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Abstract. We discuss the behavior of Landau-Ginzburg models for toric orbifolds near the
large volume limit. This enables us to express mirror symmetry as an isomorphism of Frobenius
manifolds which aquire logarithmic poles along a boundary divisor. If the toric orbifold admits
a crepant resolution we construct a global moduli space on the B-side and show that the
associated tt∗-geometry exists globally.
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1. Introduction

The present paper deals with classical Hodge-theoretic mirror symmetry for smooth toric Deligne-
Mumford stacks. One of the first mathematical incarnations of this type of mirror symmetry
was a theorem of Givental identifying a solution (the so-called J-function) of the Quantum
D-module of a (complete intersection inside a) smooth toric variety with a generalized hyper-
geometric function (the I-function). This has laid the foundation to express mirror symmetry
as an equivalence of differential systems matching the Quantum D-module on the A-side with
certain (Fourier-Laplace transformed) Gauß-Manin systems coming from an algebraic family of
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maps (the Landau-Ginzburg model) on the B-side. An analytic proof of this fact using oscillat-
ing integrals was given by Iritani in [Iri09]. A purely algebraic proof was given in [RS15] where
it was also shown that the Frobenius manifold an the A-side, which encodes the big quantum
cohomology, is isomorphic to a Frobenius manifold on the B-side which comes from the Landau-
Ginzburg model. The construction of Frobenius manifolds is a classical subject in singulartity
theory. The first examples arose from the work of K.+ M. Saito on the base space of a semi-
universal unfolding and later it was shown by Sabbah partly with Douai [DS03],[DS04],[Sab06]
that these results carry over to an algebraic map which satisfies certain tameness assumptions.
However, their construction is not unique in the sense that it depends on the choice of a good
basis, which provides a solution to a Birkhoff problem, and on the choice of a primitive section.
To circumvent this problem a careful analysis of the Fourier-Laplace transformed Gauß-Manin
system and its degeneration along a boundary divisor, which contains the large volume limit, was
carried out in [RS15] in the case of Landau-Ginzburg models which serve as mirror partners for
smooth nef toric varieties. Beyond the smooth case partial results for weighted projective spaces
were obtained in [DM13] where mirror symmetry is proven as an isomorphism of logarithmic
Frobenius manifolds without pairing.

In this paper we prove mirror symmetry for smooth toric Deligne-Mumford stacks, satisfying
a positivity condition, as an isomorphism of logarithmic Frobenius manifolds, which general-
izes the theorem obtained in [RS15] for smooth nef toric varieties. In order to ensure a good
behavior of the connection and the pairing along the boundary divisor a careful choice of the
coordinates on the complexified Kähler moduli space is needed. Since the Fourier-Laplace trans-
formed Gauß-Manin system is a cyclic D-module, the generator is a canonical candidate for the
primitve section. The Birkhoff problem is solved at the large volume limit where we identify the
fiber of the holomorphic bundle with the orbifold cohomology of the toric Deligne-Mumford stack.

The notion of tt∗ geometry was introduced by Cecotti and Vafa in their study of moduli spaces of
N = 2 supersymmetric quantum field theories. Hertling [Her03] formalized this structure under
the name of pure and polarized TERP-structures and showed that the base space of a semi-
universal unfolding of an isolated hypersurface singularity carries such a structure. In the case of
a tame algebraic map, a theorem of Sabbah [Sab08] shows that the corresponding Fourier-Laplace
transformed Gauß-Manin system underlies a pure and polarized TERP-structure. In [RS15] this
was used to show that a Zariski open subset of the base space of the Landau-Ginzburg model
carries a pure and polarized TERP-structure. Using mirror symmetry this induces tt∗ geome-
try on the quantum D-module. Iritani [Iri09] gave an intrinsic description of the corresponding
real structure on the A-side using K-theory. In this paper the result of [RS15] is generalized
to toric orbifolds. If the toric orbifold X admits a crepant resolution Z we construct a global
base space which contains two limit points corresponding to the large volume limit points of X
and Z respectively. We prove that there exists tt∗-geometry on the whole moduli space which,
when restricted to some analytic neighborhood of the large volume limits, is isomorphic to the
tt∗-geometry coming from the quantum cohomology of X resp. Z. The result here is in the
sprit of Y.Ruan’s Crepant Transformation conjecture which has stimulated a lot of research:
[BMP11, BMP09, Per07, BG09b, BG09a, BG09c, BG08, BGP08, CLLZ14, CLZZ09, CIT09,
Coa09, CR13, Rua06, Iwa08, LLW11, LLW13, LLQW14].

Shortly after finishing this paper we learned that Coates-Corti-Iritani-Tseng [CCIT16] also stud-
ied Hodge-theoretic mirror symmetry for toric orbifolds. While their result is broader in the
sense that firstly they allow orbifolds with generic stabilizer, secondly they do not need the
nef assumption and thirdly they construct a mirror Landau-Ginzburg model even for the big
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orbifold quantum cohomology, their construction is inherently local on the complexified Kähler
moduli space since they use a formal version of the Gauß-Manin system in the non-nef case and
an analytic version of the Gauß-Manin in an analytic neighborhood of the large volume limit.
The Gauß-Manin system which we construct in this paper is defined on the whole complexified
Kähler moduli space and is algebraic. These two facts are essential in the proof of the existence
of tt∗-geometry on the whole Kähler moduli space.

We give a short overview of the contents of this paper: In section 2 we recall some standard facts
on toric Deligne-Mumford stacks. An import ingredient in the construction of the mirror Landau-
Ginzburg model is the extended stacky fan of Jiang [Jia08]. This enables us to introduce the
extended Picard group and the extended Kähler cone which are needed to construct coordinates
on the base space of the mirror Landau-Ginzburg model. In section 3 we review the notion
of the Fourier-Laplace transformed Gauß-Manin system and cite some results of [RS15],[RS17]
which identifies the FL-Gauß-Manin system of a family of Laurent polynomials with a FL-
transformed GKZ-system for which an explicit description as a cyclic D-module is available. In
the fourth section we use the results of the previous section to calculate the FL-transformed
Gauß-Manin system corresponding to the Landau-Ginzburg model (cf. Proposition 4.4). As a
next step we show that the FL-transformed Brieskorn lattice is coherent over the tame locus of
the Landau-Ginzburg model (Theorem 4.10). We then analyze the degeneration behavior along
a boundary divisor which contains the large volume limit. Finally we prove that there exists a
canonical germ of a logarithmic Frobenius manifold associated to the Landau-Ginzburg model.
Section 5 reviews orbifold quantum cohomology and the Givental connection. We show that the
big quantum cohomology gives rise to a logarithmic Frobenius manifold (Proposition 5.7). In
section 6, using a Givental-style mirror theorem of Coates, Corti, Iritani and Tseng [CCIT15], we
combine the last two sections to express mirror symmetry for toric Deligne-Mumford stacks as an
isomorphism of logarithmic Frobenius manifolds (Theorem 6.6). In section 7 we consider a toric
orbifold X admitting a crepant resolution Z and construct a global Landau-Ginzburg model. We
prove that there exists a pure and polarized variation of TERP structures on the base spaceM
of this model which gives the tt∗-geometry of the corresponding quantum D-modules in different
neighborhoods ofM.

