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Abstract. We show that the orbifold Chow ring of a root stack over a well-formed weighted
projective space can be naturally seen as the Jacobian algebra of a function on a singular
variety.

1. Introduction

According to Givental [8] and Barannikov [2], the mirror partner of the projective
space P

n is the function f1 = x0+· · ·+xn on the torus defined by x0 . . . xn = 1. This
mirror theorem states an isomorphism between the Frobenius manifolds obtained
by unfolding f1 and the quantum cohomology of P

n . To explain the motivation
behind this article let us think of f = x0 + · · · + xn as defined on the fibration
π : A

n+1 → A
1 given by π(x0, . . . , xn) = x0 . . . xn . From this point of view, it

is natural to consider deformations of f as unfoldings F(x, t) : A
n+1 × A

k → C

satisfying F(x, 0) = f (x), together with the equivalence relation induced by com-
mutative diagrams

A
n+1 × A

k
φ ��

π×id
Ak

��

F

������������ A
n+1 × A

k′

π×id
Ak′

��

F ′

������������

C

A
1 × A

k
ψ

��
A

1 × A
k′

(1)

Standard techniques (e.g. [6]) show that, at least at the level of germs, the tangent
space to the corresponding deformation functor, denoted by T 1

f/π , is given by the
algebra
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T 1
f/π = C[x0, . . . , xn]

(π)+�π( f )
(2)

where �π denotes the vector fields on A
n+1 tangent to all the fibres of π . We will

refer to this algebra as the Jacobian algebra of f at the 0-fibre of π . In the case of
the mirror of P

n , it is readily seen that �π is freely generated by the vector fields

xi∂xi − xi+1∂xi+1 , i = 0, . . . , n − 1. (3)

Therefore we have

T 1
f/π = C[x]

(xn+1)
� H∗(Pn; C) (4)

It is in this sense that seems natural to us to call the pair ( f, π) the mirror fibration
of P

n .
Let p0, . . . , pn be integer greater or equal than one. In the case of the weighted

projective space P(p0, . . . , pn), it has also been recently proved that the restriction
of the function f = x0 + · · · + xn to the torus x p0

0 . . . x pn
n = 1 is the mirror partner

of P(p0, . . . , pn). This result appears as a conjecture in [10] and it follows after the
calculation of the small quantum orbifold cohomology of P(p0, . . . , pn) by Coates
et al. [4].

In this note, we construct a mirror fibration, in the sense explained above, for
a toric orbifold whose coarse moduli space is a well-formed weighted projective
space. In order to state our main result, we first introduce some notations.

A sequence of weights p := (p0, . . . , pn) ∈ (N>0)
n+1 is called well-formed if

for any i ∈ {0, . . . , n} we have gcd(p0, . . . , p̂i , . . . , pn) = 1. A weighted projec-
tive space P(p) is called well-formed if its weights are well-formed.

As explained in Sect. 5 of [7], a toric orbifold whose coarse moduli space is
a well-formed weighted projective space P(p) can be encoded by a (n + 1)-tuple
w := (w0, . . . , wn) ∈ (N>0)

n+1 which are the multiplicities of the toric divisors.
Such a toric orbifold is denoted by X (w,p).

Now we state our main theorem.

Theorem 1. Let p := (p0, . . . , pn) ∈ (N>0)
n+1 be a sequence of well-formed

weights. Let w := (w0, . . . , wn) ∈ (N>0)
n+1. There exists a fibrationπp : Y(p) →

C(p) over a rational curve together with a function fw : Y(p) → C such that

(a) The generic fibre π−1
p (t), t �= 0 is isomorphic to the torus x p0

0 . . . x pn
n = 1 and

fw is given by xw0
0 + · · · + xwn

n under this isomorphism;
(b) We have a ring isomorphism

T 1
fw/πp

� A∗
orb(X (w,p); C) (5)

where the right-hand side denotes the orbifold Chow ring of X (w,p).

