0). The image of i is the plane Π = {z = 0}. Let I = (x, y)

be the ideal of P in A2 and consider the module M = i∗I in A3.
Note that M has generic rank 0, M tf = 0 and that M |Π is the ideal I, which

is torsion-free. This means that M tf = 0 is already locally free, but (M |Π)tf =
M |Π= I is not locally free over Π.

To compute BlHLM A3, we start with the following resolution of M

(12) R3 R2 M 0Γ

where R = C[x, y, z] and

Γ =

(
y z 0
−x 0 z

)
.

The Fitting ideals of M are

• F0(M) = z(x, y, z),
• F1(M) = (x, y, z),
• Fn(M) = R, for all n ≥ 3

This reflects the fact that M has rank 0 on A3 \Π, rank 1 on Π \ P and rank 2 on
P , as per Proposition 2.2.2. Then

BlHLM A3 = BlF0(M)·F1(M)A3 = Blz(x,y,z)2A3 = Bl(x,y,z)A3 = BlPA3

is simply the blowup of the origin in A3. Note that BlHLM A3 is distinct from
BlMA3 = A3 in this example as the latter does not flatten (M |Π)tf .

Remark 4.6.3. If the sheaf F has projective dimension ≤ 1, then the Rossi con-
struction is equal to the blow-up of the first non-zero Fitting ideal. In this case,
blowing up all of the proper non-zero ideals as in the Hu–Li construction gives a
minimal resolution with the property that (F |Di

)tf is locally free for all of the Di’s
defined in terms of Fitting ideals by (11). For an ideal having projective dimension
1 is equivalent to being principal.

Remark 4.6.4 (Extension of sheaves). Let X be a scheme, let Y be a closed
subscheme an let FY be a coherent sheaf of rank r on Y . In order to find a minimal
blow up of this torsion sheaf, one may try to extend FY to X as a sheaf which is
not a torsion sheaf and perform a repeated Rossi construction. One can find an
open cover of X and blow-ups of the charts such that on the blow-up the torsion
free part of the pull-back of F is locally free on the support. However, the blown
up charts may not glue to a global construction. Below we explain that it is always
possible to find local blow-ups.

LetX be an affine scheme and let Y be a closed subscheme. Let FY be a coherent
sheaf of rank r on Y and assume that we have an exact sequence

O⊕n−r
U∩Y

M̂−→ O⊕n
U∩Y → FU∩Y → 0,

where M̂ ∈ Mn,r−n(Γ(OY )). We may assume that U = SpecR and Y ∩ U =

SpecR/I, where R is a ring and I is an ideal. Let M̂ = (f̂ij), with f̂ij ∈ R/I. We

now choose fij ∈ R a lift of f̂ij and we denote by M the matrix (fij). Then we

have a morphism O⊕n−r
U

M−→ O⊕n
U and an exact sequence

O⊕n−r
U

M−→ O⊕n
U → FU → 0,
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where FU denotes the cokernel of the map induced by M . Then, we have that
FU |Y = FY and the resolution above induces a morphism

U 99K U ×Gr(r, n).

Since there is no canonical choice for the lift M , the above morphisms do not glue
in general.

5. Desingularization and diagonalization on stacks

In this section, we show that the constructions introduced so far in Section 3
and Section 4 make sense for algebraic stacks, since they are both local and they
commute with flat base-change (see respectively Proposition 3.4.1 and Proposi-
tion 4.4.1). Thus we define the desingularization and the diagonalization of a co-
herent sheaf on a Noetherian integral Artin stack and we establish properties of
both constructions.

We will require our integral stacks to admit an integral presentation. As pointed
out to us by David Rydh, it is unclear whether an integral stack always admits a
presentation by integral schemes or algebraic spaces. However, all of the stacks we
apply this construction to in this work admit such a presentation. We will only
introduce repeated blow-ups of smooth algebraic stacks, which have an integral
presentation by construction.

5.1. Construction of BlFP and BlHLF P. So far, we have only constructed BlFX

and BlHLF X for an affine (Noetherian, integral) scheme X. In this section we gen-
eralize these constructions over a stack P which we assume admits a presentation
by affine integral groupoid schemes, that is, it can be presented by a groupoid
[U1 ⇒ U0] with U0, U1 affine integral schemes. In particular, this holds if P is a
normal Noetherian integral algebraic stack with affine stabilizers.

It is possible to obtain similar constructions for more general P (locally Noe-
therian, no restriction on the stabilizers), but it requires a two-step process of first
generalizing the construction to algebraic spaces and then to stacks.

Denote by P a Noetherian, integral Artin stack with affine stabilizers which
admits a presentation by integral schemes. Consider a smooth presentation of P,
i.e. a groupoid in affine schemes (U0, U1, s, t,m) whose associated quotient stack
[U1 ⇒ U0] is P. Here [U1 ⇒ U0] denotes the stackyfication of a category fibered
in groupoids [U1 ⇒ U0]

pre. Recall that U0, U1 are affine schemes m : U1 ×s t

U1 → U1 is the composition of arrows, s, t : U1 → U0 are respectively source and
target morphism and they are smooth morphisms. They satisfy some compatibility
conditions that we will not use explicitly here (See [LMB00, §(4.3)] or [Sta22,
Definition 0441].

The reader can think of P being the Picard stack Picg,n. Recall, that a S-point
of Picg,n is a couple (C,L) where C is a nodal curve of genus g with n distinct
smooth marked points and L is a line bundle over it. It is well known that Picg,n
is a smooth Noetherian Artin stack over Spec (C) of locally finite type.

Let F be a coherent sheaf on P, i.e. we have a coherent sheaf F0 on U0 and also
a coherent sheaf F1 on U1 with two fixed isomorphisms

s∗F0 ≃ F1 ≃ t∗F0(13)

https://stacks.math.columbia.edu/tag/0441
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that satisfy the cocycle condition on U1 ×s t U1. We refer to the article of Olsson
[Ols07, Proposition 6.12] for the equivalent definitions of coherent sheaves on an
Artin stack.

We now proceed to use the smooth presentation of P to define a stack BlFP
desingularizing the coherent sheaf F. All of the following discussion holds formally
identical when we consider the procedure that diagonalises F instead. The stack
we obtain with the second procedure is denoted BlHLF P.

Later, we prove that the blow-up stacks obtained in both cases are algebraic and
come equipped with a representable (by a scheme), proper and birational morphism
to P.

With the theory developed in §3, we can construct BlF1
U1 and BlF0

U0. Note
that to apply the results in that section we require U0, U1 to be affine integral
Noetherian schemes. However, running these arguments once with U0, U1 affine
schemes shows that the blow-up construction glues for non-affine schemes and more
generally algebraic spaces.

Since the morphisms s, t : U1 → U0 are smooth (hence flat), we apply flat

base change for blowup of sheaves (see Proposition 3.4.1) to s, t and we get s̃, t̃ :
BlF1

U1 → BlF0
U0. Using the fix isomorphisms (13), we obtain the following Carte-

sian diagrams

(14)

BlF1
U1 BlF0

U0 BlF1
U1 BlF0

U0

U1 U0 U1 U0.

s̃

q
⌜

p

t̃

q
⌜

p

s t

In addition, using Cartesian diagrams on a cube, we construct a map

m̃ : BlF1U1 ×s̃ t̃
BlF1U1 → BlF1U1.

More precisely, we have

BlF1U1 ×s̃ t̃
BlF1U1 ≃

(
BlF0U0 ×p s U1

)
×
s̃ t̃

(
BlF0U0 ×p t U1

)
≃ BlF0

U0 ×p s U1 ×s t U1

→ BlF0
U0 ×p s U1 by applying m : U1 ×s t U1 → U1

≃ BlF1
U1 by the Cartesian diagram (14).

We obtain a smooth groupoid in schemes

(BlF0
U0,BlF1

U1, s̃, t̃, m̃)

with a morphism of groupoids to (U0, U1, s, t,m). This defines a 1-morphism

p : [BlF0
U0 ⇒ BlF1

U1]
pre → [U0 ⇒ U1]

pre.

Let BlFP denote the stackyfication of [BlF0
U0 ⇒ BlF1

U1]
pre. By universal property,

the morphism discussed above lifts to a morphisms of stacks

π : BlFP→ P.

Remark 5.1.1. We thank David Rydh for also pointing out that the same con-
struction of desingularization of sheaves on Artin stacks can be realized by adapting
the Grassmannian interpretation of Rossi. One can view BlFP as the closure of
a morphism from U ⊂ P to the relative Grassmannian of rank r quotients of F,
GrP(F, r). A more general version of the relative Grassmannian of Section 2.1 was
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constructed by Hall and Rydh, who introduce a more general Quot scheme over al-
gebraic stacks with mild assumptions in [HR15]. However, we prefer to include this
explicit gluing argument as it is not immediately clear to us that their assumptions
hold for the stacks we need in our applications.

5.2. Properties of BlFP and BlHLF P. We collect some properties of BlFP and

BlHLF P, including those of Sections 3.4 and 4.4, which naturally extend to stacks.

Theorem 5.2.1. Let [U1 ⇒ U0] → P be an integral Noetherian Artin stack with
affine stabilizers and an integral presentation, and let F be a coherent sheaf on it.

(1) The stacks BlFP = [BlF1U1 ⇒ BlF0U0] and BlHLF P = [BlHLF1
U1 ⇒ BlHLF0

U0]
are integral Noetherian Artin stacks.

(2) The morphisms BlFP→ P and BlHLF P→ P are representable proper and
birational.

Proof. Once again, we will only discuss BlFP, as the argument for BlHLF P is iden-
tical, mutatis mutandis.

Part (2), together with the properties of the respective constructions on schemes,
implies part (1) of the theorem. To establish part (2), it suffices to compute the
fiber U0 ×P BlFP and show that it is BlF0

U0. Since BlF0
U0 → U0 is representable

by a scheme, so will be the morphism BlFP→ P.
Now consider the 2-Cartesian diagram of categories fibered in groupoids

(15)

X U0

[BlF1
U1 ⇒ BlF0

U0]
pre [U1 ⇒ U0]

pre

⌜

p

where by abuse of notation, U0 is the category fibered in sets associated to this
algebraic space. One computes (see the discussion around [Sta22, Tag 04Y4]) that
the groupoid X is given by (U ′

0, U
′
1, s

′, t′,m′) where

U ′
0 = U1 ×t,U0,p BlF0

U0

U ′
1 = U1 ×t,U0,p·s BlF1

U1

s′ : (x, y) 7→ (x, s̃(y))

t′ : (x, y) 7→ (m(x, p(y)), t̃(y))

By (14),

U ′
1 = U1 ×t,U0,p·s (U1 ×s,U0,p BlF0

U0)

= (U1 ×t,U0,s U1)×t·pr2,U0,p BlF0
U0

s′ : ((x, y), z) 7→ (x, z)

t′ : ((x, y), z) 7→ (y, z)

From this expression, X is a banal groupoid whose stackyfication is equivalent to
the scheme BlF0

U0, as the relations s′, t′ identify all the points of the U1 factor.

https://stacks.math.columbia.edu/tag/045G
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Then the stackyfication of (15) gives us a 2-Cartesian diagram:

(16)

BlF0U0 U0

BlFP P

π̃

⌜

π

This discussion proves that π is representable. Recall that a morphism of stacks
is birational if there exists an isomorphism on dense open substacks on source
and target (see [CMW12]). By Definition 3.2.3 we deduce that π is proper and
birational. □

Now we prove that our construction satisfies a universal property. In particular,
it will then be independent of the choice of a groupoid presentation.

Theorem 5.2.2 (Universal property of the Rossi desingularization). Let π : BlFP→
P be as in Theorem 5.2.1. Then

(1) The sheaf (π∗F)tf is locally free of the same generic rank as F.
(2) The morphism π : BlFP→ P satisfies the following universal property: For

any morphism of stacks p : Y → P such that (p∗F)tf is torsion-free of the
same generic rank as F, there is a unique2 morphism p′, which makes the
following diagram 2-commutative

Y BlFP

P

∃!p′

p
π

Proof. Choose a smooth presentation of P by (U0, U1, s, t,m) with U0 an affine
Noetherian, integral scheme and construct the blow-up via this presentation as in
the previous section. For the first statement we use the fact that π is representable
and that by the proof of Theorem 5.2.1, q : BlF0U0 → BlFP is a smooth covering
by a scheme. So it suffices to prove that q∗((π∗F)tf) is locally free of the correct
rank. But this is just (π∗F0)

tf with the notation of (16), so the result follows by
Theorem 3.2.2.

For the second statement, by fppf descent it suffices to prove that for any flat
morphism from an affine Noetherian integral scheme T → Y we can construct a
morphism

BlFP

T Y P.

πa

g

By using the groupoid scheme presentations of P, BlFP we have fixed above, we
pull back to the smooth covering U0 → P,

(17)

BlF0
U0

T0 = T ×P U0 U0.

π
a0

g0

.

2To be precise, there exists a morphism p′, unique up to a unique 2-morphism.
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Since T → Y is flat, we have that (g∗F)tf is locally free of rank r, for T0 we have

T0 U0

T P.

g0

b q

g

Then
g∗0(F tf

0 ) = (g∗0q
∗F)tf = (b∗g∗F)tf = b∗((g∗F)tf)

because q and g are flat. So g∗0(F tf
0 ) is locally free of rank r. By Theorem 3.2.2,

there is a unique morphism a0 : T0 → BlF0U0 over g0:

BlF0
U0

T0 U0 BlFP

T P.

g0

b

a0

f

g

Now, to show that this map descends to a : T → BlFP we need to give a map
of groupoids [T1 ⇒ T0] to [BlF1U1 ⇒ BlF0U0], where these are the groupoid pre-
sentations induced by [U1 ⇒ U0]. That is, we need to specify in addition to a0
constructed above, a map

a1 : T ×P U1 = T1 → BlFP×P U1 = BlF1U1

over g1 : T1 → U1 and show that a0 and a1 are compatible with the source and
target maps. We can choose U1 to be an affine scheme, then the same argument we
applied above to lift g0 to a0 produces a unique lift of g1 to a1. The compatibility
of (a0, a1) with the source and target maps of [T1 ⇒ T0] and [BlF1U1 ⇒ BlF0U0]
then follows by uniqueness.

□

Having established the universal property, we can now talk about the blow-up
BlFP without specifying a presentation forP, as all choices will produce canonically
isomorphic blow-ups.

Proposition 5.2.3. Let F be a coherent sheaf on P, a Noetherian integral algebraic
stack with affine stabilizers and admitting an integral presentation.

(1) For any line bundle L on P, we have BlF⊗LP = BlFP and also BlHLF⊗LP =

BlHLF P.
(2) Let E, F,G be coherent OP-modules. Assume that we have an exact se-

quence 0→ E→ F→ G→ 0.
(a) If the sequence is locally split and E is locally free, then there are

isomorphisms BlFX ≃ BlGX and BlHLF X ≃ BlHLG X.
(b) If G is locally free, then there are isomorphisms BlFX ≃ BlEX and

BlHLF X ≃ BlHLE X.