2. Some toric facts

Let G be a free abelian group. We associate to it the group ring C[G] which is generated by
the elements χg for g ∈ G. Its maximal spectrum Specm(C[G]) = Hom(G,C∗) is naturally a
commutative algebraic group (i.e. a torus). Let a : G→ H be a group homomorphism between
the free abelian groups G and H. This induces a ring homomorphism

φa : C[G] −→ C[H] ,

χg 7→ χa(g)

and a morphism of algebraic groups

ψa : Specm(C[H]) −→ Specm(C[G]) .

Choose a basis g1, . . . , gn resp. h1, . . . , hm of G resp. H. The homomorphism a is then given
by a matrix A = (aij) with a(gj) =

∑m
j=1 aijhi. The bases also determine coordinates xj = χgj

resp. yi = χhi which identifies Specm(C[G]) with (C∗)n and Specm(C[H]) with (C∗)m. In these
coordinates the map ψa is given by

(C∗)m −→ (C∗)n ,
(y1, . . . , ym) 7→ (ya1 , . . . , yan)
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where yaj :=
∏n
i=1 y

aij
i .

2.1. Toric Deligne-Mumford stacks. A toric Deligne-mumford stack is constructed by a so-
called stacky fan which was introduced by [BCS05]. A stacky fan

Σ = (N,Σ, a)

consists of
• a finitely generated abelian group N of rank d,
• a complete simplicial fan Σ in NQ := N ⊗Z Q, where we denote by Σ(k) the set of
k-dimensional cones of Σ and by {ρ1, . . . , ρm} the rays of Σ,
• a homomorphism a : Zm → N given by elements a1, . . . am of N with ai ∈ ρi and
a(ei) = ai, where e1, . . . , em is the standard basis of Zm.

Assumption: In the rest of the paper we will assume that N is torsion-free.

If we choose a basis v1, . . . , vd of N the map a is given by a matrix A = (aki).

The morphism a gives rise to a triangle in the derived category of Z-modules

Zm a−→ N −→ Cone(a)
+1−→ .

We apply the derived functor RHom(−,Z) and consider the associated long exact sequence

(2.1) 0 −→ N? a?−→ (Zm)? −→ Ext1(Cone(a),Z) −→ 0 ,

where the injectivity of a? follows from the fact that the image of a has finite index in N and the
surjectivity of (Zm)? −→ Ext1(Cone(a),Z) follows from Ext1(N,Z) = 0, i.e. from our assump-
tion that N is free.

Applying Hom(−,C∗) to the exact sequence (2.1) gives the short exact sequence

0 −→ G
ψa−→ (C∗)m −→ Hom(N?,C∗) −→ 0 ,

where G := Hom(Ext1(N,Z),C∗). Here we have used the fact that C∗ is a divisible group, hence
Hom(−,C∗) is exact.

The set of anti-cones is defined to be

A :=

{
I ⊂ {1, . . . ,m} |

∑
i/∈I

Q≥0ρi is a cone inΣ

}
.

Each I ∈ A gives rise to a subvariety CI ⊂ Cm given by {(x1, . . . , xm) ∈ Cm | xi = 0 for i /∈ I}.
We set

UA := Cm \
⋃
I 6∈A

CI .

The toric Deligne-Mumford stack associated to this data is the following quotient stack:

X := X (Σ) := [UA/G] ,

where G acts on UA via ψa.

For σ ∈ Σ we set

(2.2) Iσ := {i ∈ {1, . . . ,m} | ai ∈ σ} .
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and define
Box(σ) = {a ∈ N | a =

∑
ai∈σ

riai, 0 ≤ ri < 1} .

We set
Box(Σ) =

⋃
σ∈Σ

Box(σ) .

The inertia stack IX (Σ) is the fiber product taken over the diagonal maps X → X × X . Its
components are indexed by the set Box(Σ):

IX (Σ) =
⊔

v∈Box(Σ)

X(v) ,

where X(v) is the toric orbifold X (Σ/σ(v)) with σ(v) being the smallest cone in Σ which contains
v (cf. [BCS05] Section 4).

We have the following description of the orbifold cohomology ring of X . As a Q-vector space it
is isomorphic to the direct sum of the cohomology groups of the components of its inertia stack:

H∗orb(X ,Q) '
⊕

v∈Box(Σ)

H∗−2iv (X(v),Q) ,

where iv :=
∑
ri for v ∈ Box(Σ). The orbifold cohomology of X carries a product which makes

H∗orb(X ,Q) into a graded algebra. A combinatorial description in terms of the fan has been
given by Borisov, Chen and Smith [BCS05] and, in the semi-projective case, by Jiang and Tseng
[JT08]. We equip

Q[N ] :=
⊕
c∈N

Qχc

with the product

χc1 · χc2 :=

{
χc1+c2 if there exists σ ∈ Σ such that c1, c2 ∈ σ,
0 otherwise .

Let c ∈ N and σ(c) be the minimal cone containing c. Then c can be uniquely expressed as

c =
∑

ai∈σ(c)

riai .

We define
deg(χc) := deg(c) :=

∑
ri .

Using this graduation Q[N ] becomes a graded ring. By [BCS05] we have the following isomor-
phism of Q-graded rings:

(2.3) H∗orb(X ,Q) ' Q[N ]

{
∑m
i=1 κ(ai)χai | κ ∈ N?}

.

Denote by PL(Σ) the free Z-module of continuous piece-wise linear functions on Σ having integer
values onN . We have the natural embedding ofN? = Hom(N,Z) into PL(Σ), where the cokernel
of this map is isomorphic to the Picard group of the underlying coarse moduli space X := X(Σ):

(2.4) 0→ N? → PL(Σ)→ Pic(X) −→ 0 .
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We have isomorphisms

0 // N? ⊗Q // PL(Σ)⊗Q // Pic(X)⊗Q // 0

0 // N? ⊗Q //

'

OO

Qm

'

OO

// H2(X,Q) //

'

OO

0

where the image of the standard generator Di ∈ Qm in PL(Σ) ⊗ Q is the piece-wise linear
function having value 1 on ai and 0 on aj for j ∈ {1, . . . ,m} \ {i}. We denote the image of Di

in Pic(X)⊗Q by [Di].

