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1. INTRODUCTION

Recently, particular attention has been given to the study of the orbifold
cohomology ring of weighted projective spaces. This cohomology originates in
physics and has been defined mathematically by Chen and Ruan (2004). It has
been further developed and adapted to the language of stacks by Abramovich et al.
(2002). Jiang (2007) studies the orbifold cohomology ring of weighted projective
spaces by means of their simplicial toric fan with an explicit computation for
��1� 2� 2� 3� 3� 3�. Borisov et al. (2005) prove a formula for the orbifold Chow
ring of toric Deligne–Mumford stacks in terms of their stacky fan, that can be
applied to weighted projective spaces. Chen and Hu (2006), obtain a general formula
for the computation of the orbifold product of abelian orbifolds, and apply it
to weighted projective spaces. Holm (2007) uses symplectic geometry to compute
a presentation of their integral orbifold cohomology ring with generators and
relations. Coates et al. (2007) calculate the small quantum orbifold cohomology of
weighted projective spaces by proving an explicit formula for their small J -function.
In this note, we give an alternative description: Starting from the computation of
their orbifold cohomology as given by the second author in Mann (2008), we exhibit
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504 BOISSIÈRE ET AL.

a short and comprehensible model as a graded group algebra over some specific
group of roots of the unity.

More precisely, for a given sequence of weights w �= �w0� � � � � wn�, we
construct (see Theorem 4.9) an isomorphism of graded Frobenius algebras between
the orbifold Chow ring A�

orb���w�� and a suitably graded algebra gr�F����w�� where
�w� �= w0 + · · · + wn and ��w� denotes the group of �w�-roots of the unity (see §4.1
for the construction of the grading). This construction uses some combinatorics
associated to the weights, partially present in Douai and Sabbah (2004), and the
second author in Mann (2008) (see §2).

This new description of the orbifold Chow ring of weighted projective spaces
is interesting mainly for three reasons. First, this model is not a description with
generators of the ring and a list of relations: Instead, it gives a presentation such
that the generators of the ring are a basis of the underlying vector space, and the
ring structure is natural. Second, this description is analogous to the one of a global
symplectic quotient stack �V/G� where V is a symplectic vector space and G ⊂ Sp�V�
a finite group: Ginzburg and Kaledin (2004) observed that the ring A�

orb��V/G�� is
isomorphic to gr�F��G�G (for an appropriate grading). Third, the computation of
this orbifold Chow ring is an essential step for studying the Cohomological Crepant
Resolution Conjecture for weighted projective spaces (see Boissière et al., 2006 for
such computations).

2. SOME COMBINATORICS

Let n ≥ 1 be an integer and w �= �w0� � � � � wn� a sequence of positive integers
(or weights). Set �w� �= w0 + · · · + wn. For � ∈ �∗, denote by �� the group of �th
roots of the unity and set � �=

�
�∈�∗ ��. We define an order on the group � by

taking the principal determination of the argument, inducing a bijection

� � � −→ �0� 1�∩�

g �−→ ��g� where exp�2i���g�� = g�

For g ∈ �, put:

I�g� �= �i ∈ ��0� n�� � gwi = 1��

a�g� �=
n�

i=0

���g�wi��

where �·� is the fractional part. Note that I�g� = I�g−1�. One has

���g�wi� =

�
0 if i ∈ I�g�

1− ���g−1�wi� otherwise
(2.1)

hence:

a�g�+ a�g−1� = n+ 1− #I�g�� (2.2)
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A MODEL FOR THE ORBIFOLD CHOW RING OF ��w� 505

We order the disjoint union
�n

i=0 �wi
by the injection:

n�

i=0

�wi
−→ �0� 1�× ��0� n��

g �−→ ���g�� i��

where �0� 1�× ��0� n�� is given the lexicographic order. This induces an increasing
bijection s � ��0� �w� − 1�� →

�n
i=0 �wi

.