Proof. For the first part of 1, let p′ : BlF⊗LP→ P and p : BlFP→ P be the natural
projections. By the Universal Property, Theorem 5.2.2, to show that BlF⊗LP =
BlFP it suffices to show that ((p′)∗F)tf and (p∗(F ⊗ L))tf are locally free. These
statements can be checked locally and they follow from Proposition 3.4.2.
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Similarly, all the other statements are local, so they follow from the same state-
ments on schemes with the two different blow-ups. For the Rossi blow-up BlFP, the
schematic statements are Propositions 3.4.2 and 3.4.3 and for the Hu–Li blow-up
BlHLF P, it follows from Propositions 4.4.2 and 4.4.3. □

From the beginning of Section 4 (Definitions 4.1.1 4.1.4 and Proposition 4.1.6),
we can define the notion of diagonal sheaves or locally diagonalizable morphism of
sheaves on Artin stacks as follows.

Definition 5.2.4. (1) A coherent sheaf F on P is diagonal if for any scheme
S and morphism f : S → P, the sheaf f∗F is diagonal, that is, its Fitting
ideals Fi(f

∗F) are locally principal.

(2) A diagonalization of a coherent sheaf F is a morphism π : P̃→ P such that
π∗F is diagonal.

Remark 5.2.5. Using the presentation ofP, we could also define that F is diagonal
if F0 is.

Theorem 5.2.6 (Universal property of the diagonalization). Let P a Noetherian,

integral, normal Artin stack admitting an integral presentation. Let π : BlHLF P→ P
be as above. Then

(1) The sheaf π∗F is diagonal of the same generic rank as F.

(2) The blow-up BlHLF P satisfies the universal property: For any morphism
of stacks f : Y → P such that f∗F is diagonal of the same generic rank
as F, there is a unique morphism f ′, which makes the following diagram
2-commutative:

Y BlHLF P

P

∃!f ′

f
π

Proof. The statement follows from the universal property of the Hu-Li blow-up
for schemes, Theorem 4.3.1, and the compatibility of the Hu-Li blow-up with
flat pullback, Proposition 4.4.1. The argument is the same as the proof of Theo-
rem 5.2.2. □

Remark 5.2.7. If P has the resolution property in the sense of [Tot04], then we
have that π : BlFP → P is projective. Indeed, if P has the resolution property,
then we have a global locally free sheaf E with a surjective morphism

E→ F→ 0.

This allows us to define BlFP via the graph construction and thus the resulting
stack is projective over P. Note that projectivity is not local on the target, and
thus, even though the local construction is projective, π may not be projective.
By [Tot04] stacks which are not global quotient stacks do not have the resolution
property. Many of the stacks that we work with are not global quotients. For more
details on stacks which are not a global quotients see [Kre13].
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6. Components of abelian cones

Let F be a diagonal sheaf on an integral Noetherian scheme, we study the ir-
reducible components of C(F). We show that C(F) has finitely many irreducible
components, which we consider with their natural reduced structure. Each irre-
ducible component is a vector bundle supported on a closed integral subscheme.
All of the cones in this section are taken over X, unless otherwise specified by the
notation Cbase(sheaf).

6.1. The main component of an abelian cone. We start our study of compo-
nents of cones with the main component of an abelian cone. Our study is motivated
by [AM98, Proposition 2.5], which we recall below as Proposition 6.1.2. It states
that if π : C = Spec (A) → X is a cone with X integral and with A torsion-free
outside of a closed Z ⊆ X, then the closure of C \ π−1(Z) inside C is equal to
Spec (Atf).

In general, Spec (Atf) need not be irreducible, see Example 6.1.3. However, if
the cone is abelian, that is, if A = SymF for a coherent sheaf F , then Spec (Atf) is
an irreducible component that we call the main component of C(F) = Spec SymF .
Note that (SymF)tf and Sym (F tf) need not agree in general (see Remark 6.1.6),
but they do if F tf is locally free by Lemma 6.2.1. In particular, they agree for
diagonal sheaves by Remark 4.1.5.

Let X be an integral Noetherian scheme, let A be an OX -algebra with the
assumptions of Definition 2.3.1 and let

π : C = SpecX(A)→ X

be the cone associated to A. The natural surjection A → Atf induces a closed
embedding

Spec (Atf) ↪→ Spec (A),
which we want to understand geometrically.

Notation 6.1.1. Let X be a scheme and let U ⊆ X be an open subscheme. We
denote by clXU the closure of U in X, with its reduced induced structure, and by
clschX U the schematic closure of U in X. If U is reduced, then clschX U = clXU by
[Sta22, Lemma 056B]

The following result is proven in [AM98] in the analytic category, but the proof
holds for schemes as well.

Proposition 6.1.2 (See Proposition 2.5 [AM98]). Let U ⊆ X be a non-empty open
such that A |U is torsion free and let π : C = SpecX(A)→ X. Then

SpecX(Atf) = clSpecX(A)(π
−1(U)).

Furthermore, if π−1(U) is reduced, then

SpecX(Atf) = clschSpecX(A)(π
−1(U)).

In general, SpecX(Atf) may not be irreducible, see Example 6.1.3.

Example 6.1.3. The cone SpecX(Atf) may not be irreducible. For example, let
R = C[x] and let A = R[Y,Z]/(Y Z) viewed as a graded R-algebra with Y,Z in
degree 1. This is a cone over A1 = Spec (R). It is clear that A has no torsion as an
R-module but Spec (A) has two irreducible components.



40 A.COBOS RABANO, E. MANN, C. MANOLACHE, R. PICCIOTTO

Now we focus on abelian cones. Firstly, we show in Proposition 6.1.4 that if
A = SymF , then SpecX(Atf) is an irreducible component of SpecX(A).

Proposition 6.1.4. Let X be an integral Noetherian scheme and let F be a co-
herent sheaf on X. Then Spec (SymF)tf is an irreducible component of C(F) =
Spec SymF .

Proof. Let U ⊆ X be a non-empty open such that F is locally free on U . Then,
for π : C(F) → X the projection, we have that π−1(U) is a vector bundle over U ,
thus it is integral. Let Z be the unique irreducible component of C(F) containing
π−1(U). Then

clschC(F)(π
−1(U)) = clschZ (π−1(U)) = Z,

where the first equality follows from Lemma 7.2.4 and the second one is a ba-
sic property of the Zariski topology that the closure of an irreducible open in an
irreducible space is the whole space. □

Definition 6.1.5. Let X be an integral Noetherian scheme and let F be a coherent
sheaf on X. We say that Spec (SymF)tf is the main component of the abelian cone
C(F) = Spec SymF .

Remark 6.1.6. With the assumptions of Definition 6.1.5, it is not true in general
that the main component of C(F) = Spec SymF is equal to C(F tf) = Spec Sym (F tf).
In fact, C(F tf) need not be irreducible (see Example 6.1.7). The underlying reason
for this discrepancy is that Sym and torsion-free part do not commute in general
(see Remark 6.2.2). A particular case where C(F tf) is clearly irreducible is if F tf

is locally free. In that case,

(SymF)tf = Sym (F tf).

by Lemma 6.2.1 and so

(18) Spec (SymF)tf = Spec Sym (F tf).

In particular, the equality (18) is true for a diagonal sheaf F by Remark 4.1.5.

Example 6.1.7. This is an example of a torsion free sheaf G on an integral Noether-
ian scheme X such that Spec SymG is not irreducible. Let X = Spec (C[x, y]) be
the affine plane, let I = (x, y) be the ideal of the origin 0 and let M = I ⊕ I.
Then Sym (M) ≃ C[x, y,A1, A2, B1, B2]/(yA1 − xA2, yB1 − xB2), so C(M) =
Spec Sym (M) has two irreducible components: one of them is V (A2B1−A1B2, yB1−
xB2, yA1 − xA2), which is the closure of the restriction of C(M) to X \ 0; and the
other one is V (x, y), the fibre of C(M) at 0. Both components have dimension 4.

6.2. Abelian cones as a pushout of their main component. We restrict now
our study of components of cones to the special case of an abelian cone C(F) with
F tf locally free. We first show that Sym and torsion-free part commute in that
case (Lemma 6.2.1), therefore the main component is C(F tf), which is also abelian.
We show that C(F) admits a description as a pushout with C(F tf) as one of the
factors (Proposition 6.2.5).

Lemma 6.2.1. Let X be a Noetherian scheme and let F be a coherent sheaf on
X. If F tf is locally free then

(SymF)tf = Sym (F tf).
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Proof. We have the following commutative diagram.

0 0 0

0 tor(SymF) ker(p) ker(p′′) 0

0 tor(SymF) SymF (SymF)tf 0

0 tor(Sym (F tf)) Sym (F tf) (Sym (F tf))tf 0

0 0 0

i′

e

i

e′

i′′

p′

f

p

f ′

p′′

g g′

The last two rows are clearly exact. Moreover, since F tf is locally free, we have that
tor(Sym (F tf)) = 0 and g′ is an isomorphism. The morphism i′ is the identity on
tor(SymF). The surjective morphism p comes from applying Sym to the surjection
F → F tf , because Sym preserves surjections. The morphism p′′ is induced by p
using that tor(Sym (F tf)) = 0. The first row is exact by the Snake Lemma. We
want to show that ker(p′′) = 0 or, equivalently, that e is an isomorphism.

It follows from the above that we have

0 tor(SymF) SymF Sym (F tf) 0,
f◦i′ p

which is exact except possibly at SymF . We conclude if we show exactness there.
The inclusion Im(f ◦ i′) ⊆ ker(p) is clear because p ◦ f = g ◦ p′ = 0.

To show that ker(p) ⊆ Im(f ◦ i′), we know that

tor(F)⊗ Sym n−1(F)→ Sym n(F)→ Sym n(F tf)→ 0

is exact for all n ≥ 1 by [Sta22, Lemma 01CJ]. Note that p is a morphism of graded
algebras, therefore

ker(p) =
⊕
n

ker(Sym n(F)→ Sym n(F tf)).

It suffices to show that for each n, the morphism tor(F)⊗Sym n−1(F)→ Sym n(F)
factors through tor(Sym (F)). Locally, X = Spec (R) and F = M̃ for some R-

module M . Given λ =
∑
jm

j
1 ⊗ . . .⊗mj

n ∈ tor(M)⊗ Sym n−1(M), we can choose

for each j a non-zero divisor rj ∈ R such that rjm
j
1 = 0. Then r = r1 · · · rj is a

non-zero divisor and rλ = 0, so λ ∈ tor(Sym (M)). □

Remark 6.2.2. Note that Lemma 6.2.1 does not holds in general if we do not
assume that F tf is locally free. For example, let F = I be the ideal sheaf of a
closed point P on X. Then (Sym I)tf = Sym I =

⊕
n≥0 In if and only if P is

regular. Another example is R = C[x, y] and M = I ⊕ I for I = (x, y). Indeed, M
is torsion-free but SymM has torsion because x(x⊗y−y⊗x) = x⊗(xy)−(xy)⊗x =
y(x⊗ x− x⊗ x) = 0.

Lemma 6.2.3. Let R be a ring, I be an ideal in R and M be an R-module. If M tf

is locally free and I · tor(M) = 0 then I · tor(SymM) = 0.
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Proof. Note that tor(SymM) =
⊕

n≥0 tor(Sym
nM). In the proof of Lemma 6.2.1

we show that Sym n(M tf) ≃ (Sym nM)tf . The following commutative diagram is
exact by [Sta22, Lemma 01CJ].

tor(M)⊗ Sym n−1(M) Sym nM Sym n(M tf) 0

0 tor(Sym nM) Sym nM Sym n(M)tf 0

The first row is exact by [Sta22, Lemma 01CJ], and the second row is also exact.
By the Snake Lemma, tor(M) ⊗ Sym n−1(M) surjects onto tor(Sym nM) and the
claim follows. □

Lemma 6.2.4. Let R be a commutative ring, A be an R-algebra and I be an ideal
of R. If I · tor(A) = 0 and Atf is locally free, then the following square is Cartesian
in the category of R-algebras

A Atf

A⊗R/I Atf ⊗R/I.

Proof. We have the following commutative diagram

0 0 0

0 IA IAtf

0 tor(A) A Atf 0

tor(A)⊗R/I A⊗R/I Atf ⊗R/I 0

0 0 0

i

e′

i′′

p′

f

p

f ′

p′′

g g′

The three columns are exact because N ⊗ R/I ≃ N/IN for any R-module N and
because I · tor(A) = 0.

Observe that g is injective. This is equivalent to Tor1(R/I,A
tf) = 0, which

holds because Atf is locally free. By the Snake Lemma, the natural morphism
e′ : IA→ IAtf induced by f ′ is an isomorphism.

In order to prove the lemma, one can show that the square in question is a
Cartesian square of R-modules and then check that it is also a Cartesian diagram
of R-algebras. Both can be achieved by routine diagram chasing using the fact that
e′ is an isomorphism. □

Proposition 6.2.5. Let X be a Noetherian scheme, F a coherent sheaf on X and
let π : C(F) = Spec (SymF)→ X be the corresponding abelian cone. Let i : Z ↪→ X
be a closed subscheme in X with ideal sheaf IZ such that IZ ⊆ Ann(tor(F)). If
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F tf is locally free, then the following is a push-out of schemes

Spec SymF = Spec (SymF tf)
⊔

Spec i∗(Sym (Ftf )|Z)

Spec i∗(Sym (F) |Z)

If, moreover, X is integral, then Spec (SymF tf) is an irreducible component of the
abelian cone Spec SymF .

Proof. Locally, X = SpecR is affine, F = M̃ for some finitely presented module M
over R such that M tf is locally free and IZ = I is an ideal with I ⊆ Ann(tor(M)).
Let A = SymM . Then I · tor(A) = 0 by Lemma 6.2.3, and Lemma 6.2.1 ensures
that Atf = Sym (M tf) is locally free. The result follows from Lemma 6.2.4.

The claim about Spec (SymF tf) being irreducible follows from Proposition 6.1.4
and Lemma 6.2.1. □

Remark 6.2.6. Remember that the support supp (F) of a coherent sheaf F can
be defined set-theoretically by locally looking at the prime ideals where the stalk
of F is non-zero. A scheme structure on supp (F) is given by the sheaf Ann(F).
Therefore, the condition IZ ⊆ Ann(tor(F)) in Proposition 6.2.5 implies that the
closed Z must contain supp (tor(F)).

Another natural scheme structure in supp (F) is given by F0(F), the 0-th Fitting
ideal of F . There is an inclusion F0(F) ⊆ Ann(F) by [Sta22, Lemma 07ZA], thus
in Proposition 6.2.5 we can also take the particular case where IZ = F0(tor(F)).

6.3. A decomposition of the abelian cone of a diagonal sheaf. We continue
our study of components of cones by further specializing to the abelian cone of a
diagonal sheaf F . The pushout description of C(F) in Proposition 6.2.5 is improved
in Theorem 6.3.1: C(F) is topologically a union of vector bundles.

Let F be a diagonal sheaf on an integral Noetherian scheme X. Remember that
F tf is locally free by Proposition 4.4.6.