The definition of the orbifold cohomology can be found in [5] or in [1]. To
prove the theorem above, we only use the fact that the gcd p = 1 and not that the
pi ’s are well-formed. Nevertheless, it is not a more general case as it is explain in
Proposition 1. We put this assumption in the theorem for the following reason. As
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stated, this theorem highlights the role of the fibration and the function with respect
to the toric orbifold X (w,p). Indeed, the coarse moduli space is encoded by the
fibration πp whereas the root of toric divisors are encoded by the function fw. It
would be interesting to see how to encode the essentially gerbe structure appeared
in Sect. 6 of [7] for the mirror fibration.

The reader wanting to know what πp and fw look like, might wish to have a
look at the last section of this note before reading any further.

Convention. An orbifold is a smooth DM stack of finite type over C with trivial
generic stabiliser.

2. Orbifold Chow ring of smooth toric DM stacks

First we recall some general facts on smooth toric DM stacks. According to [3] a
stacky fan denoted by � is a triple (N , �, β)where N is a finitely generated abelian
group N ,� is a simplicial fan in NQ := N ⊗ZQ with n+1 rays and β : Z

n+1 → N
is a group homomorphism such that the image of the standard basis, denoted by
(e0, . . . , en) of Z

n+1 generates the rays of �. To this combinatorial data, one can
associate a smooth DM stack denoted by X (�). We will not use explicitly this
construction so we refer to [3] for it.

Denote by Q[N ]� denotes the deformed group ring, that is, the underlying
vector space is simply Q[N ] but the multiplication has been deformed according
to the rule

yc1 · yc2 =
{

yc1+c1 if there exists a cone σ ∈ � such that c1, c2 ∈ σ
0 otherwise.

(6)

Let θ ∈ N∨ := HomZ(N ,Z). We define the Q[N ]�-linear morphism

ξθ : Q[N ]� −→ Q[N ]�
(7)

yc 	−→ θ(c)yc

One can prove easily the following lemma.

Lemma 1. For any θ ∈ N∨, the linear morphism ξθ is a derivation of Q[N ]� .

We finish our recall by stating the main result of [3]. The ring A�orb(X (�)) is
isomorphic to

Q[N ]�
〈

ξθ (
∑n

i=0 yβ(ei )) : θ ∈ N∨〉 . (8)

Remark 1. From Lemma 1 and the description of the orbifold Chow ring above, it
seems natural to see Q[N ]� as the fibration and

∑n
i=0 yβ(ei ) as a function. We will

explicit this in the next section on our examples.
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Let p := (p0, . . . , pn) ∈ (N>0)
n+1 be a sequence of well-formed weights.

Let w := (w0, . . . , wn) ∈ (N>0)
n+1. Now, we describe the stacky fan of the toric

orbifold X (w,p).
The finitely abelian group N is Z

n+1/
〈∑n

i=0 pi ei
〉

. As the pi are coprime, the
abelian group N is free of rank n. The vector space N ⊗Z Q comes equipped
with a natural simplicial fan � given by the projections of the non-negative coor-
dinate subspaces in Z

n+1 ⊗Z Q. More precisely, for k ∈ {0, . . . , n}, the set of
k-dimensional cones of � is given by

σJ :=
⎧

⎨

⎩

∑

j∈J

λ j [e j ] : λ j ≥ 0 ∈ Q

⎫

⎬

⎭

(9)

where J ⊂ {0, . . . , n} runs through all the subsets with k elements. In order to
define the homomorphism β, we choose a point wi ei ∈ Z

n+1, wi > 0. If W
denotes the diagonal matrix (w0, . . . , wn), we define β as the composite

β : Z
n+1 W−→ Z

n+1 → N . (10)

We denote by X (w,p) the smooth DM stack associated to the stacky fan (N , �, β).
To have a more geometrical grasp on X (w,p), we use the bottom-up construc-

tion and Sect. 7 of [7]. We deduce that the coarse moduli space of X (w,p) is X (1,p)
where all the wi ’s are 1. It is a straightforward computation to see that X (1,p) is
the well-formed weighted projective space P(p). Denote by T := [(C∗)n+1/C∗]
where the action of C

∗ on (C∗)n+1 is given by :

λ · (x0, . . . , xn) := (λp0 x0, . . . , λ
pn xn). (11)