2.2. Extended stacky fans. Toric Deligne-Mumford stacks can also be described by a so-called
extended stacky fan (cf. [Jia08]). To the datum of a stacky fan Σ = (N,Σ, a) one adds a map
Ze → N and writes S = {am+1, . . . , am+e} for the image of the standard basis. By abuse of
notation we will call the following map still a:

a : Zm+e −→ N ,

ei 7→ a(ei) = ai for i = 1, . . .m+ e .

The S-extended stacky fan Σe = (N,Σ, a) is given by the free group N , the fan Σ and the map
a : Zm+e → N .

Assumption: In the following we will choose am+1, . . . , am+e in such a way so that a is surjective.

We denote by L the kernel of a. This gives us as above the two exact sequences

0 −→ L −→ Zm+e a−→ N −→ 0 ,(2.5)

0 −→ N? −→ (Zm+e)? −→ L? −→ 0 .(2.6)

We denote byD1, . . . , Dm+e the standard basis of (Zm+e)?, i.e. Di(ej) = δij and by [D1], . . . , [Dm+e]
the images of D1, . . . , Dm+e in L?.

Applying the exact functor Hom(−,C∗) to the sequence 2.6 gives a map

ψa : Ge → (C∗)m+e,

where Ge := HomZ(L?,C∗). We set

UeA := UA × (C∗)e ,
then Ge acts on UeA via ψa and the quotient stack

[UeA/Ge]
is isomorphic to the stack X (Σ) by [Jia08].

Remark 2.7. Given a stacky fan Σ = (N,Σ, a) there exists a “canonical” choice of an extended
stacky fan Σe. Let Gen(σ) be the subset of Box(σ) of elements which are primitive in σ ∩ N ,
i.e. which can not be generated by other elements in the semigroup σ ∩ N and set Gen(Σ) :=⋃
σ∈ΣGen(σ).

In the following we will always choose

S = Gen(Σ)

and we will set
n := m+ e
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and G := {a1, . . . , am} ∪Gen(Σ). Notice that {a1, . . . , am} ∩Gen(Σ) = ∅, hence the cardinality
of G is n.

This choice of an extended stacky fan will allow us to give a different description of the orbifold
cohomology ring which will be very useful for our purposes.
We introduce for every ai ∈ G a formal variable Di. For a top-dimensional cone σ ∈ Σ(d) define
in C[D1, . . . ,Dn] the ideal

J (σ) :=

〈 ∏
li>0,ai∈σ

Dli
i −

∏
li<0,ai∈σ

D−lii |
∑
ai∈σ

liai = 0, li ∈ N

〉
.

We call relations l = (l1, . . . , ln) of such type cone relations. The ideal

J (Σ) :=
∑

σ∈Σ(d)

J (σ)

is called the cone ideal of Σ.
Let K(Σ) be the ideal which is generated by

Ek :=

m∑
i=1

akiDi for k = 1, . . . , d ,

where aki is the k-th coordinate of ai ∈ Zd.

We call I ⊂ {1, . . . , n} a generalized primitive collection if the set {ai | i ∈ I} is not con-
tained in a cone of Σ and if any proper subset of {ai | i ∈ I} is contained in some cone of Σ. We
denote by GP(Σ) the set of generalized primitive collections.

The orbifold cohomology of X can then be expressed in the following way.

Lemma 2.8 ([TW12] Lemma 2.4). Let deg(Di) = deg(ai) for i = 1, . . . , n, then we have an
isomorphism of graded C-algebras

H∗orb(X ) ' C[D1, . . . ,Dn]

J (Σ) +K(Σ) + 〈
∏
i∈I Di | I ∈ GP(Σ)〉

,

which sends Di to χai for i = 1, . . . n.

Remark 2.9. We would like to remind the reader that the ordinary cohomology ring of the
underlying coarse moduli space X is given by

H∗(X,C) ' C[D1, . . . ,Dm]

K(Σ) + 〈
∏
i∈I Di | I ∈ P(Σ)〉

where P(Σ) is the set of primitive collections. Here a collection I ⊂ {1, . . . ,m} is primitive if
the set {ai | i ∈ I} does not lie a cone of Σ but any proper subset does.

2.3. The extended Picard group. We have the following commutative diagram (cf. (2.4))

0 // N? // (Zn)? // L? // 0

0 // N? // PL(Σ) //

Θ

OO

Pic(X) //

OO

0
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where the map PL(Σ)→ (Zn)? is given by

Θ : PL(Σ) −→ (Zn)? ,(2.10)
ϕ 7→ (ϕ(a1), . . . , ϕ(an)) .

We want to determine the image of this map. For this we consider the distinguished relations

(2.11) am+k −
∑
i∈Iσ

rkiai = 0 for k = 1, . . . , e ,

which give elements l1, . . . , le ∈ L⊗Q.

Lemma 2.12. The image of Θ is as saturated subgroup of (Zn)?, i.e.

(Θ(PL(Σ))⊗Z Q) ∩ (Zn)? = Θ(PL(Σ)) .

Proof. Denote by K the kernel of the map

(Zn)? −→ Qe

x 7→ (x(l1), . . . , x(le))

In order to show the claim it is enough to show the following equality

K = Θ(PL(Σ)) .

since a kernel is always saturated. It is clear that Θ(PL(Σ)) ⊂ K since a function in PL(Σ)
is linear on each cone σ ∈ Σ. Now let u ∈ K and let σ ∈ Σ(d) be a maximal cone. Choose a
Z-basis aj1 , . . . , ajd in the set Gen(σ) ∪ {aj | aj ∈ σ}. The values u(aj1), . . . , u(ajd) determine
an element mσ ∈ N?. Since u ∈ K we get u(ai) = mσ(ai) for alle ai ∈ σ with j = 1, . . . , n.
Repeating this for any cone we get an element in PL(Σ) whose image under Θ is u. �

We denote by PL(Σe) the full sublattice of (Zn)? generated by Θ(PL(Σ)) and the elements
Dm+1, . . . , Dm+e = Dn and call its image in L? the extended Picard group Pice(X).

We get an exact sequence of Z-free modules

(2.13) 0 −→ N? −→ PL(Σe) −→ Pice(X) −→ 0 .

The map Θ induces a map

(2.14) θ : Pic(X) −→ Pice(X).