First we reduce from rank r to rank 0. By Proposition 6.2.5 and Lemma 6.2.1,
we have a decomposition of C(F) as a pushout

C(F) = C(F tf)
⊔

C(ι∗Ftf |Supp(tor(F)))

C(i∗F|Supp(tor(F)))

Here all cones are taken over X and C(F tf) is an irreducible component by Propo-
sition 6.1.4. Replacing F by i∗F|Supp(tor(F)), we may assyme that F has rank
0.

Let F be a rank 0 diagonal sheaf. Recall that, by Construction 4.5.2, F has
a filtration with quotients supported on some effective Cartier divisors Di for i =
1, . . . , n. Consider the finite collection of closed integral subschemes {Zji }j , which
are the irreducible components of Di taken with reduced structure. These are in
the support of F and we will see in Lemma 6.3.2 that (F|Zj

i
)tf is locally free. Note

that these collections are not necessarily disjoint for different i’s. We denote the
inclusion of Zji in X simply by ι, without keeping track of the indices when it is
not necessary.

Theorem 6.3.1. Let F be a diagonal sheaf of rank 0 on an integral Noetherian
scheme X. The cone of F is topologically a union of finitely many irreducible
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components

C(F) =
⋃
i,j

C
(
(F |Zj

i
)tf
)
∪X

where each C
(
(F |Zj

i
)tf
)
a vector bundle supported on the integral subscheme Zji .

Lemma 6.3.2. With the previous notations and assumptions, the cone

CZj
i

(
(F |Zj

i
)tf
)
→ Zji

is a vector bundle of rank rji , where

rji = max
k
{Zji ⊂ Dk}.

Proof. Since tor(F|U ) = tor(F)|U for U ⊂ X open, it is enough to prove it locally.
We assume that F is the cokernel of a diagonal matrix

Diag(f1, . . . , f1, f2, . . . , f2, . . . , fs),

where fk divides fk+1. Observe that, if fk |Zj
i
= 0, then fℓ |Zj

i
also vanishes for all

ℓ > k. Take rji as in the statement of the theorem: Zji is a component of Drji
and

the latter divides the last rji entries.

Then the matrix presentation of F on Zji looks like Diag(f1 |Zj
i
, . . . , ft |Zj

i

, 0, . . . , 0) where ft |Zj
i
̸= 0. Since Zji is not, by assumption, a component of Z(ft) we

see that the cokernel of Diag(f1 |Zj
i
, . . . , ft |Zj

i
) is a torsion sheaf and the torsion-free

part of F |Zj
i
is locally free of rank rji . □

Proof of Theorem 6.3.1. To check the claim set-theoretically, it suffices to argue
that any closed point of C(F) is contained in at least one of the cones. Let v ∈ C(F),
the projection to X is x ∈ X. Then v is specified by some section x → F|x. If

x /∈
⋃
i,j Z

j
i , F|x = 0, so we are done. Otherwise, we need to argue that F|x ∼=

((F|Zj
i
)tf)|x for some i, j.

Let i be such that x ∈ Zji for some j but x /∈ Zℓk for all k > i and all ℓ. Then
x ∈ Di but x /∈ Dk for any k > i.

By the construction of the Di’s, we know that supp (tor(F|Zj
i
)) ⊂

⋃
k>i,ℓ Z

ℓ
k.

Then (F tf
Zj

i

)|x = F|x, and we are done.

The morphism
⋃
i,j C((F|Zj

i
)tf) → C(F) of topological spaces, given by the

universal property of push-outs, is continuous and closed for the Zariski topology.
Since we have just checked that it is also bijective, it is a homeomorphism. □

Example 6.3.3. The following example of blowing up the origin in A2 is simple, but
it captures much of the essence of the decomposition in Proposition 6.2.5 (see (19)
and (20)). We present it with full detail.

Let R = k[x, y] and let I = (x, y) be the ideal of the origin. The sheaf F = Ĩ
on A2 = Spec (R) is torsion-free but not locally free. Since F is an ideal sheaf,
BlFA2 = Bl0A2 is just the usual blow up of A2 along the origin. Let p : Bl0A2 → A2

be the natural projection. Then p∗F is not torsion-free, but (p∗F)tf is a line bundle.
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To see that, we start with the following resolution of F .

0 R R⊕R I 0.

−y

x

 (
x y

)

Pulling back along p, we obtain a presentation of p∗F :

OBl0A2 OBl0A2 ⊕OBl0A2 p∗F 0.

−ey′

ex′

 (
ex′ ey′

)

Here e is a local coordinate for the exceptional divisor E ⊆ Bl0A2 and x′ and y′

correspond to the strict transforms of x and y. This induces a commutative diagram

0 Coker(e)

0 OBl0A2 OBl0A2(E) Coker(e) 0

0 OBl0A2 ⊕OBl0A2 OBl0A2 ⊕OBl0A2 0 0

p∗F Coker(y′,−x′)t 0

id

·e−ey′

ex′

  y′

−x′


id

(
x′e y′e

)

Applying the Snake Lemma and using that Coker(e) ≃ OE(E) and that Coker(y′,−x′)
is the ideal sheaf generated by x′ and y′, we get a short exact sequence

0→ OE(E)→ p∗F → (x′, y′)→ 0.

It follows that tor(p∗F) ≃ OE(E) and (p∗F)tf ≃ (x′, y′). In particular, p∗F is not
torsion-free.

We can also describe the geometry of the abelian cones Spec SymF and Spec Sym (p∗F).
We have

πF : Spec SymF = Spec (R[X,Y ]/(xY − yX))→ A2,

which is irreducible and singular.
Next we describe Spec Sym (p∗F). Let S = k[x, y, x′, y′]/(xy′ − yx′) where the

variables x′, y′ have degree 1 and x, y have degree 0. Then

Bl0A2 = Proj(k[x, y, x′, y′]/(xy′ − yx′)).

A local equation for E is given by e = x/x′ or e = y/y′, depending on the chosen
chart. Then

πp∗F : Spec Sym (p∗F) = SpecS[X,Y ]/(e(x′Y − y′X))→ Bl0A2

is reducible. It has two components:

πp∗F,main : Cmain = V (x′Y − y′X)→ Bl0A2,(19)

πp∗F,tor : Ctor = V (e)→ Bl0A2.(20)

The main component Cmain equals Spec Sym (p∗F)tf and it is a vector bundle of
rank 1. Meanwhile, Ctor corresponds to tor(F), it is supported over E and it is a
vector bundle of rank 2 over its support.
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7. Application to stable maps

In this section we apply the results in Section 5 to construct reduced Gromov–
Witten invariants.

Given X a smooth subvariety in a projective space Pr, there is an embedding of
the moduli space of stable maps to X in the moduli space of stable maps to Pr.
The moduli space of genus zero stable maps to a projective space Pr is a smooth
irreducible DM stack. If X is a hypersurface of degree k (or more generally a
complete intersection) in Pr, there is a locally free sheaf Ek on the moduli space of
stable maps to Pr, such that the moduli space of maps to X is cut out by the zero
locus of a section of this sheaf. These statements are not true in higher genus. In
general, the moduli space of stable maps to Pr has several irreducible components
of different dimensions. We still have a natural sheaf Ek equipped with a section,
but Ek is not locally free: its rank is different on different irreducible components.

There are several ways to use Section 5 to fix the above problem (see Re-
mark 7.4.10). In this section we are concerned with finding and comparing various
blow-ups the Picard stack along certain sheaves, which fix the above problem. More

precisely, we consider P̃ic → Pic, such that M̃g,n(Pr, d) := Mg,n(Pr, d) ×Pic P̃ic
desingularizes Ek.

Under the assumption d > 2g − 2 (see Assumption 7.2.1), we define M̃◦
g,n(X, d)

via the following Cartesian diagram

M̃◦
g,n(X, d) M̃◦

g,n(Pr, d)

Mg,n(X, d) Mg,n(Pr, d),

⌜

where M̃◦
g,n(Pr, d) is the main component of the cone M̃g,n(Pr, d) (see Defini-

tion 7.3.2). We then define reduced invariants (see Definition 7.4.4) via an obstruc-

tion theory on M̃◦
g,n(Pr, d) relative to P̃ick (see Theorem 7.5.1).

We also recall maps with fields [CL12] and then we construct a blow-up of it
which makes the resulting stack as simple as possible. The resulting stack gives
an alternative definition of reduced invariants, which is not intrinsic; the relation
between these two invariants is similar in spirit to a Quantum Lefschetz theorem.
The definition we give is more intrinsic, but working with maps with fields instead
of maps is more suited to approaching Conjecture 1.0.4 and Conjecture 1.0.5. See
[CL15, LO22, LO21] for the proof of Conjecture 1.0.5 in genus one and two.

7.1. Stable maps as open in an abelian cone. We recall how the moduli space
of stable maps to projective space can be seen as an open substack of an abelian
cone, following [CL12]. This observation motivates our study of components of
cones in Section 6, as components of the ambient abelian cone are related to com-
ponents of stable maps.

Let Mg,n denote the stack of genus g pre-stable curves with n marked points,
that is, Mg,n parametrizes connected projective at-worst-nodal curves of arithmetic
genus g with n distinct smooth marked points. Let Cg,n denote universal curve over
Mg,n. Let Picg,n,d denote the Artin stack which parameterises genus g pre-stable

curves, with n marked points, together with a line bundle of degree d. Let Picstg,n,d
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denote the open subset of Picg,n,d consisting of (C, p1 . . . pn, L) which satisfy the
stability condition

(21) L⊗3 ⊗ ωC

(
n∑
i=1

pi

)
is ample.

Notice that Mg,n and Picg,n,d are not separated, but they are smooth (see [Sta22,
Lemma 0E6W] and [CFKM14, Proposition 2.11]) and irreducible. The stackPicg,n,d
is locally Noetherian and the stack Picstg,n,d is Noetherian.

Notation 7.1.1. From now on, we fix g, n, d and the stability condition and we
drop all the indices.

We define C the universal curve over Pic by the Cartesian diagram (22). Notice
that we also have a universal line bundle L over C.

(22)

L

C C

Pic M.

π
⌜

We form the cone of sections of L as in Chang-Li ([CL15], Section 2)

(23) S(π∗L) := Spec Sym (R1π∗(L
∗ ⊗ ωC/Pic))→ Pic.

In the following we collect a list of remarks on the cone of sections defined above.

(1) In [CL12, Proposition 2.2], the authors show that S(π∗L) is the moduli
stack parameterizing (C,L, s) with (C,L) ∈ Pic and s ∈ H0(C,L). Be
aware that our S(π∗L) is denoted by C(π∗L) in [CL12].

(2) This situation is similar to the discussion in Section 2.3 about the total space
of a locally free sheaf. If E is a locally free sheaf over Pic, then sections of
E correspond to sections of the vector bundle Tot(E) = Spec Sym (E∗) over
Pic, but the same is not true if E is not locally free.

(3) In our set-up, the sheaf R0π∗L is not locally free. However, since we work
with the universal family of curves C → Pic, sections of the sheaf R0π∗L
correspond to sections of the abelian cone of its Serre dual R1π∗(L

∗ ⊗
ωC/Pic). This is proven in [CL12, Proposition 2.2].

(4) Note that R0π∗L does not commute with base change but R1π∗L does by
cohomology and base change.

For the rest of the section, let

F := R1π∗(L
∗ ⊗ ωC/Pic).(24)

Note that since π is proper, we have that F is a coherent sheaf on Pic. As defined
in Section 2.3, we consider the stack Spec SymF, which is an abelian cone stack
over Pic.

Let Mg,n(Pr, d) be the moduli space of genus g, degree d stable maps, with n
marked points.
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Proposition 7.1.2. ([CL12, Proposition 2.7], [CFK10, Theorem 3.2.1]) The mod-
uli space Mg,n(Pr, d) is an open substack, cut out by the basepoint-free condition,
of the stack

S(π∗L
⊕r+1) = Spec Sym (⊕ri=0F)→ Pic.(25)

As before, a point of this cone over (C,L) ∈ Pic is (C,L, s) with s ∈ H0(C,L)⊕r+1.
Note that

S(π∗L
⊕r+1) =

r+1 times︷ ︸︸ ︷
S(π∗L)×Pic · · · ×Pic S(π∗L)→ Pic.

We define L, C by the following Cartesian diagram

L L

C C

S(π∗L
⊕r+1) Pic.

⌜

π
⌜

π

µ

By [CL12], the complex
⊕ri=0R

•π∗L
is a dual obstruction theory for the natural projection

µ : S(π∗L
⊕r+1) = Spec Sym (⊕ri=0F)→ Pic.

This perfect obstruction theory induces a virtual class

[Mg,n(Pr, d)]vir := µ![Pic] ∈ A∗(Mg,n(Pr, d)).

Proposition 7.1.3. We use Notation 7.1.1. For F defined in eq. (24), we have an
isomorphism of sheaves

F∗ :=
(
R1π∗L

∗ ⊗ ωC/Pic

)∗ ≃ π∗L
over Pic.

Proof. Using Grothendieck duality we have(
R•π∗L

∗ ⊗ ωC/Pic

)∗
= RHomPic(R

•π∗L
∗ ⊗ ωC/Pic,OPic)

= R•π∗RHomPic(L
∗ ⊗ ωC/Pic, ωC/Pic[1])

= R•π∗RHomC(OC,L⊗ ω∗
C/Pic ⊗ ωC/Pic[1])

= R•π∗RHomC(OC,L[1])

= R•π∗L[1].(26)

On the one hand, we have that

(27) h−1(R•π∗L[1]) = π∗L.

In the following we look at an explicit resolution of
(
R•π∗L

∗ ⊗ ωC/Pic

)∗
and

compute its h−1. This is similar to the discussion in [CFK20], Section 3.2. By
the stability condition on Pic (see Equation (21)), the universal curve over Pic
is projective. This ensures that we have an ample section on C and we take A
sufficiently large so that R0π∗L

∗(−A)⊗ ωC/Pic = 0.
We now consider the exact sequence of sheaves on the universal curve over Pic

0→ L∗(−A)⊗ ωC/Pic → L∗ ⊗ ωC/Pic → L∗ ⊗ ωC/Pic|A → 0.
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Pushing forward the above to Pic, we get a long exact sequence

0→ R0π∗L
∗ ⊗ ωC/Pic →R0π∗L

∗ ⊗ ωC/Pic|A →
→R1π∗L

∗(−A)⊗ ωC/Pic → R1π∗L
∗ ⊗ ωC/Pic → 0.(28)

This gives

(29) R•π∗L
∗ ⊗ ωC/Pic ≃ [R0π∗L

∗ ⊗ ωC/Pic|A → R1π∗L
∗(−A)⊗ ωC/Pic],

with the complex on the right, being a complex of vector bundles supported in
[0, 1]. This gives

(R•π∗L
∗ ⊗ ωC/Pic)

∗ ≃ [(R1π∗L
∗(−A)⊗ ωC/Pic)

∗ → (R0π∗L
∗ ⊗ ωC/Pic|A)∗],

with the complex on the right being supported in [−1, 0].
Applying the functor Hom(−,O) to (28) and using that it is left-exact, we get

(30)

0→
(
R1π∗L

∗ ⊗ ωC/Pic

)∗ → (R1π∗L
∗(−A)⊗ ωC/Pic)

∗ → (R0π∗L
∗ ⊗ ωC/Pic|A)∗

This together with eq. (29) shows that

(31) h−1
((
R•π∗L

∗ ⊗ ωC/Pic

)∗)
=
(
R1π∗L

∗ ⊗ ωC/Pic

)∗
.