The X (1,p)\T is a simple normal crossing divisor with irreducible components
denoted by Di . Denote D := (D0, . . . ,Dn). The w-th root stack of (X (1,p),D)
is the fibber product

w
√D/X (1,p) ��

�
��

[An+1/(C∗)n+1]
∧w

��
X (1,p) �� [An+1/(C∗)n+1]

(12)

where the stack morphism ∧w : [An+1/(C∗)n+1] → [An+1/(C∗)n+1] is defined
by sending xi 	→ xwi

i and λi 	→ λ
wi
i where xi (resp. λi ) is the coordinates of

A
n+1 (resp. (C∗)n+1 ). Section 7 of [7], we deduce that X (w,p) is isomorphic to

w
√D/X (1,p).

Remark 2. Let a ∈ N such that gcd(a, pn) = 1. Then we have that

X ((w0, . . . , wn), (ap0, . . . , apn−1, pn)) � X ((w0, . . . , awn), (p0, . . . , pn))

(13)
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3. Orbifold Chow ring as Jacobian algebra

In this section we construct the fibration with the properties described in the intro-
duction.

Overview. Looking at the orbifold Chow ring in (8), we will see Q[N ]� as a
ring defining the fibration πp : Y(p) → C(p) and

∑n
i=0 yβ(ei ) as the function

fw : Y(p) → Q. Using this idea, we will see the ring A∗
orb(X (w,p)) as a Jacobian

algebra.

We first wish to express Q[N ]� as the quotient of a polynomial algebra by an
ideal. In order to do so, we define

α̃ : Z
n+1 −→ (Q≥0)

n+1

(14)
a := (a0, . . . , an) 	−→ a − γ (a)p

where γ (a) := min
{

ai
pi

: i = 0, . . . , n
}

.

The map α̃ admits the following interpretation: α̃(a) is the point of intersection
of the line a + λp with the set

{

(x0, . . . , xn) ∈ (Q≥0)
n+1 such that x0 · · · xn = 0

}

.
It thus descends to a map α : N → (Q≥0)

n+1. Denote also by a the class of a in
N . We also see from this interpretation that

α(a + a′) = α(α(a)+ α(a′)) (15)

and if σJ ⊂ NQ denotes the cone of � defined in (9) then

α(σJ ) ⊂
{

(x0, . . . , xn) ∈ (Q≥0)
n+1such that xi = 0 for i �∈ J

}

. (16)

Notice that a, a′ ∈ N are not in the same cone if and only if for any i ∈ {0, . . . , n},
ai +a′

i > 0. It follows thatα(a+a′) = α(a)+α(a′) if and only if there exists σ ∈ �
with a, a′ ∈ σ . Denote by S ⊂ (Q≥0)

n+1 the semigroup (with unity) generated by
α(N ). Denote by Q[S] the algebra generated by S. As usual, we denote by zi the
element α(ei ) in Q[S] and we write zb := zb0

0 . . . zbn
n for the element b ∈ Q[S].

The definition of Q[N ]� and the above discussion imply that

Q[N ]� � Q[S]
({

zb : b = (b0, . . . , bn) ∈ S, bi > 0, i = 0, . . . , n
}) (17)

Denote by T ⊂ Q the semigroup generated by γ (S). We have the following descrip-
tions of S and T :

Lemma 2. (a) The semigroup S is generated by {ei : i = 0, . . . , n} and S0, . . . , Sn

where

Si :=
{

1

pi
(kp0

pi
, . . . , kpn

pi
) where kpn

pi

is the remainder in the division of kp j by pi

}

(18)
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(b) T is generated by 1/lcm(pi , p j ), 0 ≤ i < j ≤ n.