Example 2.3. Take w = �1� 2� 3�. The enumeration is

� � �1 ��2 ��3 → �0� � �0� 1/2� � �0� 1/3� 2/3��

�s � ��0� 5�� → �0� 0� 0� 1/3� 1/2� 2/3��

The understanding of the growth of the map �s � ��0� �w� − 1�� → �0� 1� is
central in the sequel. First note that for g ∈ �, the elements in the image of �s less
or equal to ��g� are

0�
1

w0

� � � � �
���g�w0�

w0

� 0�
1

w1

� � � � �
���g�w1�

w1

� � � � � 0�
1

wn

� � � � �
���g�wn�

wn

� (2.4)

where �·� is the integer part. In particular, #��s�−1���g�� = #I�g�. The growth is then
controlled by the values, for g ∈

�n
i=0 �wi

:

kmin�g� �= min�k ∈ ��0� �w� − 1�� � �s�k� = ��g���

kmax�g� �= max�k ∈ ��0� �w� − 1�� � �s�k� = ��g���

One has the relation kmax�g� = kmin�g�+ �#I�g�− 1�. Otherwise stated,

�s�kmin�g�+ d� = ��g� ∀d = 0� � � � � #I�g�− 1� (2.5)

Another consequence of (2.4) is

#�k ∈ ��0� �w� − 1�� � �s�k� ≤ ��g�� = n+ 1+
n�

i=0

���g�wi��

One deduces

kmin�g� = �n+ 1− #I�g��+
n�

i=0

���g�wi��

kmax�g� = n+
n�

i=0

���g�wi��

Using that
�n

i=0���g�wi� = �w���g�− a�g� and Formula (2.2), one gets

kmin�g� = a�g−1�+ �w���g�� (2.6)

kmax�g� = n+ �w���g�− a�g�� (2.7)
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506 BOISSIÈRE ET AL.

If g ∈ � but g �
�n

i=0 �wi
, then I�g� = ∅ and

#�k ∈ ��0� �w� − 1�� � �s�k� < ��g�� = n+ 1+
n�

i=0

���g�wi�

= n+ 1+ �w���g�− a�g�

= �w���g�+ a�g−1� by Formula (2.2)

so we can extend the definition of kmin�g� by setting

kmin�g� �= a�g−1�+ �w���g� ∀g ∈ �� (2.8)

with the property that k ≥ kmin�g� if and only if �s�k� ≥ ��g� (resp., �s�k� > ��g�,
if g �

�n
i=0 �wi

).
For g� h ∈

�n
i=0 �wi

, set

J�g� h� �= �i ∈ ��0� n�� � ���g�wi�+ ���h�wi�+ ���gh�−1wi� = 2��

Using Formula (2.1) and noting that

���gh�wi� ≡ ���g�wi�+ ���h�wi� mod1� (2.9)

one gets the following decomposition in disjoint union:

��0� n�� = �I�g� ∪ I�h�� � �I�gh�\�I�g� ∩ I�h��� � J�g� h� � J�g−1� h−1�

or more precisely,

���g�wi�+ ���h�wi�− ���gh�wi� =






0 if i ∈ I�g� ∪ I�h�

1 if i ∈ I�gh�\�I�g� ∩ I�h��

0 if i ∈ J�g−1� h−1�

1 if i ∈ J�g� h��

(2.10)

This implies

a�g�+ a�h�− a�gh� = #�I�gh�\�I�g� ∩ I�h���+ #J�g� h�� (2.11)

3. ORBIFOLD CHOW RING OF WEIGHTED PROJECTIVE SPACES

3.1. Weighted Projective Spaces

Let w �= �w0� � � � � wn� be a sequence of weights. The group �∗ acts on
�n+1\�0� by

� · �x0� � � � � xn� �= ��w0x0� � � � � �
wnxn��
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A MODEL FOR THE ORBIFOLD CHOW RING OF ��w� 507

The weighted projective stack ��w� is defined as the quotient stack ���n+1\�0��/�∗�.
It is a smooth proper Deligne–Mumford stack whose coarse moduli space, denoted
���w��, is a projective variety of dimension n.