Notice that the images of [Di] ∈ Pic(X)⊗Q for i = 1, . . . ,m in Pice(X)⊗Q are given by

θ([Di]) = [Di] +

e∑
k=1

rki[Dm+k] ,

which follows from the formulas 2.10 and 2.11.

2.4. The extended Kähler cone. In this section we follow [Iri09]. Inside PL(Σ) we consider
the cone of convex functions CPL(Σ). It has non-empty interior since X is projective. We denote
its Q≥0-span in H2(X,Q) by K. Consider now the cone CPL(Σe) generated by Θ(CPL(Σ)) and
Dm+1, . . . , Dm+e. We denote the Q≥0-span of Θ(CPL(Σ)) resp. CPL(Σe) in L?⊗Q by K resp.
Ke and call it the Kähler resp. extended Kähler cone.
We denote the image of anti-canonical divisor −KX of X in Pic(X)⊗Q ' H2(X,Q) by ρ. It is
given by ρ = [D1] + . . . [Dm]. The toric variety X is weak Fano if ρ ∈ K. Consider the following
class in L?

ρ := [D1] + . . .+ [Dm+e] .
8



Later we will impose the following condition

ρ ∈ Ke .
There is the following characterization of this condition

Lemma 2.15. [Iri09, Lemma 3.3] We have ρ ∈ Ke iff ρ ∈ K and deg(ai) ≤ 1 for i = m +
1, . . . ,m+ e.

Proof. The element ρ can be expressed in the following way

ρ = [D1] + . . .+ [Dm+e] = θ([D1]) + . . .+ θ([Dm]) +

e∑
k=1

(1−
m∑
i=1

rki)[Dm+k]

= θ([D1]) + . . .+ θ([Dm]) +

e∑
k=1

(1− deg(am+k))[Dm+k]

∈ K ⊕
e⊕

k=1

Q[Dm+k] .

The last term is in Ke iff deg(am+k) ≤ 1 for k = 1, . . . , e. �

Notice that the degree function deg gives rise to a piece-wise linear function ϕ which is given by

(2.16) ϕ(ai) = 1 for i = 1, . . . ,m .

This piece-wise linear function corresponds to the anti-canonical divisor. If we assume that X is
nef (i.e. ρ ∈ K) then ϕ is a convex function.

Remark 2.17. It follows from Lemma 2.8 and Lemma 2.15 that for the choice S = Gen(Σ) we
have an isomorphism H≤2

orb(X ,Q) ' L? ⊗Q.

We now introduce the so-called extended Mori cone. Set

Ae := {I ∪ {m+ 1, . . . ,m+ e} | I ∈ A}
and

K := {d ∈ L⊗Q | {i ∈ {1, . . . ,m+ e} | 〈Di, d〉 ∈ Z} ∈ Ae} ,
Keff := {d ∈ L⊗Q | {i ∈ {1, . . . ,m+ e} | 〈Di, d〉 ∈ Z≥0} ∈ Ae} .

Notice that the lattice L ⊂ K acts on K.
Denote by d·e, b·c and {·} the ceiling, floor and fractional part of a real number.

Lemma 2.18 ([Iri09, Section 3]). The map

K/L −→ Box(Σ) ,

d 7→ v(d) :=

m+e∑
i=1

d〈Di, d〉eai

is bijective.

Proof. We first notice that
∑m+e
i=1 d〈Di, d〉eai ∈ N . From the definition of K and the exact

sequence 2.5 we get

v(d) =

m+e∑
i=1

({−〈Di, d〉}+ 〈Di, d〉)ai =

m+e∑
i=1

{−〈Di, d〉}ai =
∑
ai∈σ
{−〈Di, d〉}ai(2.19)

for some σ. This shows v(d) ∈ Box(σ). From the formula 2.19 we easily see that the map d 7→
v(d) factors through K→ K/L. Choose v ∈ Box(Σ). We can express v either as v =

∑
ai∈σ niai
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with ni ∈ N since S = Gen(Σ) or as v =
∑
i∈Iσ riai ∈ Box(Σ) with ri ∈ [0, 1) (cf. (2.2) for the

definition of Iσ). The equation
∑
ai∈σ niai−

∑
i∈Iσ riai = 0 gives rise to an element in K ⊂ L⊗Q,

this shows the surjectivity. In order to show injectivity let d, d′ ∈ K with v(d) = v(d′). This
means there exists a σ, σ′ ∈ Σ such that∑

ai∈σ
{−〈Di, d〉}ai = v(d) = v(d′) =

∑
ai∈σ′

{−〈Di, d〉}ai

since both cones are simplicial we find a cone σ′′ ⊂ σ ∩ σ′ such that

v(d) =
∑
ai∈σ′′

{−〈Di, d〉}ai =
∑
ai∈σ′′

{−〈Di, d
′〉}ai = v(d′)

and therefore {−〈Di, d〉} = {−〈Di, d
′〉} for all i = 1, . . .m + e. Hence {〈Di, d − d′〉} = 0 and

there fore d− d′ ∈ L. This shows the injectivity. �

Denote by Pice(X)? ⊂ L⊗Q the lattice dual to the extended Picard group Pice(X) ⊂ L? which
gives the following short exact sequence of free Z-modules

(2.20) 0 −→ Pice(X)? −→ PL(Σe)∗ −→ N −→ 0 .

Lemma 2.21. There are the following inclusions

L ⊂ K ⊂ Pice(X)? .

Proof. The first inclusion follows from the fact that {1, . . . ,m + e} ∈ Ae. In order to prove
the second equation we notice that for each v ∈ Box(Σ) we can write v =

∑
ai∈σ niai =∑

i∈Iσ riai. Denote by dv ∈ L⊗Q the element in K ⊂ L⊗Q which corresponds to the relation∑
ai∈σ niai −

∑
i∈Iσ riai =. The proof of Lemma 2.18 shows that K is the union of the sets

dv + L for v ∈ Box(Σ). So in order to prove the second inclusion it is enough to show that
dv ∈ Pice(X)?. For this we need to check that L(dv) ∈ Z for every L ∈ Pice(X). Recall
that Pice(X) is the image of PL(Σe) ⊂ (Zn)? which in turn is generated by Θ(PL(Σ)) and
Dm+1, . . . , Dm+e. Take a lift ϕe = Θ(ϕ) +

∑m+e
i=m+1 tiDi =

∑m
i=1 ϕ(ai)Di +

∑m+e
i=m+1 tiDi of L in

PL(Σe). We have

L(dv) = ϕe(
∑
ai∈σ

niei −
∑
i∈Iσ

riei) =

m∑
i=1

niϕ(ai) +

m+e∑
i=m+1

tini − ϕ(
∑
i∈Iσ

riai) ∈ Z

since ϕ is integer-valued on N . �

3. Laurent polynomials and GKZ-systems

In this section we review some results from [RS15] and [RS17] concerning the relationship be-
tween (Fourier-Laplace-transformed) Gauß-Manin systems of families of Laurent polynomials
and (Fourier-Laplace-transformed) GKZ-systems.