Proof. (a). Let S′ be the semigroup generated by {ei : i = 0, . . . , n} and S0, . . . , Sn .
We want to show that S = S′. Notice that α̃(Zn+1) = α(N ) and by definition gen-
erates S. Let a = (a0, . . . , an) ∈ Z

n+1. We can assume without loss of generality
that a0/p0 = min {ai/pi : i = 0, . . . , n}. Let u ∈ N such that k := up0 − a0 ∈ N.
Writing the Euclidean division kpi = qi p0 +kpi

p0 , we see that ai −(upi +qi ) ≥ 0.
Then

α̃(a) = a − a0

p0
p = (0, a1 − (up1 + q1), . . . , an − (upn + qn))

+ 1

p0
(0, kp1

p0
, . . . , kpn

p0
) (19)

from which it follows that S ⊂ S′. For the reverse inclusion, it is enough to show
that Si ⊂ S. Again we show that S0 ⊂ S. Let 1

p0
(0, kp1

p0
, . . . , kpn

p0
) be an

element in S0. There exists qi ∈ N such that for i ∈ {0, . . . , n} we have

− kpi = −qi p0 + −kpi
p0 = (1 − qi )p0 − kpi

p0
. (20)

Dividing by p0 pi , we see that −k/p0 ≤ (1 − qi )/pi . We deduce that

α(−k, 1 − q1, . . . , 1 − qn) = 1

p0
(0, kp1

p0
, . . . , kpn

p0
). (21)

(b). As before we consider the semigroup T ′ generated by 1/lcm(pi , p j ) for
0 ≤ i < j ≤ n. In view of part (a), an element s ∈ S can be written as a finite sum

s =
n
∑

i=0

si ei +
n
∑

i=0

bi , si ≥ 0 (22)

with bi in the semigroup generated by Si . If we write bi = 1
pi
(bi,0, . . . , bi,n), γ (s)

is given by

γ (s) = min

{

1

p j

(

s j +
n
∑

i=0

bi, j

pi

)

: j = 0, . . . , n

}

(23)

On the other hand, for any 0 ≤ i ≤ n there exists ki ∈ N such that for any
j ∈ {0, . . . , n} we have bi, j ≡ ki p j mod pi . In particular, bi,i = 0 and bi, j ∈
gcd(pi , p j )Z if i �= j . As lcm(pi , p j ) gcd(pi , p j ) = pi p j , it follows that γ (s) ∈
T ′. To see that 1/lcm(pi , p j ) ∈ T for i �= j , choose a positive integer � such
that �p j ≡ gcd(pi , p j ) mod pi . For m ∈ {0, . . . , n}, set �m ≡ kpm mod pi with
0 ≤ �m < pm . Notice that � j = gcd(pi p j ). The element

b = 1

pi
(�0, . . . , �n)+ (k0, . . . ,

j)
0 , . . . , kn) (24)

for km sufficiently large, satisfies γ (b) = 1/lcm(pi , p j ).
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We are now ready to construct the fibration described in the introduction. Let
� = 1/lcm(p0, . . . , pn) and T be the additive subgroup of Q generated by �. Let
us also set �i = pi� and denote by S the subgroup of Q

n+1 generated by �i ei . We
have a well-defined commutative diagram respecting the addition:

T ⊕ S
φ∗

�� S

T

π∗
p

��

ψ∗
�� T

ρ∗
��

φ∗(γ,b) = b − γp

π∗
p (γ ) = (γ, 0)

ρ∗(λ) = λp

ψ∗(γ ) = −γ
(25)

Notice that φ∗(γ,b) = 0 if and only if (γ,b) = (γ (b),b − α(b)). We denote by
tγ zb = tγ zb0

0 · · · zbn
n the corresponding element in Q[T ⊕ S]. Consider the ideal

I ⊂ Q[T ⊕ S] generated by
{

zb − tγ (b)zα(b) : b ∈ S
}

. (26)

We obtain a commutative diagram of ring homomorphisms:

Q[T ⊕ S]/I
φ∗

��
Q[S]

Q[T ]
π∗

p

��

ψ∗
��
Q[T ]

ρ∗
��

(27)

Consider now the elements fw := ∑n
i=0 zβ(ei ) = zw0

0 + · · · + zwn
n ∈ Q[T ⊕ S].

Denote by xi the element ei in Q[S]. We write xb = xb0
0 . . . xbn

n for the element
b ∈ Q[S]. Put f w = ∑n

i=0 xβ(ei ) = ∑n
i=0 xwi

i ∈ Q[S]. Then, taking Spec of the
diagram (27) we obtain the following.