For any subset I �= �i1� � � � � ik� ⊂ �0� � � � � n�, set wI �= �wi1
� � � � � wik

�. There is
a natural closed embedding �I � ��wI� �→ ��w�. The weighted projective stack ��w�
comes with a natural invertible sheaf ���w��1� defined as follows: For any scheme
X and any stack morphism X → ��w� given by a principal �∗-bundle P → X
and a �∗-equivariant morphism P → �n+1\�0�, one defines ���w��1�X as the sheaf
of sections of the associated line bundle of P. This sheaf is compatible with the
embedding �I in the sense that �∗I���w��1� = ���wI �

�1�.

3.2. Computation of the Orbifold Chow Ring

We denote by A�
orb��� the orbifold Chow ring with complex coefficients of a

Deligne–Mumford stack (or orbifold) � . For toric stacks, such as weighted projective
spaces (see Boissière et al., 2006), it is isomorphic to the even orbifold cohomology. As
a vector space, A�

orb��� = A����� where �� is the inertia stack of � .
We recall the results of the second author in Mann (2008). The inertia stack

of ��w� decomposes as

� ��w� =
�

g∈
�n

i=0 �wi

��wI�g���

Note that dim��wI�g�� = #I�g�− 1.

Example 3.1. Take again w = �1� 2� 3�. The components of the inertia stack of
��1� 2� 3� are indexed by the roots 1� j�−1� j2, where j is the primitive third root of
the unity, so that

� ��1� 2� 3� = ��1� 2� 3�� ��3�� ��2�� ��3��

For g ∈
�n

i=0 �wi
and d ∈ �0� � � � � dim��wI�g���, define the classes

1

�dg �=

�
n�

i=0

w
−���g�wi�
i

�

· c1����wI�g��
�1��d ∈ Ad����wI�g�����

The first result concerns the vector space decomposition of A�
orb���w��.

Proposition 3.2 (Mann, 2008, Proposition 3.9 & Corollary 3.11).

(1) The structure of graded vector space of A�
orb���w�� is:

A�
orb���w�� =

�

g∈
�n

i=0 �wi

A�−a�g�����wI�g�����

(2) The dimension of the vector space A�
orb���w�� is �w� = w0 + · · · + wn.

1The normalization factor differs from Mann (2008).
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508 BOISSIÈRE ET AL.

(3) The set � �= ��dg � g ∈
�n

i=0 �wi
� d ∈ ��0� #I�g�− 1��� is a basis of A�

orb���w��.
The orbifold degree of �dg is deg��

d
g � = d + a�g�.

The second result expresses the orbifold Poincaré duality, denoted by �−�−�,
in the basis �. We set �w� �=

�n
i=0 wi.

Proposition 3.3. Let �d0g0 and �d1g1 be two elements of the basis �.

(1) If g0g1 �= 1, then ��d0g0 � �
d1
g1
� = 0.

(2) If g0g1 = 1, then:

�
�d0g0 � �

d1
g1

�
=






1

�w�
if deg

�
�d0g0

�
+ deg

�
�d1g1

�
= n

0 otherwise.

Proof. The vanishings come from the definition of the orbifold Poincaré duality.
Assume that deg��d0g0 �+ deg��

d1
g−10

� = n. According to Mann (2008, Proposition 3.13),

one has

�
�d0g0 � �

d1
g−10

�
=

�
n�

i=0

w
−���g0�wi�−���g−10 �wi�

i

�
�

i∈I�g0�

w−1
i �

so Formula (2.1) gives ��d0g0 � �
d1
g−10

� = 1
�w�

. �

The third result computes the orbifold cup product, denoted ∪, in the basis �.