Notation 3.1. We will first review some notations from the theory of algebraic D-modules. Let
X be a smooth algebraic variety over C of dimension d ≥ 1. We denote by DX the sheaf of alge-
braic differential operators and by DX = Γ(X,DX) its sheaf of global sections. Recall when X
is affine there is an equivalence of categories between D-modules on X which are quasi-coherent
as OX -modules and the corresponding DX -module of global sections. If M is a D-module on
X we will write M for its module of global sections. We denote by M(DX) the abelian cate-
gory of algebraic DX -modules and the abelian subcategory of (regular) holonomic DX -modules
by Mh(DX) (resp. Mrh(DX)). The full triangulated subcategory of Db(DX) which consists
of objects with (regular) holonomic cohomology is denoted by Db

h(DX) (resp. Db
rh(DX)). Let

f : X → Y be a map between smooth algebraic varieties and letM∈ Db(DX) and N ∈ Db(DY ).
10



The direct (resp. inverse) image functors are defined by f+M := Rf∗(DY←X
L
⊗ M) (resp.

f+N := DX→Y
L
⊗ f−1N ).

Let V ′ := Ct × X be a trivial vector bundle on X of rank one and denote by V = Cτ × X its
dual. Denote by can : V ′ ×X V → C the canonical pairing between its fibers.

Definition 3.2. Let L := OV′×XVe−can be the free rank one module with differential given by
the product rule. Denote by p1 : V ′×X V → V ′, p2 : V ′×X V → V the canonical projections. The
Fourier-Laplace transformation is defined by

FLX(M) := p2+(p+
1M

L
⊗ L) for M ∈ Db

h(DV′) .

Set z = 1/τ and denote by jτ : C∗τ ×X ↪→ Cτ ×X and jz : C∗τ ×X ↪→ V̂ := Cz ×X = P1
τ \ {τ =

0}×X the canonical embeddings. The partial, localized Fourier-Laplace transformation is defined
by

FLlocX (M) := jz+j
+
τ FLX(M) for M∈ Db

h(DV′) .

Set V̂ := Cz × Λ , where Λ = Cn with coordinates λ1, . . . , λn. Let A be a d × n integer matrix
with columns (a1, . . . , an) and entries aki for k = 1, . . . , d, i = 1, . . . , n and β = (β1, . . . , βd) ∈ Cd.
We denote by L ⊂ Zn the Z-submodule of relations among the columns A, i.e. (l1, . . . , ln) ∈ L
iff
∑
i liai = 0.

Definition 3.3. The Fourier-Laplace-transformed GKZ-system M̂
(β0,β)
A is the left DV̂ -module

DV̂ [z−1]/I, where I is the left ideal generated by the operators �̂l, Êk − βkz and Ê − β0z, which
are defined by

�̂l :=
∏
i:li<0

(z · ∂λi)−li −
∏
i:li>0

(z · ∂λi)li for l ∈ L ,

Ê := z2∂z +

m∑
i=1

zλi∂λi ,

Êk :=

m∑
i=1

akizλi∂λi .

We denote the corresponding DV̂ -module by M̂(β0,β)
A .

Let Y = (C∗)d, we define a related family of Laurent polynomials:

ϕA = (φA, pr2) : Y × Λ −→ V := Cλ0
× Λ ,

(y, λ1, . . . , λn) 7→ (−
n∑
i=1

λiy
ai , λ1, . . . , λn) .

The Gauß-Manin system is the zeroth cohomology of the direct image of the structure sheaf
OY×Λ in the category of D-modules:

H0(ϕA,+OY×Λ) .

We now consider the localized partial Fourier-Laplace transform of the Gauß-Manin system of
ϕA:

G+ := FLlocΛ H0(ϕA,+OY×Λ) .
11



Write G+ := H0(V̂ ,G+) for its module of global sections. Then there is an isomorphism of
DV̂ -modules (cf. e.g. [RS17, Lemma 3.4])

G+ ∼= H0
(

Ω•+dY×Λ/Λ[z±], d− z−1 · dyφA∧
)
,

where d is the differential in the relative de Rham complex Ω•Y×Λ/Λ.
The following result relates the localized FL-transform of the Gauß-Manin system of ϕA with a
certain FL-transformed GKZ-system.

Proposition 3.4. Assume R+A = Rd, then we have an isomorphism

G+ ' M̂(0,0)
A .

Proof. This follows from [RS17, Proposition 3.3] and the assumption. �

In the following we set M̂A := M̂(0,0)
A resp. M̂A := M̂ (0,0).

For certain parameters λ ∈ Λ the fibers of ϕA(·, λ) acquire singularities at infinity. Outside this
set the singularities of the D-module G+ are particularly simple.

Let Q be the convex hull of the set {a0 := 0, a1, . . . , an}:
Q := conv(0, a1, . . . , an) .

The volume of Q is denoted by
µ := vol(Q)

where the volume of a hypercube [0, 1]d is normailzed to d!.
Let Γ be a face of Q and denote by Y crit,(λ0,λ)

Γ the set

{(y1, . . . , yd) ∈ Y |
∑
ai∈Γ

λiy
ai = 0 ; yk∂yk(

∑
ai∈Γ

λiy
ai) = 0 for all k ∈ {1, . . . , d}} .

We say that the fiber ϕ−1
A (λ0, λ) has a singularity at infinity if there exists a proper face Γ of

the Newton polyhedron Q such that Y crit,(λ0,λ)
Γ 6= ∅. The set

∆∞A := {(λ0, λ) ∈ Cλ0
× Λ | ∃Γ 6= Q such that Y

crit,(λ0,λ)
Γ 6= ∅}

is called the non-tame locus of ϕA. Notice that ∆∞A is independent of λ0 since 0 lies in the
interior of Q, hence no proper face of Q contains 0. Denote the projection of ∆∞A to Λ by Λbad.
Let Λ∗ := Λ \ {λ1 · . . . · λn = 0} and define

Λ◦ := Λ∗ \ Λbad .

The following was proven in [RS17] Lemma 3.13:

Lemma 3.5. Consider M̂A as a DP1×Λ-module, where Λ is a smooth projective compactification
of Λ. Then M̂A is regular outside ({z = 0} × Λ) ∪ (P1

z × (Λ \ Λ◦)) and smooth on C∗z × Λ◦.