Equations (26), (27) and (31) imply that(
R1π∗L

∗ ⊗ ωC/Pic

)∗
= R0π∗L. □

Remark 7.1.4. As in the proof of Proposition 7.1.3, we have an explicit resolution
of F (see [CFK20], Section 3.2). Let A be a sufficiently high power of a very ample
section of the morphism C → Pic such that R1π∗L(A) = 0. The short exact
sequence

(32) 0→ L→ L(A)→ L(A)|A → 0.

induces a long exact sequence

(33) 0→ R0π∗L→ R0π∗L(A)→ R0π∗L(A)|A → R1π∗L→ 0,

which shows that [R0π∗L(A)→ R0π∗L(A)|A] is quasi-isomorphic to R•π∗L.
With our choice of A we have that R0π∗L(A) and R0π∗L(A)|A are locally free

sheaves over Pic. Sequence (33) together with the fact that R0π∗L(A) is a locally
free sheaf over Pic implies that R0π∗L is a torsion-free sheaf on Pic.

Remark 7.1.5. The proof of Proposition 7.1.3 shows that we have a resolution of
F := R1π∗L

∗⊗ωC/Pic to the left given by (28). The isomorphism in Equation (26)
shows that the complex

[R0π∗L
∗ ⊗ ωC/Pic|A → R1π∗L

∗(−A)⊗ ωC/Pic]

is dual to

[R0π∗L(A)→ R0π∗L(A)|A].
We will use this duality in Section 9. Hu and Li work with the resolution to the
right we have in (33). In the previous sections we used the resolution to the left
Equation (33). Since dual morphisms have the same Fitting ideals, both morphisms
give the same Hu–Li blow-up.
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7.2. The main component of stable maps to Pr. In the following we look
at stable maps with a lower bound on the degree (see Assumption 7.2.1). In this
situation the moduli space of stable maps has a main (irreducible) component. We
discuss this main component and its relation to the main component of abelian
cones.

We fix the following assumption from now on.

Assumption 7.2.1. In the following we fix d > 2g − 2. For C a smooth genus g
curve, L a line bundle of degree d, and d > 2g − 2, we have that H1(C,L) = 0.
This shows that for d > 2g − 2 the locusMg,n(Pr, d) of stable maps with smooth
domain is smooth. Note that, under the degree assumption, Mg,n(Pr, d) has a
smooth surjective morphism to the substack of Picg,n,d where the underlying curve

is smooth, which is connected. The fibers are open in P(H0(C,L)⊕r+1) so they
are connected. This implies that Mg,n(Pr, d) is connected. Thus Mg,n(Pr, d) is

irreducible, so its closure is an irreducible component ofMg,n(Pr, d).

Definition 7.2.2 (Main Component). Consider the Zariski closure inMg,n(Pr, d)
of the locus Mg,n(Pr, d) where the curve is smooth. We call this component the

main component and we denote it byM◦
g,n(Pr, d).

We introduced the main component of an abelian cone in Definition 6.1.5. In our
next result, Proposition 7.2.3, we show that the main component of Mg,n(Pr, d)
is contained in the main component of Spec Sym (⊕ri=0F). By the proof of propo-

sition 7.2.3, on M◦
g,n(Pr, d) the universal curve is generically smooth and π∗L is

generically a vector bundle.

Proposition 7.2.3. We have thatM◦
g,n(Pr, d) is an open substack of Spec (Sym⊕ri=0

F)tf .

Proof. Let Mg,n(Pr, d) and Picsm denote the open substacks of Mg,n(Pr, d) and
Pic where the curve is smooth. The first step is to show that the sheaf F =
R1π∗(L

∗ ⊗ ωC/Pic) is locally free over Picsm.
Let πsm : Csm → Picsm denote the universal curve and Lsm the universal line

bundle on Csm. Assumption 7.2.1 and cohomology and base change ensure that
R1πsm

∗ Lsm = 0. Therefore, R0πsm
∗ Lsm has constant rank, so it locally free. Using

Serre Duality and local freeness of ωπsm , we see that

R1πsm
∗ (Lsm∗ ⊗ ωπsm) ≃ (R0πsm

∗ ((Lsm∗ ⊗ ωπsm)∗ ⊗ ωπsm))∗ ≃ (R0πsm
∗ Lsm)∗

is locally free.
In particular, the OPic-algebra (Sym ⊕ri=0 F)

tf is locally free over Picsm.
To simplify the notation, let C = Spec Sym ⊕ri=0 F and Ctf = Spec (Sym ⊕ri=0

F)tf . By Proposition 6.1.2 and using that Picsm is generically reduced, we have
that

(34) clschC (π−1(Picsm)) = Ctf ,

where π−1(Picsm) denotes the fibre product Picsm ×Pic C, which is open in C.
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We conclude by the following chain of equalities

M◦
g,n(Pr, d) = clschMg,n(Pr,d)

(π−1(Picsm)×CMg,n(Pr, d))

= clschC (π−1(Picsm))×CMg,n(Pr, d)

= Ctf ×CMg,n(Pr, d).

The first equality is the definition of M◦
g,n(Pr, d), the second one is Lemma 7.2.4

(applied to Y = C andW,V reduced open subschemes ofMg,n(Pr, d) and π−1(Picsm)
respectively), and the last one is Equation (34). □

Lemma 7.2.4. Let Y be a scheme, let V,W be reduced open subschemes of Y .
Then

clschW (V ×Y W ) = clschY (V )×Y W

Proof. Since V and W are reduced, so is V ×Y W . This means that the schematic
closure is just the topological closure with the reduced induced structure by [Sta22,
Lemma 056B]. Therefore the question is purely topological, and it is straightforward

using that clschY W = clYW is the intersection of all the closed subsets C of Y that
contain W . □

7.3. Blow-ups of the moduli space of stable maps. In this section we con-

sider a desingularization p : P̃ic → Pic of F and the base change M̃g,n(Pr, d)
of Mg,n(Pr, d). By compatibility of abelian cones with pullback, M̃g,n(Pr, d) is

an open substack of C(⊕ri=0p
∗F). We define the main component M̃◦

g,n(Pr, d) of

M̃g,n(Pr, d) to be the closure of the smooth locus (see Definition 7.3.2). This defini-

tion ensures that M̃◦
g,n(Pr, d) is open in the main component of the ambient abelian

cone C(⊕ri=0p
∗F) (Proposition 7.2.3), thus it is irreducible. In general, M̃◦

g,n(Pr, d)
does not agree with the pullback of M◦

g,n(Pr, d), which might be reducible (see

Remark 7.3.4). Finally, we induce a virtual fundamental class on M̃g,n(Pr, d).
We define

(35) p : P̃ic→ Pic

to be any desingularization (as in Definition 3.1.1) of the sheaf F (defined in
Equation (24)). By theorem 5.2.2, we have a proper birational map

(36) P̃ic→ BlFPic

where BlFPic → Pic is the Rossi blow-up. We are mainly interested in P̃ic being
the Rossi or the Hu-Li blow-up (see Section 5).

We define

(37)

M̃g,n(Pr, d) Mg,n(Pr, d)

P̃ic Pic.

µ̃

p

⌜
µ

p
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Note that M̃g,n(Pr, d) is proper since p andMg,n(Pr, d) are proper. Let p : P̃ic→
Pic be the natural projection. Consider the Cartesian diagram

L̃ //

��

L

��

C̃
q
//

π̃
��

C

π

��

P̃ic
p
// Pic

where C is the universal curve over Pic and L the universal line bundle. Recall that

F = R1π∗(L
∗ ⊗ ωπ).

Lemma 7.3.1. In notation as before, we have an open embedding

M̃g,n(Pr, d) ↪→ Spec Sym (⊕ri=0p
∗F) ∼= Spec Sym

(
⊕ri=0R

1π̃∗(L̃
∗ ⊗ ωπ̃)

)
.

Proof. By Proposition 7.1.2, we have an open embedding

Mg,n(Pr, d) ⊂ SpecPicSym ⊕ri=0 F.

Thus, M̃g,n(Pr, d) ⊂ Spec
P̃ic

Sym p∗F⊕r+1 and p∗F ∼= R1π̃∗(L̃
∗ ⊗ ωπ̃). □

Definition 7.3.2. Consider the closure in M̃g,n(Pr, d) of the locus where the curve
is smooth of genus g. We call this component the main component and we denote

it by M̃◦
g,n(Pr, d).

Proposition 7.3.3. The following hold:

(1) We have an open embedding

M̃◦
g,n(Pr, d) ⊂ Spec (Sym ⊕ri=0 p

∗F)
tf ≃ Spec Sym

(
⊕ri=0 (p

∗F)
tf
)
.

(2) M̃◦
g,n(Pr, d) is proper and smooth over P̃ic.

Proof. By Lemma 7.3.1 we get M̃◦
g,n(Pr, d) ↪→ Spec (Sym ⊕ri=0 p

∗F)
tf

is an open

embedding. By cohomology and base change we have p∗F ≃ R1π̃∗(L̃
∗ ⊗ ωπ̃). The

argument in Proposition 7.2.3 applies to R1π̃∗(L̃
∗ ⊗ ωπ̃) and we obtain an open

embedding

M̃◦
g,n(Pr, d) ↪→ Spec

(
Sym ⊕ri=0 R

1π̃∗(L̃
∗ ⊗ ωπ̃)

)tf
.

By construction (p∗F)tf is locally-free and, since the torsion-free part commutes
with direct sums, the same is true for (p∗F⊕r+1)tf . This shows that Sym⊕ri=0(p

∗
kF)

tf

is locally free therefore we have an isomorphism

Spec (Sym ⊕ri=0 p
∗F)

tf ≃ Spec Sym
(
⊕ri=0 (p

∗F)
tf
)

by Lemma 6.2.1.

The first part implies that M̃◦
g,n(Pr, d) is smooth over P̃ic since it is open in

a vector bundle. The properness of M̃◦
g,n(Pr, d) follows from the properness of

M̃g,n(Pr, d). □
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Remark 7.3.4. We consider the following Cartesian diagram:

(38)

M̃◦(P) M◦
g,n(Pr, d)

P̃ic Pic.

⌜
µ

p

In general, M̃◦
g,n(Pr, d) ↪→ M̃◦(P) is not an isomorphism and thus the diagram

below is only commutative

(39)

M̃◦
g,n(Pr, d) M◦

g,n(Pr, d)

P̃ic Pic.

µ̃

p

µ

p

This observation is a reflection of the fact that torsion-free part does not commute
with pullback, see Remark 6.2.2. By pullback, Proposition 7.2.3 induces an open
embedding

M̃◦(P) ⊂ Spec p∗ (Sym (⊕ri=0F))
tf
,

which in general need not factor through Spec (Sym (⊕ri=0p
∗F))

tf ̸≃ Spec p∗ (Sym (⊕ri=0F))
tf
.

Meanwhile, as in the proof of Proposition 7.2.3, we have that

M̃◦
g,n(Pr, d) = Spec (Sym (⊕ri=0p

∗F))
tf ∩ M̃g,n(Pr, d).

However, M̃◦(P) and M̃◦
g,n(Pr, d) do give the same invariants. To see this, note

that we have commuting morphisms

M̃◦
g,n(Pr, d) M̃◦(P)

M◦
g,n(Pr, d)

p
r

and

(40) p∗[M̃◦
g,n(Pr, d)] = r∗[M̃◦(P)] = [M◦

g,n(Pr, d)].

Let π̂ : C̃ → M̃g,n(Pr, d) be the universal curve and let q̂ : C̃ → C the morphism
induced by q. The morphism µ̃ has a dual perfect obstruction theory given by a
morphism

ϕµ̃ : Tµ̃ → ⊕ri=0R
•π̂∗q̂

∗L.
This perfect obstruction theory induces a virtual class

[M̃g,n(Pr, d)]vir := µ̃![P̃ic] ∈ A∗(M̃g,n(Pr, d)),
where µ̃! is defined as in [Man11].

Remark 7.3.5. While Pic is smooth, P̃ic does not need to be smooth. This is

not a problem, all we need for a well-defined virtual class is that P̃ic has pure
dimension. This is true, since Pic has pure dimension and p is birational.

Proposition 7.3.6. We have the following equality

(p)∗[M̃g,n(Pr, d)]vir = [Mg,n(Pr, d)]vir
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Proof. Note that by cohomology and base-change we have thatR•π̃∗p
∗L = p∗R•π∗L.

As p is birational and proper, we have p∗[P̃ick] = [Pic]. We now apply Costello’s
Pushforward theorem ([HW22]) to Equation (37) and we get

p∗[M̃g,n(Pr, d)]vir = [Mg,n(Pr, d)]vir. □

7.4. Definition of reduced GW invariants of hypersurfaces in all genera.
In this section we define reduced Gromov–Witten invariants for hypersurfaces in
projective spaces under Assumption 7.2.1. This is less straight-forward than for
projective spaces, since we have no understanding of the geometry of moduli spaces
of maps to hypersurfaces.

Let X be a smooth hypersurface on Pr defined by the vanishing of a regular
section of s of O(k). We have that Mg,n(X, d) is cut out in Mg,n(Pr, d) by the

vanishing of the section π∗s of π∗L⊗k onMg,n(Pr, d). If π∗L⊗k is a vector bundle,

we can use this to define the virtual class ofMg,n(X, d) by virtual pullback. This
generally fails for g ≥ 1, so we will use the blow-ups we developed to ensure that

the restriction of π∗L⊗k to the main componentM◦
g,n(Pr, d) is locally free.

Construction 7.4.1. Let X ⊂ Pr be a smooth hypersurface of degree k. Let

pk : P̃ick → Pic be any desingularization of F = R1π∗(L
∗ ⊗ ωπ) and R0π∗L

⊗k.

We define the main componentM◦
g,n(X, d) ofMg,n(X, d) as follows

(41)

M◦
g,n(X, d) M◦

g,n(Pr, d)

Mg,n(X, d) Mg,n(Pr, d).

⌜

Notice that M◦
g,n(X, d) may not be irreducible, but we will still refer to it as

the main component. The main component M◦
g,n(X, d) does not have a perfect

obstruction theory, in the following we fix this problem.
We define

(42)

M̃◦
g,n(X, d) M̃◦

g,n(Pr, d)

M̃g,n(X, d) M̃g,n(Pr, d)

Mg,n(X, d) Mg,n(Pr, d),

⌜

⌜

i

where M̃◦
g,n(Pr, d) and M̃g,n(Pr, d) are defined in Section 7.3. Since they are

defined over any desingularization of F, we can in particular replace p : P̃ic→ Pic

of (35) by pk : P̃ick → Pic, which also desingularizes R0π∗L
⊗k for k the degree of

the hypersurface. Then Proposition 7.3.3 implies M̃◦
g,n(X, d) is proper.