Theorem 2. The commutative diagram

Spec Q[S] =: T
n+1

ρ

��

φ ��

f w

��������������
Y(p) := Spec Q[T ⊕ S]/I

πp

��

fw

�����������������

Q

Spec Q[T ] =: T
ψ

�� C(p) := Spec(Q[T ])

(28)

satisfies:

(a) φ and ψ are isomorphism over their images;
(b) πp is flat and
(c) the Jacobian algebra of f over the 0-fibre of πp is isomorphic to the orbifold

Chow ring A∗
orb(X (w,p)).
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Proof. The statements (a) and (b) are clear. For (c) we notice that I + ({

tγ : γ >
0 ∈ T

})

is canonically isomorphic to the right hand side of (17) and hence isomor-
phic to Q[N ]� . It remains to identify the module �πp of Q[T ]-linear derivations
of Q[T ⊕ S] with the denominator of (8). According to Lemma 1, for any θ ∈ N∨,
the application

ξθ : Q[T ⊕ S] −→ Q[T ⊕ S] (29)

tγ zbï¿½ 	−→ θ̃ (b)tγ zb

is a derivation.
On the other hand ξθ (I ) ⊂ I for θ̃ (Q · p) = 0. Hence ξθ is a derivation

of Q[T ⊕ S]/I which is Q[T ]-linear by definition. We therefore obtain a map
ξ : N∨ → �πp , θ 	→ ξθ . To see that the image of ξ freely generates �πp over
Q[T ⊕ S]/I take θ1, . . . , θn generators of N∨. Then ξθ1 , . . . , ξθn are independent
over Q[T ⊕ S]/I and, in view of the commutative diagram (28), we see that they
generate the module �Xψ(q) of derivations of the coordinate ring of the ψ(q)-fibre
of πp. As no derivation can be supported only at the 0-fibre of πp, we obtain the
result.

Remark 3. C. Sabbah points out that the ring Q[N ]� can also be described as the
graded algebra associated to the Newton filtration induced by β on NQ. More pre-
cisely, let P be the convex hull of β(ei ) in NQ. It is a convex polyhedron containing
the origin whose faces are defined by Li = 1, being Li the unique Q-linear on NQ

with Li (β(e j )) = 1 for i �= j . It thus defines the fan �. For m ∈ N , let us set
ν(m) := min {λ ≥ 0 : m ∈ λ · P} and define Q[N ]ν as the vector space gener-
ated by ym with ν(m) ≤ ν. It is readily seen that the convexity of P implies that
ν(m + m′) ≤ ν(m) + ν(m′) with equality if and only there exists a cone σ ∈ �
containing both m and m′. Hence we have

Q[N ]� � grPQ[N ] =
⊕

ν≥0

Q[N ]ν
Q[N ]<ν (30)

In fact if we set |b| = ∑n
i=0

ai
wi

for b = (b0, . . . , bn) ∈ Q
n+1, it is easy to see that

ν(m + m′) = |α(m)| + ∣

∣α(m′)
∣

∣ − ∣

∣γ
(

α(m)+ α(m′)
)∣

∣ , (31)

and in particular, ν(m) = |α(m)|. This formula can be used to identify the fibration
constructed in Theorem 2 with a certain noetherian subring of ⊕ν≥0Q[N ]ν .

Remark 4. It is reasonable to expect some relation between the fibration (28) and
the small quantum cohomology of weighted projective spaces as described in [4].

4. About the well-formed condition

As we explain in the introduction after Theorem 1, we have not used that the weights
p are well-formed. The proposition below justify this well-formed assumption.
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Proposition 1. Let (w,p) and (w′,p′) two pairs of weights such that gcd(p) =
gcd(p′) = 1. If the toric orbifolds X (w,p) and X (w′,p′) are isomorphic then
there exists two isomorphisms g and h such that the following diagram is commu-
tative:

Y(p) g ��

πp

��

fw

����
��

��
��

Y(p′)
fw′

		��
��

��
��

πp′

��

Q

C(p) h �� C(p′)

(32)

We start with a combinatorial Lemma.