Next we want to consider natural lattices in M̂A. For this we need the notion of R-modules.

Definition 3.6. Let X be a smooth variety . Then the sheaf of (non-commutative) rings RCz×X
is by definition the OCz×X-subalgebra of DCz×X locally generated by z2∂z, z∂x1

, . . . , z∂xn , where
(x1, . . . , xn) are local coordinates on X.

Definition 3.7.

(1) Let I be the left ideal in RCz×Λ∗ generated by (�̂l) and (Êk)k=0,...,d (cf . Definition 3.3).
Write ∗

0M̂A for the cyclic R-module RCz×Λ∗/I.
12



(2) Consider the open inclusions Λ◦ ⊂ Λ∗ ⊂ Λ and define the DCz×Λ◦-module

◦M̂A :=
(
M̂A

)
|Cz×Λ◦

and the RCz×Λ◦-module

◦
0M̂A :=

(
∗
0M̂A

)
|Cz×Λ◦

.

We now list some properties of the R-module ◦0M̂A:

Proposition 3.8. [RS17, Proposition 3.18, Corollary 3.19]

(1) The OCz×Λ◦-module ◦
0M̂A is locally-free of rank µ.

(2) The natural map ◦
0M̂A → ◦M̂A which is induced by the inclusion RCz×Λ◦ → DCz×Λ◦ is

injective.

The so-called Fourier-Laplace transformed Brieskorn lattice of the FL-transformed Gauß-Manin
system G+ is given by the following RCz×Λ◦ -module:

H0
(

Ω•+dY×Λ◦/Λ◦ [z], zd− dyφA∧
)
.

If the semigroup NA is saturated we have the following identification:

Proposition 3.9. [RS17, Proposition 3.20] Let NA be a saturated semigroup. There exists the
following RCz×Λ◦-linear isomorphism

H0
(

Ω•+dY×Λ◦/Λ◦ [z], zd− dyφA∧
)
' ◦

0M̂A .

Proposition 3.10. [RS15, Corollary 2.19]
(1) There is a non-degenerate flat (−1)d-symmetric pairing

P :
(
◦M̂A

)
|C∗z×Λ◦

⊗ ι∗
(
◦M̂A

)
|C∗z×Λ◦

→ OC∗z×Λ◦ .

where ι is the automorphism sending (z, λ) to (−z, λ).
(2) We have that P ( ◦0M̂A,

◦
0M̂A) ⊂ zdOCz×Λ◦ , and P is non-degenerate on ◦

0M̂A. i.e., it
induces a non-degenerate symmetric pairing

[z−dP ] :

[
◦
0M̂A

z · ◦0M̂A

]
⊗

[
◦
0M̂A

z · ◦0M̂A

]
→ OΛ◦ .

4. Construction of the Landau-Ginzburg model

4.1. Local Landau-Ginzburg models. Let X be a projective toric Deligne-Mumford stack
with extended fan Σe = (N,Σ, a) (cf. Remark 2.7). In this section we explain the construction
of a (Zariski local) Landau-Ginzburg model which will serve as a mirror partner for X .

Recall the sequence 2.5

0 −→ L t−→ Zn a−→ N −→ 0 .

We apply the functor Hom(−,C∗) to the sequence above which gives the following sequence of
algebraic tori:

1 −→ Hom(N,C∗) −→ Y ′ := Hom(Zn,C∗) ψt−→ T := Hom(L,C∗) −→ 1 .
13



We denote the standard basis of Zn by e1, . . . , en. This equips Y ′ with coordinates w1, . . . , wn.
Consider the map

W ′ : Y ′ −→ Ct × T ,

(w1, . . . , wn) 7→ (−
n∑
i=1

wi, ψt(w)) .

Usually this map W ′ is called the Landau-Ginzburg model of the toric orbifold X . However
to ensure a correct limit behavior we need to consider a covering of this model. Consider the
inclusion c : L ↪→ Pice(X)? (cf. Section 2.3 ), which gives rise to a covering T ← M :=
Hom(Pice(X)?,C∗). We get the following cartesian diagram

Y ′

W ′

��

Yoo

W

��
Ct × T Ct ×M

id×ψc

oo

Definition 4.1. Let X be a projective toric orbifold. The mirror Landau-Ginzburg model of X
is given by

W = (F, pr2) : Y −→ Ct ×M .

We have to compute the Fourier-Laplace transformed Gauß-Manin system and the Brieskorn
lattice for the map W . For this we will construct a map Ct×Λ∗ ← Ct×T such that W becomes
the pull-back of the map ϕA from Section 3 (recall that A is the matrix corresponding to a after
the choice of a basis for N) under the cocatenated morphisms Λ∗ ← Ct × T ← Ct ×M .
Here we will identify Λ∗ := Hom(Zn,C∗) with Λ \ {λ1 · . . . · λn = 0}.

Since we assumed that N is free, we have Ext1(N,Z) = 0 which gives us the following commu-
tative diagram whose vertical maps are isomorphismsm

0 // L t // Zn a //

k

��

N // 0

0 // L // L⊕N // N // 0

where k = s + a with s : Zn → L and k−1 = t + g with g : N → Zn. The maps satisfy the
following relations

(1) a ◦ t = 0 and s ◦ g = 0
(2) a ◦ g = idN and s ◦ t = idL

Consider the push-out diagram

−
∑n
i=1(χai ⊗ χeiχek) C[N ]⊗ C[Zn] // C[Zn] (−

∑n
i=1 χ

ei)χt(l)

t⊗ χek
_

OO

C[t]⊗ C[Zn]

OO

// C[t]⊗ C[L]

OO

t⊗ χl
_

OO

t⊗ χek // t⊗ χs(ek)

14



Here we made the following identifications

C[N ]⊗ C[Zn]⊗C[t]⊗C[Zn] C[t]⊗ C[L]
'−→ C[N ]⊗ C[L]

1⊗ χei ⊗ 1⊗ 1 7→ 1⊗ χs(ei)

1⊗ 1⊗ t⊗ 1 7→ −
n∑
i=1

(χai ⊗ χs(ei))

and

C[N ]⊗ C[L] −→ C[Zn]

χn ⊗ χl 7→ χg(n)χt(l) .