To sum up, we have the following diagram. Note that some of the squares are
not Cartesian (See Remark 7.3.4).
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(43)

M̃◦
g,n(X, d) M◦

g,n(X, d)

M̃g,n(X, d) Mg,n(X, d)

M̃g,n(Pr, d) Mg,n(Pr, d)

M̃◦
g,n(Pr, d) M◦

g,n(Pr, d)

P̃ick Pic.

ĩ

⌜ ⌝

⌜
i

⌜

pk

We need the following result, whose proof we delay for reasons of exposition until
after Proposition 7.4.7.

Proposition 7.4.2. Let ĩ : M̃◦
g,n(X, d)→ M̃◦

g,n(Pr, d) as in (43) and let π̂ : C̃ →
M̃g,n(Pr, d) be the universal curve. Then, π̂∗L̃⊗k is locally free on M̃◦

g,n(Pr, d).

We define

(44) [M̃◦
g,n(X, d)]

vir = ĩ![M̃◦
g,n(Pr, d)]

where ĩ : M̃◦
g,n(X, d) → M̃◦

g,n(Pr, d), as in Proposition 7.4.2. Note that for any
1 ≤ j ≤ n we have morphisms

M̃g,n(Pr, d)→Mg,n(Pr, d)
evj−→ Pr

and

M̃g,n(X, d)→Mg,n(X, d)
evj−→ X.

By abuse of notation we denote both of these compositions by evj .

Notice that the definition of the reduced virtual class in (44) does a priori depend
on the choice of a desingularization of Pic. The following proposition shows that
integration against this class does not depend on the desingularization. The proof
of Proposition 7.4.3 is delayed, and we first prove Lemma 7.4.5.

Proposition 7.4.3. Under Assumption 7.2.1, let p′ : P̃ic
′
→ Pic and p′′ : P̃ic

′′
→

Pic be birational proper maps such that
((p′)∗F)tf , ((p′′)∗F)tf , ((p′)∗(R0π∗L

⊗k))tf and ((p′′)∗(R0π∗L
⊗k))tf are locally free.

Consider M̃◦
g,n(X, d)

′ and M̃◦
g,n(X, d)

′′ defined analogously to M̃◦
g,n(X, d) above.

Then we have ∫
[M̃◦

g,n(X,d)
′]vir

∏
ev∗γi =

∫
[M̃◦

g,n(X,d)
′′]vir

∏
ev∗γi

Proposition 7.4.3 permits us to define the reduced Gromov–Witten invariants as
they are independent of the blowing-up of Pic.
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Definition 7.4.4. For d > 2g − 2, we call reduced Gromov–Witten invariants of
X, the following numbers ∫

[M̃◦
g,n(X,d)]

vir

∏
ev∗γi.

In order to prove Proposition 7.4.3, we first prove the following.

Lemma 7.4.5. Consider a commutative diagram of Artin stacks

P̂ic //

!!

P̃ic

}}

Pic

and let M̂g,n(Pr, d) and M̃g,n(Pr, d) be the corresponding fiber productsMg,n(Pr, d)×Pic

P̂ic, respectivelyMg,n(Pr, d)×Pic P̃ic.

(1) We have a diagram with Cartesian squares

M̂g,n(Pr, d) M̃g,n(Pr, d) Mg,n(Pr, d)

P̂ic P̃ic Pic.

⌜ ⌜

(2) Suppose that P̂ic and P̃ic are desingularizations of F. Let M̂◦
g,n(P, d) be

the main component of M̂g,n(Pr, d) in the sense of Definition 7.3.2. Under
Assumption 7.2.1, the we have a commutative diagram

M̂◦
g,n(P, d) M̃◦

g,n(Pr, d) M◦
g,n(Pr, d)

P̂ic P̃ic Pic.

Proof. The first statement follows from the fact that the square on the right and
the big square are Cartesian. This shows that the square on the left is Cartesian.

For the second statement, we apply point 1 and we consider the following ex-
tended diagram in which all squares are Cartesian

M̂◦(Pr) M̃◦(Pr) M◦
g,n(Pr, d)

M̂g,n(Pr, d) M̃g,n(Pr, d) Mg,n(Pr, d)

P̂ic P̃ic Pic.

⌜ ⌜

⌜ ⌜
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By the definition of the main component of the moduli space of stable maps in
Definition 7.2.2, we have solid maps in the diagram

M̂◦
g,n(Pr, d) M̃◦

g,n(Pr, d) M◦
g,n(Pr, d)

M̂◦(Pr) M̃◦(Pr) M◦
g,n(Pr, d).

The dashed arrow is the identity on maps with smooth domain. Since the map

M̂◦(Pr) → M̃◦(Pr) is proper it maps closed substacks to closed substacks, and
thus the identity map extends to a map

M̂g,n(Pr, d)→ M̃◦
g,n(Pr, d). □

Proof of Proposition 7.4.3. Let P̂ic denote the closure inside the fiber product

P̃ic
′
×Pic P̃ic

′′
of locus of smooth curves. We then have a commutative diagram

P̂ic P̃ic
′

P̃ic
′′

Pic.

p′

p′′

We define M̂g,n(X, d) by the following Cartesian diagram

M̂g,n(X, d) //

��

Mg,n(X, d)

��

P̂ic // Pic

and similarly we define

M̃g,n(X, d)
′ Mg,n(X, d)

P̃ic
′

Pic

⌜

p′

M̃g,n(X, d)
′′ Mg,n(X, d)

P̃ic
′′

Pic

⌜

p′′

Using the notation in (42) and Lemma 7.4.5, part 2, we obtain a commutative
diagram

(45)

M̂◦
g,n(X, d)

M̃◦
g,n(X, d)

′ M̃◦
g,n(X, d)

′′

M◦
g,n(X, d)

p̂′′p̂′
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By Proposition 7.3.3 we have that p̂′ and p̂′′ are proper. In the following we
show that they are virtually birational.

Recall from Construction 7.4.1 that we have diagrams with Cartesian squares on
the left

(46)

M̂◦
g,n(X, d) M̂◦

g,n(Pr, d) P̂ic

M̃◦
g,n(X, d)

′ M̃◦
g,n(Pr, d)′ P̃ic

′

p̂′
⌜

µ̂′

r′

i′ µ′

and

(47)

M̂◦
g,n(X, d) M̂◦

g,n(Pr, d) P̂ic

M̃◦
g,n(X, d)

′′ M̃◦
g,n(Pr, d)′′ P̃ic

′′

p̂′′
⌜

µ̂′

r′′

i′′ µ′′

which give

(48)

[M̂◦
g,n(X, d)]

vir = (i′)![M̂◦
g,n(Pr, d)] and [M̂◦

g,n(X, d)]
vir = (i′′)![M̂◦

g,n(Pr, d)].

Since M̂◦
g,n(X, d) and M̃◦

g,n(Pr, d)′ are irreducible and have an isomorphic open
subset, we have that r′ and r′′ are birational. By Proposition 7.3.3 they are also
proper and thus we have

r′∗[M̂◦
g,n(Pr, d)] = [M̃◦

g,n(Pr, d)′] and r′′∗ [M̂◦
g,n(Pr, d)] = [M̃◦

g,n(Pr, d)′′].(49)

Using (48), (49) and commutativity of pullbacks with push-forwards in eq. (46) and
eq. (47), we get

p̂′∗[M̂◦
g,n(X, d)]

vir = [M̃◦
g,n(X, d)

′]vir and

p̂′′∗ [M̂◦
g,n(X, d)]

vir = [M̃◦
g,n(X, d)

′′]vir.
(50)

Intersecting both equations above with
∏
ev∗γi we get the conclusion. □

In the following we discuss several ways of blowing up Pic to desingularize
R0π∗L

⊗k.

Lemma 7.4.6. Given F , G sheaves on an integral scheme X, with G torsion free
and f : F → G a morphism, we have that f factors through

F → F tf → G.

Proof. Since X is integral and G is torsion free, we have that the composition
Tor(F) → F → G is zero. The claim now follows from the universal property of
quotients. □

Proposition 7.4.7. In notation of Section 7.3, we have the following:

(1) An isomorphism

ψ : (p∗R0π∗L)
tf → R0π̃∗L̃.

(2) BlR1π∗L⊗−k⊗ωπ
Pic is a desingularization of R0π∗L

⊗k, for any integer k >
0.
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Proof. 1. As in Remark 7.1.4, let A a section of C→ Pic such that R1π∗(L(A)) = 0.

By abuse of notation we denote by A the pull back of A to C̃. We have exact

sequences on P̃ic which fit into a commutative diagram

p∗R0π∗L p∗R0π∗(L(A)) p∗R0π∗(L(A)|A) p∗R1π∗L 0

0 R0π̃∗L̃ R0π̃∗(L̃(A)) R0π̃∗(L̃(A)|A) R1π̃∗L̃ 0,

where the vertical arrows are obtained by cohomology and base change and the solid
arrows are isomorphisms.

By Lemma 7.4.6, we have a morphism

ψ : (p∗R0π∗L)
tf → R0π̃∗L̃

which sits in a commutative diagram

(51) p∗R0π∗L // (p∗R0π∗L)
tf //

��

p∗R0π∗(L(A))

��

0 // R0π̃∗L̃ // R0π̃∗(L̃(A)).

Since the Image of the map (p∗R0π∗L)
tf → p∗R0π∗(L(A)) is equal to the kernel of

p∗R0π∗(L(A))→ p∗R0π∗(L(A)|A), and the Image of R0π̃∗L̃→ R0π̃∗L̃(A), is equal

to the kernel of R0π̃∗(L̃(A)) → R0π̃∗(L̃(A)|A), the isomorphisms in the diagram
show that

(52) Im
(
(p∗R0π∗L)

tf → p∗R0π∗(L(A))
)
≃ Im

(
R0π̃∗L̃→ R0π̃∗(L̃(A))

)
.

Since p∗R0π∗L → p∗R0π∗(L(A)) and p∗R0π∗L → R0π̃∗L̃ are generically injec-

tive we have that (p∗R0π∗L)
tf → p∗R0π∗(L(A)) and (p∗R0π∗L)

tf → R0π̃∗L̃ are
injective. This together with (52) shows that ψ is an isomorphism.

2. Without loss of generality we assume that k = 1. Let p : BlR1π∗L∗⊗ωπ̃
Pic →

Pic denote the projection. By cohomology and base change we have p∗(R1π∗L
∗ ⊗

ωπ̃) ≃ R1π̃∗L̃
∗ ⊗ ωπ̃. With this, we have that (R1π̃∗L̃

∗ ⊗ ωπ̃)tf is locally free.
Since (

(R1π̃∗L̃)
tf
)∗
≃ (R1π̃∗L̃)

∗

and (R1π̃∗L̃
∗ ⊗ ωπ̃)tf is locally free, we get that (R1π̃∗L̃)

∗ is locally free.

By Proposition 7.1.3 we have that R0π̃∗L̃ ≃ (R1π̃∗L̃
∗⊗ωπ̃)∗. This together with

the above shows that R0π̃∗L̃ is locally free. The claim now follows from the first
part of the proposition. □

Proof of Proposition 7.4.2. By construction we have that (p∗kπ∗L
⊗k)tf is locally free

on P̃ic and by Proposition 7.4.7 we have

(p∗kπ∗L
⊗k)tf ≃ π̃∗L̃⊗k.

This gives that π̃∗L̃
⊗k is locally free on P̃ic. Since µ : M̃◦

g,n(Pr, d)→ P̃ic is smooth,
cohomology commutes with base change and thus

µ∗π̃∗L̃
⊗k ≃ π̂∗µ∗L̃⊗k.
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Since µ∗L̃ ≃ L this shows that π̂∗L̃⊗k is locally free on M̃◦
g,n(Pr, d). □

Proposition 7.4.8. In notation of Section 7.3, we have that BlFPic is a desingu-
larization of R0π∗L

⊗k.

Proof. For k = 1, the statement holds by the proposition above.
In the following we show that BlR0π∗LPic is a desingularization of R0π∗L

⊗k, for
any k > 0.

Locally we choose B a section such that L⊗k ≃ L(B). Taking A such that
R1π∗L(A) = 0, we have a diagram

0 // R0π∗L
·A //

��

R0π∗L(A)

·B
��

0 // R0π∗L(B) // R0π∗L(A+B).

Let U be the subset of Pic, where R1π∗L = 0. Since we work under the assumption
7.2.1, U is a non-empty open subset. Then on U we have the following exact
sequences

0→ R0π∗L→R0π∗L(B)→ R0π∗L(B)|B → 0

0→ R0π∗L(A)→R0π∗L(A+B)→ R0π∗L(A+B)|B → 0.(53)

By possibly shrinking U , the section A may be chosen to avoid B. With this, we
have that multiplication with A induces an isomorphism

R0π∗L(B)|B ≃ R0π∗L(A+B)|B .
By possibly shrinking U , we may assume that R0π∗L(A) and R0π∗L(A + B) are
trivial, and that the sequences in (53) are split. The claim now follows from Corol-
lary 3.4.5.

□

In genus one, following [VZ08, HL10], one can define reduced Gromov-Witten
invariants of degree-k hypersurfaces on BlFPic. Below we give a direct proof of this
fact. The proof below does not generalise to higher genus.

Proposition 7.4.9. Let g = 1. Then for every k ≥ 1, the sheaf π̃∗ev
∗O(k) is

locally free on the main component M̃◦
1,n(Pr, d) of M̃1,n(Pr, d).

Proof. Fix k ≥ 1. By Equation (64), we need to show that R0π̃∗(L
⊗k) is locally

free over the image Z◦ of M̃1,n(Pr, d) in P̃ic via the forgetful morphism.

In a neighbourhood of (C̃, L̃) ∈ P̃ic1 we can choose a section A of L⊗k−1. This
gives an exact sequence

(54) 0→ R0π̃∗L̃
·A−→ R0π̃∗(L̃

⊗k)→ R0π̃∗(L̃
⊗k|A)→ R1π̃∗L̃

·A→ R1π̃∗(L̃
⊗k)→ 0.

If L̃ is non-negative on each component of C̃, as is the case in Z◦, we have the
equality

h1(C̃, L̃) = h1(C̃, L̃⊗k)

by a Riemann-Roch computation. Since cohomology in degree 1 commutes with

base change and the map H1(C̃, L̃)→ H1(C̃, L̃⊗k) is an isomorphism, we have that
the last arrow in sequence (54) is an isomorphism. This shows that we have a short
exact sequence
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0→ R0π̃∗L̃→ R0π̃∗(L̃
⊗k)→ R0π̃∗(L̃

⊗k|A)→ 0.

Since R0π̃∗(L
⊗k|A) is locally free and by Proposition 7.4.7 the sheaf R0π̃∗L̃ ≃

(R1π̃∗L̃⊗ωπ̃)∗ is also locally free on Z◦, we get that R0π̃∗(L̃
⊗k) is locally free. □

Remark 7.4.10. Above we denoted by P̃ic any desingularization of F. We collect
here various blow-ups of interest.