Proposition 3.4. Let �d0g0 and �d1g1 be two elements of the basis �. It is

�d0g0 ∪ �d1g1 = �dg0g1 �

with d �= deg��d0g0 �+ deg��d1g1 �− a�g0g1�.

Remark 3.5. By Proposition 3.2 and Formula (2.11), one has

d = a�g0�+ a�g1�− a�g0g1�+ d0 + d1 ≥ 0�

The formula for the cup product makes sense only with the following conventions:

(i) If g0g1 �
�n

i=0 �wi
, then �dg0g1 = 0. The reason is that the component of the inertia

stack corresponding to g0g1 ∈ � is empty.
(ii) If d > dim��wI�g0g1�

�, then �dg0g1 = 0.

Proof of Proposition 3.4. Set K�g0� g1� �= J�g0� g1�
�
�I�g0g1�\�I�g0� ∩ I�g1���.

According to Mann (2008, Corollary 3.18), we have

�d0g0 ∪ �d1g1 =

�
n�

i=0

w
−���g0wi��−���g1�wi�+���g0g1�wi�
i ·

�

i∈K�g0�g1�

wi

�

· �dg0g1 �

Formula (2.10) gives the result. �
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A MODEL FOR THE ORBIFOLD CHOW RING OF ��w� 509

4. THE MODEL

4.1. Construction of the Model

Let w �= �w0� � � � � wn� be a sequence of weights. Consider the group ��w� of
�w�th roots of the unity, and take � �= exp�2i�/�w�� as primitive �w�th root. The set
� �= �1� �� � � � � ��w�−1� is a basis of the group algebra ����w��, and we define

deg��j� �= j − �w��s�j� ∀j = 0� � � � � �w� − 1�

Example 4.1. Take again w = �1� 2� 3�. The degrees in the group �6 are

�6 1 � �2 �3 �4 �5

deg 0 1 2 1 1 1

Lemma 4.2.

(1) For all j, 0 ≤ deg��j� ≤ n.
(2) For all j� k, deg��j+k� ≤ deg��j�+ deg��k�.

Proof. (1) By definition, kmin�s�j�� ≤ j ≤ kmax�s�j��. Formulas (2.6) and (2.7) give

0 ≤ a�s�j�−1� ≤ deg��j� ≤ n− a�s�j�� ≤ n�

(2) Set g0 �= s�j� and g1 �= s�k�. Then

j = kmin�g0�+ d0 with d0 ≤ #I�g0�− 1�

k = kmin�g1�+ d1 with d1 ≤ #I�g1�− 1�

Using Formulas (2.5) and (2.6) one gets

deg��j� = j − �w���g0� = kmin�g0�+ d0 − �w���g0� = a�g−10 �+ d0�

deg��k� = k− �w���g1� = kmin�g1�+ d1 − �w���g1� = a�g−11 �+ d1�

One computes with Formula (2.6)

j + k = kmin�g0�+ d0 + kmin�g1�+ d1

= a�g−10 �+ �w���g0�+ a�g−11 �+ �w���g1�+ d0 + d1

= deg��j�+ deg��k�+ �w����g0�+ ��g1���

Setting d �= deg��j�+ deg��k�− a��g0g1�
−1� and using that

��g0�+ ��g1� ≡ ��g0g1� mod1�

one gets:

�j · �k = �j+k = �kmin�g0g1�+d� (4.3)
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510 BOISSIÈRE ET AL.

(a) If kmin�g0g1�+ d ≤ �w� − 1, then

deg��j+k� = kmin�g0g1�+ d − �w��s�kmin�g0g1�+ d�

= �w����g0g1�− �s�kmin�g0g1�+ d��+ deg��j�+ deg��k��

By Formula (2.8) one has ��g0g1� ≤ ��kmin�g0g1�+ d�, hence the result.
(b) If kmin�g0g1�+ d ≥ �w�, then

deg��j+k� = kmin�g0g1�+ d − �w� − �w��s�kmin�g0g1�+ d − �w��

= �w����g0g1�− 1− �s�kmin�g0g1�+ d − �w���+ deg��j�+ deg��k�

and ��g0g1� ≤ 1, hence the result. �

Remark 4.4. Looking at (2.4), one observes that if wi divides �w� for all i, then
�w��s�j� ∈ � for all j so deg��j� is an integer for all j. In this case, the orbifold ��w�

is Gorenstein.