This gives a cartesian diagram
Y × Λ∗

ϕA

��

Y ′

W ′

��

oo

Ct × Λ∗ Ct × T
id×ψs

oo

We denote by ψ the concatenation ψs ◦ ψc and get the cartesian diagram

Y × Λ∗

ϕA

��

Y

W

��

oo

Ct × Λ∗ Ct ×M
id×ψ
oo

Choose some Z-basis p1, . . . , pr+e in Pice(X ) which satisifes the following conditions:
(1) p1, . . . , pr ∈ θ(K) ⊂ Ke,
(2) pr+i = [Dm+i] for i = 1, . . . , e,
(3) ρ ∈ Cone(p1, . . . , pr+e).

The dual Z-basis of (pa)a=1,...,r+e equipsMX = Hom(Pice(X)?,C∗) with coordinates χ1, . . . , χr+e.

Using the coordinates χa the map ψ is given by

ψ = ψn :MX −→ Λ∗ ,

(χ1, . . . , χr) 7→ (χn1 , . . . , χnm+e)

where n := c ◦ s with

n(ei) =

r∑
a=1

naipa .

After the choice of the splitting above the Landau-Ginzburg model for X is given by

W : Y ' Y ×MX −→ Ct ×MX ,(4.2)

(y, χ) 7→ (−
n∑
i=1

χniyai , χ) .

Since L is a full sublattice in Pice(X)? the map c becomes an isomorphism after tensoring with
Q. Let

r : Pice(X)? ⊗Q −→ L⊗Q
be its inverse. We denote by

m : Pice(X)? ⊗Z Q −→ Zn ⊗Z Q
15



the concatenation t ◦ r. With respect to the basis e1, . . . , en and the dual basis of p1, . . . , pr+e
the map m is given by the matrix M = (mia). It follows that

(4.3) [Di] =

r+e∑
a=1

miapa .

Now we want to compute the Fourier-Laplace transformed Gauß-Manin system of the map W .
We do this by computing an inverse image of the FL-transformed Gauß-Manin system of ϕA.

Proposition 4.4. Let ψ̃ := (idz, ψ) : Cz ×M→ Cz × Λ∗.

(1) The inverse image QMA := ψ̃+(∗M̂A) is isomorphic to the quotient of DCz×MX /I,
where I is the left ideal generated by

�̃l :=
∏

a:pa(l)>0

χa
pa(l)

∏
i:li<0

−li−1∏
ν=0

(

r+e∑
a=1

miazχa∂χa−νz)−
∏

a:pa(l)<0

χa
−pa(l)

∏
i:li>0

li−1∏
ν=0

(

r+e∑
a=1

miazχa∂χa−νz)

for any l ∈ L and by the single operator

Ě := z2∂z +

r+e∑
a=1

m+e∑
i=1

miazχa∂χa .

(2) There is an isomorphism of DCz×S-modules

QMA ' FLlocMX (H0W+OY×MX ) .

Proof. We first choose bases w1, . . . , wr+e of L and v1, . . . , vd of N and denote the dual bases
by w∗1 , . . . , w

∗
r+e and v∗1 , . . . , v

∗
d, respectively. This gives rise to coordinates τ1, . . . , τr+e on

T = Hom(L,C∗) and h1, . . . , hd on H = Hom(N,C∗). We set ai = a(ei), si = s(ei) for
i = 1, . . . , n and ta = t(wa) resp. gj = g(vj) for a = 1, . . . , r + e resp. j = 1, . . . , d.

We will first compute the inverse image under the map ψs, which was induced by the linear
morphism s : Zn → L. We factor s in the following way:

s : Zn (s,a)−→ L⊕N p1−→ L

where p1 is the projection to the first factor. Hence we get a factorization of ψs given by

ψp1
: T −→ T ×H ,

(τ1, . . . , τr) 7→ (τ1, . . . , τr, 1, . . . , 1) ,

ψ(s,a) : T ×H −→ Λ∗ ,

(τ1, . . . , τr, h1, . . . , hd) 7→ (τs1 · ha1 , . . . , τ sm+e · ham+e)

where τs1 :=
∏r+e
b=1 τ

sb1
b etc. and the inverse of ψ(s,a) is given by

ψ−1
(s,a) : Λ∗ −→ T ×H ,

(λ1, . . . , λm+e) 7→ (λt1 , . . . , λtr , λg1 , . . . , λgd) .
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Notice that the ideal I in Definition 3.3 is generated by( ∏
i:li>0

λlii

)
· �̂l =

∏
i

λlii ·
∏
i:li<0

(λi)
−li(z∂λi)

−li −
∏
i:li>0

(λi)
li(z∂λi)

li for l ∈ L ,

=
∏
i

λlii ·
∏
i:li<0

−li−1∏
ν=0

(zλi∂λi − νz)−li −
∏
i:li>0

li−1∏
ν=0

(zλi∂λi − νz)li for l ∈ L ,

Ê := z2∂z +

m+e∑
i=1

zλi∂λi ,

Êk :=

m+e∑
i=1

akizλi∂λi .

We have the following transformation rules for the coordinate change ψ(s,a):

λi∂λi 7→
r+e∑
b=1

tibτb∂τb +

d∑
k=1

gikhk∂hk

where tib = Di(t(wb)).

Since ψ(s,a) is an isomorphism, we have that ψ+
(s,a)(

∗M̂A) is isomorphic to DCz×Λ∗/I ′ where the
left ideal I ′ is generated by

�′l :=

r+e∏
b=1

τ
w∗b (l)
b

∏
i:li<0

−li−1∏
ν=0

(

r+e∑
b=1

Di(t(wb))zτb∂τb − νz)−
∏
i:li>0

li−1∏
ν=0

(

r+e∑
b=1

Di(t(wb))zτb∂τb − νz)

for any l ∈ L and by the Euler operators

E′ := z∂z +

r+e∑
b=1

(
m+e∑
i=1

Di(t(wb))

)
τb∂τb ,

E′k := hk∂hk for k = 1, . . . , d .

Notice that we used the relations hk∂hk = in the presentation of �′l. We also used the formulas

m+e∏
i=1

λi
li =

m+e∏
i=1

τ li·si · hli·ai =

r+e∏
b=1

τ
∑
i lisbi

b

d∏
k=1

h
∑
i liaki

k =
r+e∏
b=1

τ
∑
i lisbi

b

and ∑
i

lisib =
∑
i

liw
∗
b (s(ei)) = w∗b (s(t(l)) = w∗b (l).

It is now easy to see that the inverse image ψ+
s (∗M̂A) ' ψ+

p1
ψ+

(s,a)(
∗M̂A) is isomorphic to

DCz×T /I ′′ where the left ideal I ′′ is generated by �′l and E
′.