(1) BlFPic in the sense of Rossi (see Section 5.1)

(2) BlHLF Pic in the sense of Hu–Li.
(3) BlR0π∗L⊗kPic

(4) BlHLR1π∗L⊗kBl
HL
F Pic

We have

BlHLF Pic→ BlFPic and BlHLR1π∗L⊗kBl
HL
F Pic→ BlR1π∗L⊗kBlFPic.

By Proposition 7.4.8 and by proposition 7.4.7 we have

BlFPic→ BlR1π∗L⊗kPic→ BlR0π∗L⊗kPic.

7.5. Reduced invariants from stable maps with fields. Reduced invariants
are conjecturally related to Gromov–Witten invariants [Zin09a], [HL11, Conjecture
1.1]. One of the main difficulties in proving such conjectures is that one needs to
understand how to split the virtual class of a moduli space of stable maps among its
irreducible components. What makes this task particularly difficult is that almost
nothing is known about the geometry of this moduli space of stable maps.

In genus one and two the existing algebraic proofs [CL15, LLO22, LO21, LO22]
use an additional well-behaved moduli space of maps with fields [CL12]. In view
of these conjectures, we discuss blow-ups of maps with fields and we show that the
ingredients for the low genus proof are also available in higher genus.

Given X a hypersurface (or more generally a complete intersection) in Pr, the
associated moduli space of maps with fields has the following features:

(1) in genus one and two it has well-understood geometry, such as local equa-
tions and irreducible components (see [HL10, HLN12]);

(2) it has a virtual class and a localised virtual class (see [KL13], Definition 3.3);
the latter is needed because the space of maps with fields is not compact ;

(3) the localised virtual class is supported on Mg,n(X, d) and it coincides up

to a sign to the virtual class ofMg,n(X, d) (see [KL13], Theorem 1.1).

These properties allow us to work with the well-understood moduli space of stable
maps with fields instead ofMg,n(X, d), whose geometry is unavailable.

In the following we use the Hu–Li blow up the moduli space of maps with fields
to define reduced invariants in this context. The main theorem of this section,
Theorem 7.5.1, shows that the blown-up moduli space of maps with fields has
property (1) listed above, and even more, its irreducible components are smooth

over their image in P̃ic. This is a feature of the Hu–Li construction, which does not
hold for the Rossi construction. Properties (2) and (3) are automatically satisfied.
In future work we will also investigate the (intrinsic) normal cone of the space of
maps with fields.
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7.5.1. Review of maps with fields. We recall the construction and properties of the
moduli space of maps with p-fields. This space was introduced in [CL12] to study
higher genus Gromov-Witten invariants of the quintic threefold.

In the following we fix k ∈ Z, k > 1, and we consider the sheaf

π∗(L
⊕r+1 ⊕ (L⊗−k ⊗ ωC/Pic))

on Pic and its corresponding abelian cone

S
(
π∗(L

⊕r+1 ⊕ (L
⊗−k

⊗ ωC/Pic)
)
= Spec SymR1π∗

((
L∗ ⊗ ωC/Pic

)⊕r+1 ⊕ L⊗k
)
µp

→ Pic.

Recall that, in our notation, we have already imposed onPic = Picstg,n,d the stability
condition in Equation (21). Then, the moduli space of maps with p-fields is defined
in [CL12, Section 3.1] as an open in the abelian cone

Mg,n(Pr, d)p = S
(
π∗(L

⊕r+1 ⊕ (L
⊗−k

⊗ ωC/Pic)
)

Therefore, an element of Mg,n(Pr, d)p over (C,L, s) ∈ Mg,n(Pr, d) is given by a
choice of a section p ∈ H0(C,L⊗−k ⊗ ωC).

Consider the Cartesian diagram

(55)

Cp C

Mg,n(Pr, d)p Mg,n(Pr, d).

πp

νp

⌜
π

The complex

(56) EMg,n(Pr,d)p/Pic := R•πp∗(⊕ri=0L ⊕ L⊗−k ⊗ ωπp)

is a dual obstruction theory for the morphism µp. The stack Mg,n(Pr, d)p is not
proper, but the perfect obstruction theory admits a cosection σ, that is, a morphism

σ : h1(E∗)→ OMg,n(Pr,d)p .

Note that since Pic s smooth we have that the absolute obstruction ofMg,n(Pr, d)p
is isomorphic to h1(E∗) and the cosection lifts (see [CL12, Proposition 3.5]) . This
data gives a cosection localised virtual class [Mg,n(Pr, d)p]virσ .

For X a smooth subvariety cut out by any regular section of OPr (k), [CL20,
Theorem 1.1] states that

(57)

[Mg,n(Pr, d)p]virσ = (−1)(r+1)d+1−g[Mg,n(X, d)]
vir ∈ Advir(Mg,n(X,d))

(Mg,n(X, d))

The particular case where r = 4 and k = 5 (therefore X is a quintic threefold) was
the motivation for introducing p-fields in the first place. In [CL12, Theorem 1.1],
the authors proved Equation (57) at the level of invariants before it was upgraded
to classes in [CL20].
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7.5.2. Blow-ups of maps with fields. In this section we discuss a non-minimal blow-
up which has good properties.

In notation as before we consider

(58) Ek := R1π∗L
⊗k.

We define

(59) P̃ick := BlHLEk
BlHLF Pic.

Similarly to Equation (37), we define M̃g,n(Pr, d)p as the following Cartesian
diagram:

(60)

M̃g,n(Pr, d)p Mg,n(Pr, d)p

P̃ick Pic.

µ̃p

pk

⌜
µp

pk

Since M̃g,n(Pr, d)p is an open substack of Spec Sym p∗k(Ek ⊕ F⊕r+1), we have a
perfect obstruction theory for µ̃p exactly analogous to that in (56).

Indeed, let π̂ : C̃p → M̃g,n(Pr, d)p be the base-change of the universal curve of

Mg,n(Pr, d)p, and L̃ be pullback of the line bundle L on Cp. The perfect obstruction
theory on M̃g,n(Pr, d)p is given by

EM̃g,n(Pr,d)p/P̃ick
= p∗kEMg,n(Pr,d)p/Pic = R•π̂∗(L̃⊕r+1 ⊕ L̃⊗−k ⊗ ωπ̂)

The cosection σ induces

σ̃ = p∗kσ : h1(EM̃g,n(Pr,d)p/P̃ick
)→ OM̃g,n(Pr,d)p

.

One then obtains a localized virtual class as in [CL12], with the additional feature

that our P̃ic may be singular. The argument there can be adapted to our case with
minimal changes. We sketch the argument below, while pointing out the differences.

We do not have an absolute obstruction theory, but only one relative to P̃ic,
so we do not have a cosection of the absolute obstruction theory. The (absolute)
cosection is only needed to prove that the intrinsic normal cone is contained in
the kernel of the cosection. Instead of lifting the cosection as in [CL12], we work

relatively to P̃ic and we show that normal cone of µ̃p is contained in the kernel
cone E(σ̃).

For Mg,n(Pr, d)p, the fact that the normal cone of µp is contained in E(σ) is
guaranteed by [CL12, Proposition 3.5]. Using the diagram in Equation (60) and
[Man11, Remark 3.5] we have that

Cµ̃p ↪→ p∗kCµp .

As in [KL13, Corollary 4.5], it is enough to show that Cµ̃p ↪→ p∗kE(σ) on the subset
where σ̃ is surjective. With this, we have E(σ̃) = p∗kE(σ). This shows that

Cµ̃p ↪→ E(σ̃),

as required. The rest of the construction follows as in the classical case. Intersecting
the normal cone of µ̃p with the zero section of E(σ̃), we obtain localised virtual

class [M̃g,n(Pr, d)p]virσ̃ supported on Mg,n(X, d) ×Pic P̃ick. See [CL12, Section 3]
for details.
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Since Mg,n(Pr, d) ↪→ Mg,n(Pr, d)p by zero section, we have M̃◦
g,n(Pr, d) ⊂

M̃g,n(Pr, d)p. Under the assumption in 7.2.1, we have that R1π∗L⊗k = 0. We de-

fine the main component of M̃g,n(Pr, d)p to be M̃◦
g,n(Pr, d)×M̃g,n(Pr,d)

M̃g,n(Pr, d)p.
Under assumption 7.2.1, the fibers of the cone

M̃◦
g,n(Pr, d)×M̃g,n(Pr,d)

M̃g,n(Pr, d)p → M̃◦
g,n(Pr, d)

are trivial and M̃◦
g,n(Pr, d) is indeed a component of M̃g,n(Pr, d)p; in fact, it agrees

with the main component of M̃g,n(Pr, d)p as an abelian cone. Even though geo-

metrically the main components of M̃g,n(Pr, d) and M̃g,n(Pr, d)p agree, the second
one carries a non-trivial virtual structure in the form of an obstruction sheaf which
is the restriction of R1π̂∗L̃⊗−k ⊗ ωπ̂ as well as a cosection.

Theorem 7.5.1. Denote by (M̃g,n(Pr, d)p,λ)λ∈Λ the irreducible components of

M̃g,n(Pr, d)p and (M̃g,n(Pr, d)θ)θ∈Θ the irreducible components of M̃g,n(Pr, d).
Let

π̂p,λ : C̃λ → M̃g,n(Pr, d)p,λ

π̃θ : C̃θ → M̃g,n(Pr, d)θ

the pull-backs of the universal curve on Mg,n(Pr, d)p. The following statements
hold.

(1) The morphism p̄k of (60) is proper.

(2) The irreducible components M̃g,n(Pr, d)p,λ and M̃g,n(Pr, d)θ are smooth

over their image in P̃ick. In particular, M̃◦
g,n(Pr, d) is smooth over P̃ick.

(3) The sheaf π̂p,λ∗ ev∗O(k) is a locally free sheaf on M̃g,n(Pr, d)p,λ, the sheaf

π̃θ∗ev
∗O(k) is a locally free sheaf on M̃g,n(Pr, d)θ. In particular, π̃◦

∗ev
∗O(k)

is a locally free sheaf on M̃◦
g,n(Pr, d).

Proof. 1. We have that pk is proper, as pk is proper.
2. Consider the following diagram

(61)

Spec Sym p∗k(F
⊕r+1 ⊕ Ek) Spec SymF⊕r+1 ⊕ Ek

P̃ick Pic.

⌜

pk

We have that M̃g,n(Pr, d)p is an open substack of Spec Sym p∗k(Ek⊕F⊕r+1) and by
Theorem 6.3.1 we have that the irreducible components of the stacks

Spec Sym F⊕r+1 ⊕ Ek and Spec SymF⊕r+1

are smooth over their image in P̃ick.

This shows that M̃g,n(Pr, d)p,λ and M̃g,n(Pr, d)θ are smooth over their image

in P̃ick. In particular

M̃◦
g,n(Pr, d) = Spec Sym (p∗kF

⊕r+1)tf is smooth over P̃ick.
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3. Let µλ :Mg,n(Pr, d)p,λ → Pic be the restriction of µp. Let Zλ be the image

of µλ. Let πλ : Cλ → Zλ be the restriction of π. Let Z̃λ be the fiber product

(62)

Z̃λ Zλ

P̃ick Pic.

pλk

⌜

pk

Let π̃λ : C̃λ → Zλ be the restriction of π̃ and let qλk : C̃λ → Cλ be the restriction of
qk. By commutativity of proper push-forwards with base-change we have that

(pλk)
∗R•πλ∗L ≃ R•π̃λ∗ (q

λ
k )

∗L

Again, cohomology and base-change in the Cartesian diagram

(63)

C̃λ C̃λ

M̃g,n(Pr, d)λ Z̃λ.

π̂λ

νλ

⌜
π̃λ

µλ

gives

(64) R•π̂λ∗ ev
∗O(k) = (µλ)∗R•π̃λ∗L

⊗k.

We have a short exact sequence

0→ R0π̃λ∗L
k → E0 ϕ→ E1 → R1π̃λ∗L

⊗k → 0.

By construction we have that ϕ is locally diagonal. By Equation (64) we have that

R•π̂λ∗ ev
∗O(k) ≃ [(µλ)∗E0 (µλ)∗ϕ−→ (µλ)∗E1].

Since (µλ)∗ϕ is locally diagonal, Proposition 4.1.3 implies that R0π̂λ∗ ev
∗O(k) is

locally free.

A similar argument shows that π̃θ∗ev
∗O(k) is a locally free sheaf on M̃g,n(Pr, d)θ

and in particular π̃◦
∗ev

∗O(k) is a locally free sheaf on M̃◦
g,n(Pr, d). □

Proposition 7.5.2. The localised invariants do not depend on the blow-up of Pic,
more precisely,

(pk)∗[M̃g,n(Pr, d)p]virσ̃ = [Mg,n(Pr, d)p]virσ .

Proof. The arguments used in [CL12] and its various generalizations to establish
Equation (57) for the cosection localized virtual class on the right hand-side can be
adapted in a straight-forward manner to establish an analogous result for the class
on the left-hand side. That is,

(65) [M̃g,n(Pr, d)p]virσ̃ = (−1)(r+1)d+1−g[M̃g,n(X, d)]
vir.

The only issue with adapting the classical proof comes from the fact that the
cosection σ̃ does not lift to the absolute obstruction theory. The discussion a
the beginning of Section 7.5.2 shows how to get around this requirement, since
in our set-up all the stacks, obstruction theories and cosections are induced by

base-changing the usual ones over the morphism pk : P̃ick → Pic. Let

M̃g,n(X, d) =Mg,n(X, d)×Pic P̃ick
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with pr1 : M̃g,n(X, d) → Mg,n(X, d). Now M̃g,n(X, d) can be given a perfect

obstruction theory by pulling back that of Mg,n(X, d), and similarly to Proposi-
tion 7.3.6 we have

(66) (pr1)∗[M̃g,n(X, d)]
vir = [Mg,n(X, d)]

vir.

Then the result follows from Equation (66), Equation (57) and Equation (65). □

7.5.3. Reduced invariants from maps with fields. Let CM̃g,n(Pr,d)p/P̃ick
denote the

relative intrinsic normal cone of the morphism µ̃p : M̃g,n(Pr, d)p → P̃ick [BF96,
Section 7]. We have CM̃g,n(Pr,d)p/P̃ic

= ∪iCi, where Ci are its (finitely many) irre-

ducible components. By the discussion above, the main component of M̃g,n(Pr, d)p

is M̃◦
g,n(Pr, d), which is smooth over P̃ick. So there is only one component of the

intrinsic normal cone which is supported over an open of M̃◦
g,n(Pr, d), which we

denote by C0. The cosection-localized virtual class of M̃g,n(Pr, d)p is defined as

[M̃g,n(Pr, d)p]virσ̃ = 0!σ̃[CM̃g,n(Pr,d)p/P̃ick
]

where 0!σ̃ denotes the cosection-localized virtual Gysin pullback. Then,

[M̃g,n(Pr, d)p]virσ̃ =
∑
i

[M̃g,n(Pr, d)p]viri

for [M̃g,n(Pr, d)p]viri the class corresponding to the component Ci. In particular,

[M̃g,n(Pr, d)p]vir0 is supported over M̃◦
g,n(X, d).