Lemma 3. For any i ∈ {0, . . . , n − 1}we have that for any ( j, k)∈ {0, . . . , n − 1}×
N

1

pi
kp j

pi = 1

api
kap j

api (33)

Proof. Without loss of generality, we can assume that i = 0. There exists unique
(q, kp j

p0
) ∈ N×{0, . . . , p0 − 1} and unique (q ′, kap j

p0
) ∈ N×{0, . . . , ap0 − 1}

such that kp j = qp0 + kp j
p0 and akp j = q ′ap0 + kap j

ap0 . By uniqueness, we
deduce that aq ′ = q and a.kp j

p0 = kap j
ap0 . This finishes the proof.

Proof of Proposition 1. According to the discussion at the end of Sect. 2 and Rem-
ark 2, it is enough to prove the proposition for the weights (w, ap0, . . . , apn−1, pn)

and (w0, . . . , wn−1, awn,p) where gcd(p0, . . . , pn) = 1 and gcd(a, pn) = 1.
We will see that the isomorphism g : Y(ap0, . . . , apn−1, pn) → Y(p0, . . . , pn)

sends (z0, . . . , zn) to (z0, . . . , zn−1, z1/a
n ) and h : C(ap0, . . . , apn−1, pn) →

C(p0, . . . , pn) sends t to t1/a .
In our notation, we will stress for which family of weights we compute

S, T, . . .. We define a morphism of semigroups h∗ : T (p0, . . . , pn) → T (ap0, . . . ,

apn−1, pn) that sends γ to γ /a. For any i, j ∈ {0, . . . , n − 1}, we have lcm
(api , ap j ) = alcm(pi , p j ) and for any i ∈ {0, . . . , n}, we have lcm(api , pn) =
alcm(pi , pn). We deduce that h : C(ap0, . . . , apn−1, pn) → C(p0, . . . , pn) is
well-defined and is an isomorphism.

We define the morphism of semigroups:

φ∗ : S(p0, . . . , pn) → S(ap0, . . . , apn−1, pn)
(34)

(b0, . . . , bn) 	→
(

b0, . . . , bn−1,
bn

a

)

.

We will show that φ∗ is an isomorphism. To prove that φ∗ is well-defined, we show
that:

(a) for i ∈ {0, . . . , n}, we have φ∗(Si (p0, . . . , pn)) ⊂ Si (ap0, . . . , apn−1, pn)
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(b) and for i ∈ {0, . . . , n}, we have φ∗(ei ) ∈ S(ap0, . . . , apn−1, pn).

(a). For i = n, it is obvious. For the case i �= n, one can assume, without loss of gen-
erality, that i = 0. Let 1

p0
(0, kp1

p0
, . . . , kpn

p0
) be a generator of S0(p0, . . . , pn).

Let u, v ∈ N such that upn − va = 1. As we have that for any t ∈ N

(k + tup0)pn =
(⌊

kpn

ap0

⌋

+ v

)

ap0 + kpn
ap0 + tp0, (35)

we deduce that from there exists t ∈ N such that 0 ≤ (k + tup0)pn
ap0 ≤ p0 − 1.

Putting k′ := k + tup0, we have that k′ pn
ap0 = kpn

p0 and by Lemma 3 that for
j ∈ {0, . . . , n − 1} ak′ p j

ap0 = akp j
ap0 . We deduce that φ∗(S0(p0, . . . , pn)) ⊂

S0(ap0, . . . , apn−1, pn).
(b). For i ∈ {1, . . . , n − 1}, we have φ∗(ei ) ∈ S(ap0, . . . , apn−1, pn). For i =

n, we put k = up0 where u, v ∈ N are the Bezout coefficients (i.e. upn − va = 1),
we deduce that

φ∗(en) = 1

ap0

(

0, kap1
ap0
, . . . , kapn−1

ap0
, kpn

ap0
)

. (36)

We conclude that φ∗ is well-defined.
The morphism φ∗ is clearly injective and its image is contained in S(ap0, . . . ,

apn−1, pn). It hence suffices to show that it is also surjective. It is obvious that
Sn(ap0, . . . , apn−1, pn) ⊂ Im φ∗. Let 1

ap0
(0, kap1

ap0
, . . . , kapn−1

ap0
, kpn

ap0
) be

a generator of S0(ap0, . . . , apn−1, pn) and consider the Euclidean division kpn
ap0 =

qp0 + kpn
p0 with 0 ≤ kpn

p0
< p0, by Lemma 3. We deduce that

φ∗
(

1

p0

(

0, kp1
p0
, . . . , kpn

p0
)

+ (0, . . . , 0, q)

)

= 1

ap0

(

0, kap1
ap0
, . . . , kapn−1

ap0
, kpn

ap0
)

.