For any element z �=
�

�∈��w�
z� · �∈����w��we set deg�z� �= max�deg � � z� �= 0�.

Introduce the increasing filtration

Fu����w�� �= �z ∈ ����w�� � deg�z� ≤ u� for u ∈ �0� n� ∩��

By Lemma 4.2, the natural ring structure on ����w�� is compatible with this filtration

Fu����w�� · F
v����w�� ⊂ Fu+v����w���

Set F<u����w�� �= �z ∈ ����w�� � deg�z� < u�. The induced product on the graded
space gr�F����w�� �=

�
u∈�0�n�∩� Fu����w��/F

<u����w�� defines a structure of graded
ring denoted ∪. For �1� �2 ∈ ��w�, it is

�1 ∪ �2 =

�
�1�2 if deg��1�+ deg��2� = deg��1�2�

0 otherwise.

Example 4.5. Take again w = �1� 2� 3�. The ring structure on gr�F���6� is given
by the following table

gr�F���6� 1 � �2 �3 �4 �5

1 1 � �2 �3 �4 �5

� � �2 0 0 0 0
�2 �2 0 0 0 0 0
�3 �3 0 0 0 0 �2

�4 �4 0 0 0 �2 0
�5 �5 0 0 �2 0 0
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A MODEL FOR THE ORBIFOLD CHOW RING OF ��w� 511

We define an integral
�
� gr�F����w�� → � by setting for j ∈ ��0� �w� − 1��

�
�j =






1

�w�
if j = n

0 otherwise

and extending by linearity. The reason is that the only j such that s�j� = 1
(nontwisted sector) and deg��j� = n is j = n. We further define a pairing ��−�−��

on gr�F����w�� by setting for �1� �2 ∈ ��w�

���1� �2�� �=
�

�1 ∪ �2

and extending by bilinearity.

Example 4.6. Take again w = �1� 2� 3�. The matrix of the pairing ��−�−�� in the
basis � is












0 0 1/6 0 0 0

0 1/6 0 0 0 0

1/6 0 0 0 0 0

0 0 0 0 0 1/6

0 0 0 0 1/6 0

0 0 0 1/6 0 0












�

Lemma 4.7. The pairing ��−�−�� is perfect.

Proof. As in the proof of Lemma 4.2, for �j = �kmin�g0�+d0 with g0 = s�j� and
d0 ≤ #I�g0�− 1, set k �= kmin�g

−1
0 �+ d1 with d1 �= #I�g0�− 1− d0. Then by Formula

(4.3), �j · �k = �n with deg��n� = n and by Formula (2.2)

deg��j�+ deg��k� = a�g0�+ a�g−10 �+ #I�g0�− 1 = n

so ���j� �k�� = 1
�w�

. �

As a consequence, the structure �gr�F����w���∪� ��−�−��� is a graded Frobenius
algebra, as �A�

orb���w���∪� �−�−�� is.

4.2. Isomorphism with the Orbifold Chow Ring

Define a linear map � � A�
orb���w�� → gr�F����w�� by setting

���dg � �= �kmin�g
−1�+d

and extending by linearity.
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Example 4.8. Take again w = �1� 2� 3�. The map � is given by

���01� = 1� ���11� = �� ���21� = �2�

���0j � = �5� ���0−1� = �4� ���0j2� = �3�

Theorem 4.9. The map � � A�
orb���w�� → gr�F����w�� is an isomorphism of graded

Frobenius algebras.