Proposition 7.5.3. Denote by [M̃g,n(Pr, d)p]vir0 the cosection-localized virtual fun-
damental class corresponding to the cone C0. We have

[M̃◦
g,n(X, d)]

vir = (−1)kd−g+1[M̃g,n(Pr, d)p]vir0 ∈ A∗(M̃◦
g,n(X, d)).

Proof. This follows the lines of proof of Corollary 4.4 in [CL15]. Let

E•
1 := R•π̂p∗(⊕ri=0L), E•

2 := R•π̂p∗(L⊗−k ⊗ ωπ̂p)

and let Ei = h1/h0(E•
i ) and E = h1/h0(E•). We have that Ei is a vector bundle stack

on M̃g,n(Pr, d)p and E ≃ E1⊕E2. Let U be the open subset of the main component

of M̃g,n(Pr, d)p, with consists of maps with fields with irreducible source. On U
we have R1π̂∗f

∗O(k) = 0, and thus U is also an open subset of M̃◦
g,n(Pr, d). Using

that U is smooth and unobstructed, we see that CU/P̃ic
is isomorphic to the vector

bundle stack E1|U . Since the embedding CU/P̃ic
↪→ h1/h0(E|U ) is

(E1 ⊕ 0)|U ↪→ (E1 ⊕ E2)|U
and CM̃g,n(Pr,d)p/P̃ic

↪→ E is a closed embedding, we get that C0 ≃ E1. By the

definition of the localised cosection virtual class, we get

[M̃g,n(Pr, d)p]vir0 = 0!σ̃[C0] = 0![0E2
],

where 0E2 is the zero section of E2|M̃◦
g,n(Pr,d)

. By Lemma 4.3 in [CL15] with the

complex R•π̂p,◦∗ L⊗k and Theorem 7.5.1, part 3 we get

[M̃g,n(Pr, d)p]vir0 = ctop(R
1π̂p,◦∗ (L⊗−k ⊗ ωπ̂p,◦)) · [M̃◦

g,n(Pr, d)].
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By Serre duality we have that

c1−g+kd(R
1π̂p,◦∗ (L⊗−k ⊗ ωπ̂p)) = (−1)1−g+kdc1−g+kd(R0π̂p∗L⊗k)

and thus

[M̃g,n(Pr, d)p]vir0 = (−1)1−g+kdc1−g+kd(R0π̂p∗L⊗k) · [M̃◦
g,n(Pr, d)].

This proves the claim. □

Conjecture 7.5.4. Let X be a threefold which is a complete intersection in pro-
jective space. Then

deg[M̃g,n(Pr, d)p]viri = ci deg[M̃◦
gi,n(X, d)]

vir,

for some ci ∈ Q and gi < g.

Remark 7.5.5. The conjecture has been proved for genus one [Zin09a, Zin09b,
Zin08], [CL15], [LO21, LO22] and genus two [LLO22].

In genus g = 1 and X a Calabi–Yau threefold, the conjecture translates into

deg[M1,n(X, d)] = deg[M̃◦
1,n(X, d)]

vir +
1

12
deg[M0,n(X, d)]

vir.

8. Generalizations

The constructions above also work for quasi-maps. We first summarise some
of the results in [CFK10, CFKM14] and then extend the definition of reduced
invariants to quasi-maps and to more general targets.

8.1. Stable quasi-maps to GIT quotients of vector spaces. Let C be a
scheme. Let V be a vector space and G a reductive algebraic group acting on
V . For P a principal G-bundle on C we define the associated V -bundle a

P ×G V := (P × V )/G.

This is a bundle with fiber V over C. The quotient is taken by considering the
action g · (p, v) = (p · g−1, g · v).

A morphism from C to the stack quotient [V/G] corresponds to a G-equivariant
morphism P → V from some G-torsor P over C to V . That is, maps C → [V/G]
correspond to sections of the vector bundle P ×G V → C.

Let χ(G) be the character group of G and θ ∈ χ(G) a fixed character. The
character θ : G→ C∗ determines a one-dimensional representation Cθ of G, hence
a linearization of the trivial line bundle on V , which we denote by Lθ. This is used
to construct a GIT quotient

X = V//θG

which we assume to be proper. The GIT quotient comes with a polarization

V s ×G (Lθ |V s) =: O(θ)→ V//θG.

Multiples of the chosen character define the same underlying GIT quotients with a
multiple of the polarization.

Let
V s = V s(θ) and V ss = V ss(θ)

be the open subsets of stable (respectively, semistable) points determined by Lθ.
We also assume:

(1) ∅ ≠ V s = V ss and
(2) G acts freely on V s.
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Recall that for (C,P, u) a curve with a G-torsor P and a section u of the associ-
ated bundle P ×G V , we say that (P, u) has “class” β ∈ HomZ(Pic([V/G]),Z) if β
is the composite map

Pic([V/G])
u∗

−→ Pic(C)
deg−−→ Z.

Definition 8.1.1. LetX be as before, n, g be positive integers and β ∈ HomZ(Pic([V/G]),Z).
An n-pointed, genus g quasimap of class β to X consists of the data

(C, p1, . . . , pn, P, u),

where

(1) (C, p1, . . . , pn) is a connected, at most nodal, n-pointed projective curve of
genus g,

(2) P is a principal G-bundle on C,
(3) u is a section of the induced vector bundle P ×G V on C, such that (P, u)

is of class β,

satisfying the following generic nondegeneracy condition:

• there is a finite (possibly empty) set B ⊂ C such that for every p ∈ C\B
we have ũ(p) ∈ [V s/G] ⊂ [V/G], where ũ : C → [V/G] is the map induced
by u.

The quasimap (C, p1, . . . , pn, P, u) is called prestable if the set of base points B
is disjoint from the nodes and markings on C.

In [CFKM14, Def. 7.1.1], the authors define the length of the prestable quasimap
q at the point x ∈ C, as follows:

Definition 8.1.2. The length of a prestable quasimap (C, p1, . . . , pn, P, u) to V//θG
at x ∈ C is

(67) ℓ(x) := min

{
ord x(u

∗s)

m
: s ∈ H0(V,Lmθ)

G, u∗s ̸= 0,m > 0

}
.

Definition 8.1.3. Given a positive rational number ϵ, a quasimap (C, p1, . . . , pk, P, u)
is called ϵ-stable if it is prestable and

(1) the line bundle ωC(
∑n
i=1 pi)⊗ Lϵ, where
L := u∗(P ×G Lθ)

is ample
(2) ϵℓ(x) ≤ 1, for any x ∈ C.

Theorem 8.1.4. [CFKM14, Theorem 5.2.1, Theorem 7.1.6] The moduli space of ϵ-

stable quasimaps Qϵg,n(X,β) is a proper DM stack with a perfect obstruction theory.

Let Bun denote the moduli stack of G-bundles over prestable curves, let π :
C → Bun be the universal curve and P the universal principal bundle on C. Let
L := P×G Lθ and let Bunst,ϵ be open locus in Bun where

ωπ(
∑

pi)⊗ Lϵ

is ample. By [CFKM14, Theorem 3.2.5, and Section 4.2], we have an open sub-

stack Bunst,ϵβ ⊂ Bun, such that the forgetful morphism Qϵg,n(X,β)→ Bun factors

through Bunst,ϵβ and such that Bunst,ϵβ is of finite type.
As in Notation 7.1.1, we fix g, n, β, ϵ and we omit the index from the notation.
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Let VP = P×G V be the associated vector bundle on C. Let

F := R1π∗(V∗
P ⊗ ωπ)

on Bun. By definition we have that

Qϵg,n(X,β) ⊂ Spec SymF

is an open subset obtained by imposing the open conditions in Definition 8.1.3.

Remark 8.1.5. Particular examples of this construction are:

• toric varieties, with Bun ≃ Picg,n,d1 ×Mg,n
· · · ×Mg,n

Picg,n,dk and k the
rank of Pic(X);
• Grassmannians Gr(k, r), with Bun the moduli space of rank k-bundles over
prestable curves;
• complete intersections in projective spaces;

8.2. Reduced invariants for quasimaps to GIT quotients. In the following
we define reduced invariants for the targets in the previous section.

As in Section 7.4, we define

(68) B̃un := BlFBun
p−→ Bun.

By construction (p∗F)tf is locally free. We define Q̃g,n(X,β) by the Cartesian
diagram

(69)

Q̃g,n(X,β) Qϵg,n(X,β)

B̃un Bun.

µ̃

p

⌜
µ

p

One can see that we have an open embedding

Q̃g,n(X,β) ↪→ Spec Sym
B̃un

(p∗F) = p∗Spec SymBun(F).

Let π : C → Qϵg,n(X,β) be the universal curve overQ
ϵ

g,n(X,β), P be the universal

G-torsor over C and VP = P ×G V . Similarly, define VP̃ , using P̃ on π̂ : C̃ →
Q̃g,n(X,β). By [CL12] the morphism µ has a perfect obstruction theory equal to
R•π∗VP . By Equation (69) the morphism µ̃ has a dual perfect obstruction theory
given by

ϕµ̃ : Tµ̃ → R•π̂∗VP̃ .
As before, these perfect obstruction theories induce virtual classes

[Qϵg,n(X,β)]vir := µ![Bun] ∈ A∗(Q
ϵ

g,n(X,β))

and

[Q̃g,n(X,β)]vir := µ̃![B̃un] ∈ A∗(Q̃g,n(X,β)).
The following is a generalisation of Assumption 7.2.1.

Assumption 8.2.1. In the following we assume β ∈ HomZ(Pic([V/G]),Z) is such
that

H1(C,P ×G V ) = 0

for any C smooth.
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From now on we work under the Assumption 8.2.1. Let Q◦
g,n(X,β) be the

closure the locus in Qϵg,n(X,β) which consists of points (C, p1, . . . pn, P, u), with C

a smooth curve. We call this the main component of Qϵg,n(X,β). We define the

main component Q̃◦
g,n(X,β) of Q̃g,n(X,β) as the closure of the locus which consists

of points (C, p1, . . . pn, P, u), with C a smooth curve. Note that this makes sense

even when P̃ic does not have a modular interpretation, since p is birational. Note
that we have a commutative diagram

(70)

Q̃◦
g,n(X,β) Q◦

g,n(X,β)

B̃un Bun.

µ̃◦

p

µ◦

p

By Assumption 8.2.1, µ̃◦ is a smooth morphism, in fact it is just the projection of

a geometric vector bundle. This makes Q̃◦
g,n(X,β) a smooth stack over B̃un, and

thus an equidimensional DM stack, so we define

[Q̃◦
g,n(X,β)]

vir := [Q̃◦
g,n(X,β)] ∈ A∗(Q̃◦

g,n(X,β)).

Definition 8.2.2. Let γi ∈ A∗(X), we call reduced quasimap invariants of X, the
following numbers ∫

[Q̃◦
g,n(X,β)]

vir

∏
ev∗γi.

We deduce the following proposition analogous to Proposition 7.4.3 which states
that these invariants do not depend of the choice of the blow-up.

Proposition 8.2.3. Let p′ : B̃un
′
→ Bun and p′′ : B̃un

′′
→ Bun be birational pro-

jective maps such that (p′∗π∗F)
tf (resp. (p′′∗π∗F)

tf) and for any i ∈ {1, . . . ,m}.
Consider Q̃◦

g,n(X,β)
′ and Q̃◦

g,n(X,β)
′′ defined analogously to Q̃◦

g,n(X,β) above.
Then we have ∫

[Q̃◦
g,n(X,β)

′]vir

∏
ev∗γi =

∫
[Q̃◦

g,n(X,β)
′′]vir

∏
ev∗γi.

Remark 8.2.4. Note that as in Remark 7.3.4 there are different ways of defining
the main component of the moduli space of maps (or quasimaps) and we use both
definitions.

Definition 8.2.2 and Definition 7.4.4 are related, but possibly different in the
following sense:

(1) Assumption 8.2.1 is usually stronger than 7.2.1. For example for a rational
curve with normal bundle OP1(−d) ⊕ OP1(−d) Assumption 8.2.1 is not
satisfied, while 7.2.1 is satisfied for large d.

(2) The main components Q̃◦
g,n(X,β) in Construction 7.4.1 and in Section 8.2

are the same when X is a projective space.

(3) The main components Q̃◦
g,n(X,β) in Construction 7.4.1 and in Section 8.2

are usually different when X is a complete intersection.

We make the following conjecture.
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Conjecture 8.2.5. If X is Fano, then the reduced quasimap and reduced Gromov–
Witten invariants agree.

Remark 8.2.6. To see the intuition behind the conjecture above we first use that
for Fano varieties GW and quasimap invariants agree [CFK20]. Then we consider
the difference between standard and reduced invariants: this is conjecturally given
by maps (or quasi-maps) from curves with components Ci of genus gi > 0 and of
degree di, such that H1(Ci, di) ̸= 0. The moduli space of stable maps have more
such components than the space of quasimaps, namely maps from curves with
a rational curve with no marked points glued to higher genus curves. All these
contributions are expected to be zero.

Since GW and quasimap invariants are different for non-Fano varieties, we expect
the corresponding reduced invariants to be different if X is not Fano.

9. Desingularizations in genus one

In genus one, reduced Gromov–Witten invariants were originally defined using
the desingularization constructed in [VZ08]. It consists of a sequence of blow-
ups determined by the geometry of the moduli spaceM1,n(Pr, d). In [HL10], local
equations for the blowup are determined. We aim to compare this desingularization
with the one obtained using the Rossi blow-up BlFPic, with F as in Equation (24).
In particular, we describe BlFPic locally in the spirit of [HL10].

9.0.1. Charts. In genus one, the original definition of refined Gromov–Witten in-
variants comes from [VZ08]. The main is idea is to apply a sequence of blow ups
to Mg,n(Pr, d) in order to desingularize the main component. Strictly speaking,
the sequence of blow ups takes place in the stack Mwt

1 of genus-1 prestable curves
endowed with a weight. Let Θk denote the closure of the loci in Mwt

1 of curves
with k trees of rational curves attached to the core. Then one should blow up Mwt

1

along the loci Θ1, Θ2, Θ3 and so on in order to produce a stack M̃wt
1 . This process

induces a blowup M̃g,n(Pr, d) ofMg,n(Pr, d) via fibre product.

Given a stratum M̃g,n(Pr, d)γ corresponding to a weighted graph γ, local equa-

tions of M̃g,n(Pr, d) and the local description of Θk in that stratum are described
explicitly in [HL10]. The purpose of this section is to summarize such local descrip-
tion, give coordinates for the new approach locally and compare both.

It may be helpful to keep in mind the following diagram, described below.