By the same argument, we deduce that S j (ap0, . . . , apn−1, pn) ⊂ Im φ∗. We
conclude that φ∗ is an isomorphism. We define the isomorphism of rings g̃∗ :=
(h∗, φ∗) : Q[(T ⊕ S)(p0, . . . , pn)] → Q[(T ⊕ S)(ap0, . . . , apn−1, pn)].

As for any b ∈ S we have h∗(γ (b)) = γ (φ∗(b)) and φ∗(α(b)) = α(φ∗(b)),
we deduce that g̃∗ induces an isomorphism of rings

g∗ : Q[(T ⊕ S)(p0, . . . , pn)]/I (p0, . . . , pn)

→ Q[(T ⊕ S)(p0, . . . , pn)]/I (ap0, . . . , apn−1, pn) (37)

The induced morphism of schemes g : Y(ap0, . . . , apn−1, pn) → Y(p0, . . . , pn)

sends (z0, . . . , zn) to (z0, . . . , zn−1, z1/a
n ) is an isomorphism such that the diagram

of Proposition 1 is commutative.
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5. Examples

In this section we have used Singular [9] to embed the fibration (28) into affine
spaces. We illustrated for two different cases: p = (2, 3, 5) and p = (p0, . . . , pn)

where p0 = 1 and pi divides pi+1. We begin with the latter.

Case P(p) with pi |pi+1. Set pi = di pi−1. Let vi = z p0/pi
0 . . . z pi−1/pi

i−1 for i =
1, . . . , n. The monomials vi correspond to the generators of S described in 2, (a).
We thus have the relations vdi+1

i+1 − vi zi , i = 1, . . . , n − 1 and it is easy to see that
in fact these generate all the relations between the monomials in vi and zi . On the
other hand, we have Q[T ] = Q[t1/pn ] � Q[s] and the ideal I ∈ Q[T ⊕ S] is
generated by one single element, namely vnzn − s = 0. Then

X =
{

v
d1
1 = z0, v

d2
2 = v1z1, v

d3
3 = v2z2, . . . , v

dn
n = vn−1zn−1, vnzn = s

}

↪→ A
2n+2 (38)

and π : X → A
1 is the restriction of the projection onto the s-line.

Case P(2, 3, 5). To describe Q[S] for the case p = (2, 3, 5), consider the mono-
mials

w1 = z2/5
0 z3/5

1 , w2 = z4/5
0 z1/5

1 , w3 = z1/5
0 z4/5

1 , w4 = z3/5
0 z2/5

1 (39)

with relations

w2
1 = w2z1, w1w2 = w3z0, w1w3 = w4z1, w1w4 = z0z1

(40)
w2

Similarly, we have monomials u1 and v1 corresponding to the elements with denom-
inator 1/2 and 1/3 with relations

u2
1 = z1z2, v3

1 = z0z3. (41)

On the other hand we have Q[T ] = Q[t1/6, t1/10, t1/15] so that we have the embed-
ding C ↪→ A

3 as the rational curve

s1 = s2s3, s3
2 = s1s2

3 , s3
3 = s2

2 (42)

Finally, the ideal I is given by

u1v1 = s1

u1w1 = s2w2, u1w2 = s2w4, u1w3 = s2z1, u1w4 = s2w1

v1w1 = s3w4, v1w2 = s3z0, v1w3 = s3w1, v1w4 = s3w2

(43)

Therefore X ↪→ A
12 is defined by the Eqs. (40), (41), (42) and (43), with the

fibration π : X → C given by the projection onto the (s1, s2, s3)-space.
Notice that in any of the above cases we can obtain presentations of

A∗
orb(X (w,p)) by setting s = 0 and adding the equations

wi

pi
zwi

i − wi+1

pi+1
zwi+1

i , i = 0, . . . , n − 1. (44)
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