Proof. Step 1. � is an isomorphim. By definition of kmin�g� and since d≤ #I�g�− 1,
as g and d vary, the numbers kmin�g

−1�+ d are all distinct and cover ��0� �w� − 1��,
so the map � maps the basis � onto the basis �.

Step 2. � is graded. It is

deg��kmin�g
−1�+d� = kmin�g

−1�+ d − �w��s�kmin�g
−1�+ d�

= kmin�g
−1�+ d − �w���g−1� by Formula �2�5�

= a�g�+ d by Formula �2�6�

= deg��dg ��

Step 3. � is a ring morphism. We use notation of Proposition 3.4 and Step 2.
The same computation as in Formula (4.3) gives

�kmin�g
−1
0 �+d0 · �kmin�g

−1
1 �+d1 = �kmin��g0g1�

−1�+d� (4.10)

i. Assume that �g0g1�
−1 ∈

�n
i=0 �wi

and d ≤ dim��wI�g0g1�
�. Then Formula

(4.10) means

���d0g0 � ·���
d1
g1
� = ���dg0g1� = ���d0g0 ∪ �d1g1 ��

Since � is graded, this implies

���d0g0 � ∪���d1g1 � = ���d0g0 ∪ �d1g1 ��

ii. Assume that �g0g1�
−1 �

�n
i=0 �wi

or d > dim��wI�g0g1�
�. Since

deg��kmin�g
−1
0 �+d0�+ deg��kmin�g

−1
1 �+d1� = deg��d0g0 �+ deg��d1g1 � = a�g0g1�+ d�

we have to show that deg��kmin��g0g1�
−1�+d� < a�g0g1�+ d.

• If kmin��g0g1�
−1�+ d ≤ �w� − 1, then

deg��kmin��g0g1�
−1�+d� = kmin��g0g1�

−1�+ d − �w��s�kmin��g0g1�
−1�+ d�

= a�g0g1�+ d + �w����g0g1�
−1�− �w��s�kmin��g0g1�

−1�+ d��

In both cases d > #I�g0g1�− 1 or �g0g1�
−1 �

�n
i=0 �wi

, one has by Formula (2.8)
�s�kmin��g0g1�

−1�+ d� > ���g0g1�
−1�, hence the result.
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• If kmin��g0g1�
−1�+ d ≥ �w�, then

deg��kmin��g0g1�
−1�+d� = kmin��g0g1�

−1�+ d − �w�

− �w��s�kmin��g0g1�
−1�+ d − �w��

= a�g0g1�+ d + �w����g0g1�
−1�− �w�

− �w��s�kmin��g0g1�
−1�+ d − �w���

Since ���g0g1�
−1� < 1+ �s�kmin��g0g1�

−1�+ d − �w��, one gets the result.

Step 4. � is compatible with the pairings. We use notation of Proposition 3.3.

a) If g0g1 �= 1, then s�kmin��g0g1�
−1�+ d� �= 1 so using Formula (4.3), we see that

�����d0g0 �����
d1
g1
��� = 0 = ��d0g0 � �

d1
g1
�.

b) If g0g1 = 1, then d = deg��d0g0 �+ deg��d1g1 � and deg��kmin��g0g1�
−1�+d� = d so if d<n,

then �����d0g0 �����
d1
g1
��� = 0 = ��d0g0 � �

d1
g1
� and if d = n, then �����d0g0 �����

d1
g1
��� =

1
�w�

= ��d0g0 � �
d1
g1
�. �

Example 4.11. Take again w = �1� 2� 3�. The orbifold Chow ring of ��1� 2� 3� can
be pictured as follows:

Example 4.12. Take w = �1� � � � � 1� (n+ 1 times). Then gr�F���n+1� � ��h�/hn+1

where h has degree one. On the other hand, ��w� � �n
� and ���w� = �n

� so we
recover the well-known fact

A�
orb���1� � � � � 1�� � gr�F���n+1� � ��h�/hn+1 � A���n

���
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