EV Eγ

(F = 0) (Φγ = 0) Vγ

U V Ṽ

U D1 D̃1

Mwt
1 M̃wt

1

ϕ̃

ϕ

□

□
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Fix a weighted graph γ with root o. Let Ver(γ), Ver(γ)t and Ver(γ)∗ denote the
vertices, the terminal vertices (or leaves) and the non-rooted vertices of γ, respec-
tively. We take the natural ordering in Ver(γ) making the root o the minimal
element. We assume that the weight in γ is non-negative on every vertex and that
γ is terminally weighted, meaning that the vertices with non-zero weights are ex-
actly those in Ver(γ)t. Let Mwt

1 is the stack of genus-1 prestable curves endowed
with a weight. Remember that every element C parametrized by Mwt

1 has a dual
(weighted) graph γ, which can be made terminally weighted and rooted by first
declaring the root to be the (contraction of) the core of C and then pruning along
all non-terminal positively weighted nodes. We will denote by o the root of any
terminally weighted rooted tree, and by a, b, . . . the remaining vertices.

In the diagram, M̃wt
1 denotes the blow up of Mwt

1 described above and D1 is
the stack of stable pairs (C,D) with D an effective Cartier divisors supported in
the smooth locus of C. Fix a point (C,D) in D1 and a map in Mg,n(Pr, d) with

underlying curve C. Then U is a small open around the fixed map inMg,n(Pr, d),
V is a smooth chart around the point (C,D) in D1 containing the image of U and
EV is the total space of the sheaf ρ∗L(A)⊕n on V.

Let Vγ =
∏
v∈Ver(γ)∗ A1 be an affine space that serves as model for local equa-

tions. We denote by za, zb, . . . the natural coordinates in Vγ . Similarly, Eγ =
Vγ ×

∏
v∈Ver(γ)t(A1)r and the coordinates on the affine space (A1)r corresponding

to a ∈ Ver(γ)t will be denoted by wa,1, . . . , wa,r. The ideal Φγ = (Φγ,1, . . . ,Φγ,r)
will be described explicitly in Equation (71). The smooth morphism ϕ comes from
the natural coordinates on V, associated to the smoothing of each of the disconnect-
ing nodes in C (which are in natural bijection with Ver(γ)∗). The map U → (F = 0)

is an open embedding. Finally, ϕ̃ is induced by ϕ and F = ϕ̃∗Φγ . It is in this sense

that we can think of Φγ as the equations ofMg,n(Pr, d)γ .
Following [HL10], given a terminally weighted rooted graph γ, the ideal Φγ =

(Φγ,1, . . . ,Φγ,r) inside Vγ can be described as

(71) Φγ,i =
∑

v∈Ver(γ)t

z[v,o]wv,i 1 ≤ i ≤ r,

where

z[v,o] =
∏

o≺a⪯v

za.

Note that, for fixed i, the variables wa,i only appear in the i-th equation Φγ,i.
Due to the symmetry of the equations and the fact that all blow ups take place in
Vγ , which has coordinates {za}a∈Ver(γ)∗ (but not the wa,i), in the examples below
we will not write down the index i in the equations Φγ,i nor in the variables wa,i.
For example, in the study of the equations Φγ,i after blowing up, it will be clear that
the index i is irrelevant, in the sense that the way that Φγ,i changes is independent
of i.

9.1. Local equations of desingularizations. The local equations of the loci that
must be blown up are described, following [HL10].

Firstly, we describe how to assign an ideal Iγ to any semistable terminally
weighted rooted tree γ. Here, semistability of γ means that every non-root ver-
tex with weight zero has at least two edges.
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The trunk of γ is the maximal chain o = v0 ≺ v1 ≺ . . . ≺ vr of vertices in γ such
that each vertex vi with 1 ≤ i < r has exactly one immediate descendant and vr is
called a branch vertex if is it not terminal. Note that γ is a path tree if and only if
it has no branch vertex.

Definition 9.1.1. Let γ be a semistable terminally weighted rooted tree with
branch vertex v and let a1, . . . , ak be the immediate descendants of v. To γ we
associate the ideal

Iγ = (za1 , . . . , zak)

in Vγ .

First, we must blow up Vγ along the ideal Iγ . To describe the remaining steps
we need to introduce the following operations.

Definition 9.1.2. Let γ be a terminally weighted semistable rooted tree.

• The pruning of γ along a vertex v is the new tree obtained by removing
all the descendants of v (and the corresponding edges) and declaring the
weight of v to be the sum of the original weight of v plus the weights of all
removed vertices.
• The advancing of a vertex v with immediate ascendant v in γ is a new
tree obtained by replacing every edge (v, v′) with v′ ̸= v by an edge (v, v)
and pruning along all positively weighted non-terminal vertices as long as
possible. In Section 9.1.1 we will denote by γv the advancing of v in γ and
by γ′v the same tree before pruning.
• Suppose γ has a branch vertex v. A monoidal transform of γ is a tree
obtained by advancing one of the immediate descendants of v. The set of
monoidal transforms of γ is Mon(γ).

It turns out that the ideal Φγ behaves nicely under monoidal transforms. Indeed,
let γ be a semistable terminally weighted rooted tree with branch vertex v and let
a = a1, a2, . . . , ak be the immediate descendants of v. Let γa be the tree advancing

of a in γ. Let π : Ṽγ → Vγ be the blow-up of Vγ along the ideal Iγ = (za1 , . . . , zak).

We view Ṽγ embedded inside Vγ×Pk−1. There is a natural way to associate to each

generator zai of Iγ one chart of Pk−1, and thus also of Ṽγ . We denote such chart by

Ṽγ,ai . Let πa : Ṽγ,a → Vγ be the restriction of the natural projection, where a = a1.
Then, by the proof of [HL10, Lemma 5.14], one of the following must hold

• either γa is a path tree, and then the zero locus of π∗
a(Φγ) has smooth

components;
• or γa is not a path tree and then

(72) π∗
a(Φγ) = Φγa .

The whole blow-up process is summarized as follows. Fix γ. First blow up Vγ
along Iγ . The pullback of Φγ is controlled by Mon(γ). If Mon(γ) consists only
of path trees, we are done. Otherwise, for every element γ′ in Mon(γ) which is

not a path tree, blow up the chart of Ṽγ corresponding to γ′ along Iγ′ . Continue
recursively. The process concludes by [HL10, Lemma 3.12].

Now we want to describe BlFPic locally. Namely, we want to describe which loci
inside Pic we are blowing up locally. We have an exact sequence

0→ ρ∗L → ρ∗L(A)→ ρ∗L(A) |A
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by Equation (33). The change of notation is due to the fact that Equation (33) was
global in Pic, but we now work locally.

After a careful study of the second morphism, [HL10, Theorem 4.16] concludes
that ρ∗L is the direct sum of a trivial bundle with the kernel of the morphism

(73)
⊕

v∈Ver(γ)t

φv : O⊕ℓ
V → OV ,

where ℓ is the cardinality of Ver(γ)t and φv =
∏
o≺v′⪯v ζv, with ζv the smoothing

parameter of the disconnecting node corresponding to the vertex v.
By Proposition 7.1.3, the sheaf F can be described locally as the dual of Equa-

tion (73). In particular, by Remark 9.1.5 we have that BlFPic agrees, locally,
with the blowup along the ideal generated by the entries (φv)v∈Ver(γ)t . In local
coordinates, this ideal can be described as follows.

Definition 9.1.3. Let γ be a semistable terminally weighted rooted tree with
Ver(γ)t = {v1, . . . , vt}. To γ we associate the ideal

Jγ = (z[v1,o], . . . , z[vt,o]).

Similarly to Equation (72), in the same setup we have that

π∗
a(Jγ) = Jγa ,

independently of whether γa is has a branch vertex. This follows again from the
proof of [HL10, Lemma 5.14].

9.1.1. Examples. For two concrete trees γ, we compute the equations Φγ as well
as the ideals Iγ and Jγ . We describe the blow up process of Hu and Li and show

that the result indeed desingularizes the main component of Mg,n(Pr, d) locally.
Furthermore, we check that the ideal Jγ becomes locally principal in Hu–Li’s blow-
up.

Example 9.1.4. Consider the following labelled graph:
γ = o

a b

c d

Φγ = zawa + zb(zcwc + zdwd),

Iγ = (za, zb),

Jγ = (za, zbzc, zbzd).

Let Ṽγ be the blow up along Iγ , that is the zero locus of zaz
′
b − zbz

′
a inside

A4
za,zb,zc,zd

×P1
z′a,z

′
b
. The chart associated to a is that where z′a ̸= 0. Dehomogenizing

amounts to the change of variables zb = z′bza. By doing so, we get that

π∗
a(Φγ) = za(wa + z′b(zcwc + zdwd))

and that

π∗
a(Jγ) = (za, zaz

′
bzc, zaz

′
bzd) = (za).

This means that the zero locus of π∗
a(Φγ) already has smooth components, so no

further blowups are needed on this chart, and that π∗
a(Jγ) is principal on this chart

too.
Below are the trees γ′a obtained by advancing a without pruning, and γa obtained

by advancing a. We know that π∗
aJγ = Jγa , but we check it in this example.
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γ′a = o

a

b

c d

γa = o

a
Jγa = (za).

Similarly, we now look at the chart associated to b, where z′b ̸= 0. The change
of variables is now za = zbz

′
a. It follows that

π∗
b (Φγ) = zb(z

′
awa + zcwc + zdwd)

and that

π∗
b (Jγ) = (zbz

′
a, zbzc, zbzd) = zb(z

′
a, zc, zd).

This means that we still need to blow up. This time the tree γb obtained by
advancing b in γ (no pruning is needed) is not a path tree. We also check the
identities Jγa = π∗

aJγ and π∗
b (Φγ) = Φγb .

o

b

a c d

Φγb = zb(zawa + zcwc + zdwd),

Iγb = (za, zc, zd),

Jγb = zb(za, zc, zd).

To conclude the example, we need to blow up along the ideal (za, zc, zd). We
collect the result below.

Advancing a, or equivalently looking at the chart z′a ̸= 0, we have
γ′b,a = o

b

a

c d

γ′b,a = o

b

a

π∗
aπ

∗
b (Φγ) = π∗

a(Φγb) = zazb(wa + zcwc + zdwd),

Jγb,a = (zazb).

Advancing c, or equivalently looking at the chart z′c ̸= 0, we have
γ′b,c = o

b

c

a d

γ′b,c = o

b

c

π∗
cπ

∗
b (Φγ) = π∗

c (Φγb) = zbzc(zawa + wc + zdwd),

Jγb,c = (zbzc).

And finally, advancing d, or equivalently looking at the chart z′d ̸= 0, we have
γ′b,d = o

b

d

a c

γ′b,d = o

b

d

π∗
dπ

∗
b (Φγ) = π∗

d(Φγb) = zbzd(zawa + zcwc + wd),

Jγb,d = (zbzd).
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Remark 9.1.5. Example 9.1.4 shows that the Rossi blow-up process ofMg,n(Pr, d)
is not equal to the Vakil–Zinger blow-up. This is compatible with Remark 4.4. in
[HN19]. Indeed, the Rossi blowup around γ is given by BlJγVγ and the Vakil–Zinger
one is the iterated blow-up BlIγbBlIγVγ . We know there is a natural morphism

BlIγbBlIγVγ → BlJγVγ

over Vγ , either by Proposition 4.4.6 or because we checked that Jγ pulls back to a
principal ideal in BlIγbBlIγVγ . By contradiction, if there is a morphism

f : BlJγVγ → BlIγbBlIγVγ

over Vγ , then we get a morphism

f̃ : BlJγVγ → BlIγVγ

over Vγ . By [Moo01], there is a fractional ideal K in Vγ and a positive integer α
such that

Iγ ·K = Jαγ .

This is not true for Iγ = (za, zb) and Jγ = (za, zbzc, zbzd) in Vγ = A4
za,zb,zc,zd

.

Example 9.1.6. We do a similar study for the following labelled graph γ:
o

a

c d

b

e f

Φγ = za(zcwc + zdwd) + zb(zewe + zfwf ),

Iγ = (za, zb),

Jγ = (zazc, zazd, zbze, zbzf ).

After blowing up, there are two charts, corresponding to the advacings of a and
b respectively.

γa = o

a

c d b

e f

Φγa = za(zcwc + zdwd + zb(zewe + zfwf )),

Iγa = (zb, zc, zd),

Jγa = za(zc, zd, zbze, zbzf ).

γb = o

b

a

c d

e f

Φγb = zb(za(zcwc + zdwd) + zewe + zfwf ),

Iγb = (za, ze, zf ),

Jγb = zb(zazc, zazd, ze, zf ).

By symmetry, it is enough to understand how to proceed in one of the charts.
We choose the one corresponding to a. We get three new charts corresponding to
the vertices c, d and b.
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γ′a,c = o

a

c

d b

e f

γa,c = o

a

c

π∗
cΦγa = zazc(wc + zdwd + zb(zewe + zfwf )),

Jγa,c = (zazc).

γ′a,d = o

a

d

c b

e f

γa,d = o

a

d

π∗
dΦγa = zazd(zcwc + wd + zb(zewe + zfwf )),

Jγa,d
= (zazd).

γa,b = o

a

b

c d e f

Φγa,b
= zazb(zcwc + zdwd + zewe + zfwf ),

Iγa,b
= (zc, zd, ze, zf ),

Jγa,b
= zazb(zc, zd, ze, zf ).

To conclude, we need to blow up the last chart along Iγa,b
. This produces four

new charts corresponding to c, d, e and f . We will only write down one of them
since the rest are very similar.
γ′a,b,c = o

a

b

c

d e f

γa,b,c = o

a

b

c

π∗
cΦγa,b

= zazbzc(wc + zdwd + zewe + zfwf ),

Jγa,b,c
= (zazbzc).

9.1.2. Smoothness. In genus one,M1,n(Pr, d)×PicBlFPic has simple normal cross-
ings following the same argument as in [HL10, Theorem 5.24]. It is enough to show
that the zero locus of the ideal Φγ becomes a simple normal crossing in the blow-up

Ṽγ of Vγ along the ideal Jγ .
Remember that Φγ = (Φγ,1, . . . ,Φγ,r) with

Φγ,i =
∑

v∈Ver(γ)t

z[v,o]wb,i 1 ≤ i ≤ r,

where

z[v,o] =
∏

o≺a⪯v

za,
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and that
Jγ = (z[v,o])v∈Ver(γ)t .

For given v′ ∈ Ver(γ)t, the pullback of the equation Φγ,i on the chart corresponding
to v′ is equal to

z[v′,o]

wv′,i + ∑
v′ ̸=v∈Ver(γ)t

z[v,o]wb,i


by [HL10, Lemma 5.14]. This proves the claim.

9.1.3. Maps between blowups. By Proposition 4.4.6 there is a morphism from Vakil–
Zinger’s blowup to Rossi’s blowup. In genus one, we can check it locally: it is

equivalent to the fact that the pullback of the ideal Jγ to each chart Ṽγ of the
Hu–Li blowup of Vγ is principal. We have checked this in Example 9.1.4 and
Example 9.1.6, More generally, we can give a proof for every γ as follows.

By Equation (72) if za is any of the generators of Iγ , then π
∗
a(Jγ) = Jγa where γa

is the advancing of a in γ. In particular, it is enough to show that all the (natural)

charts of Ṽγ correspond to path trees, which is proven in [HL10, Lemma 3.14].
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