We will now compute the inverse image under ψc. Denote by q1, . . . , qr+e the basis in Pice(X)?

dual to p1, . . . , pr+e ⊂ Pice(X). With respect to the bases w1, . . . , wr+e resp. q1, . . . , qr+e the
Z-linear map c is given by a matrix C = (cab), i.e. c(wb) =

∑r+e
a=1 cabqa. We factorize this matrix

to obtain
C = C1 ·D · C2

with C1 = (c1ab), C2 = (c2ba) ∈ GL(r,Z) and D = diag(d1, . . . , dr+e) a diagonal matrix with
strictly positive integer entries.
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The factorization of C gives also a factorization of R = C−1, i.e.

R = R2 ·D−1 ·R1

with Ri = (riab) = C−1
i ∈ Gl(r,Z). We define new bases

w′h =

r+e∑
b=1

r2
bhwb and q′h =

r+e∑
a=1

c1ahqa .

With respect to these bases c is diagonal, i.e. c(w′h) = dh · q′h.

The choice of these bases gives rise to coordinate changes on T andMX :

τ ′h =

r+e∏
b=1

τ
r2bh
b and χ′h =

r+e∏
a=1

χ
c1ah
a

with inverses

τb =

r+e∏
h=1

(τ ′h)c
2
hb and χa =

r+e∏
h=1

(χ′h)r
1
ha .

Hence we get a factorization of ψc = ψ2 ◦ κ ◦ ψ1, where the maps are given by

ψ1 : T −→ T ,

(τ ′1, . . . , τ
′
r+e) 7→ (τ1 =

r+e∏
h=1

(τ ′h)c
1
h1 , . . . , τr+e =

r+e∏
h=1

(τ ′h)c
1
h,r+e) ,

κ :MX −→ T ,

(χ′1, . . . , χ
′
r+e) 7→ (τ ′1 = (χ′1)d1 , . . . , τ ′r+e = (χ′r+e)

dr+e) ,

ψ2 :MX −→MX ,

(χ1, . . . , χr+e) 7→ (χ′1 =

r+e∏
a=1

χ
c2a1
a , . . . , χ′r+e =

r+e∏
a=1

(χa)c
2
a,r+e) .

Notice that we have the following transformation rule:

τb∂τb 7→
r+e∑
h=1

r2
bhτ
′
h∂τ ′h .

Since ψ1 is an isomorphism ψ+
1 DCz×T /I ′′ is isomorphic to DCz×T /J ′′ where J ′′ is generated by

�′l :=

r+e∏
h=1

(τ ′h)(w′h)∗(l)
∏
i:li<0

−li−1∏
ν=0

(

r+e∑
h=1

Di(t(w
′
h))zτ ′h∂τ ′h−νz)−

∏
i:li>0

li−1∏
ν=0

(

r+e∑
h=1

Di(t(w
′
h))zτ ′h∂τ ′h−νz)

where l ∈ L and

z2∂z +

r+e∑
h=1

(
m+e∑
i=1

Di(t(w
′
h))

)
zτ ′h∂τ ′h .

Here we have used that

r+e∏
b=1

τ
w∗b (l)
b =

r+e∏
b=1

(
r+e∏
h=1

(τ ′h)c
2
hb

)w∗b (l)

=

r+e∏
h=1

(τ ′h)
∑r+e
b=1 c

2
hbw

∗
b (l) =

r+e∏
h=1

(τ ′h)(w′h)∗(l)
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and
r+e∑
b=1

Di(t(wb))zτb∂τb =

r+e∑
b=1

Di(t(wb))z

(
r+e∑
h=1

r2
bhτ
′
h∂τ ′h

)

=

r+e∑
h=1

Di(t(

r+e∑
b=1

r2
bhwb))zτ

′
h∂τ ′h

=

r+e∑
h=1

Di(t(w
′
h))zτ ′h∂τ ′h .

In order to compute κ+ψ+
1 DCz×T /I ′′ ' κ+DCz×T /J , we first notice that

κ+DCz×T /J ' OMX ⊗ κ−1(DCz×T /J )

where the operators χ′h resp. χ′h∂χ′h act by

(χ′h)dn(f ⊗ P ) = f ⊗ τ ′hP
resp.

χ′h∂χ′h(f ⊗ P ) = χ′h∂χ′h(f)⊗ P + f ⊗ (dhτ
′
h∂τ ′h)P .

An easy computation shows that κ+DCz×τ/J ′′ is isomorphic to the quotient DCz×T /J ′ where
the left ideal J ′ is generated by
r+e∏
h=1

(χ′h)c
∗(q′h)∗(l)

∏
i:li<0

−li−1∏
ν=0

(

r∑
h=1

Di(t◦r(q′h))zχ′h∂χ′h−νz)−
∏
i:li>0

li−1∏
ν=0

(

r∑
h=1

Di(t◦r(q′h))zχ′h∂χ′h−νz)

for any l ∈ L and by the single operator

z2∂z +

r+e∑
h=1

(
m+e∑
i=1

Di(t ◦ r(q′h))

)
zχ′h∂χ′h .

Here we used c(w′h) = dh · p′h, i.e. c∗((q′h)∗) = dh · (w′h)∗.
The final step consists in computing ψ+

2 κ
+ψ+

1 DCz×T /I ′ which is completely parallel to the com-
putation of the inverse image under ψ1. Therefore the first claim follows.

For the second claim consider the cartesian diagram

Y ×MX //

W

��

Y × Λ∗

ϕA

��
Ct ×MX

(id×ψ) // Ct × Λ∗

We have the following isomorphisms

QMA ' ψ̃+(∗M̂A)

' ψ̃+ FLlocΛ H0(ϕA,+OY×Λ∗)

' FLlocMX (idCt × ψ)+H0(ϕA,+OY×Λ)

' FLlocMX (H0W+OY×MX )

where the third isomorphism follows from the compatibility of the localized Fourier-Laplace
transform with base change and the fourth isomorphism is base change with respect to the
diagram above.

�
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WriteM◦X := ψ−1(Λ◦) = {(χ1, . . . , χr+e) ∈MX |W = −
∑m+e
i=1 χniyai is Newton non-degenerate}.

We have the following statement for the Brieskorn-lattice:

Proposition 4.5.

(1) The inverse image (in the category of O-modules)

(4.6) ◦
0QMA := ψ̃∗( ◦0M̂A) = OCz×M◦X ⊗ ψ̃

−1( ◦0M̂A)

carries a natural structure of an RCz×M◦X -module. It is isomorphic to the quotient
RCz×M◦X /I0, where I0 is the left ideal generated by (�̃l)l∈L and Ě.

(2) There exists the following RCz×M◦X -linear isomorphism

H0
(

Ω•+r+eY×M◦X /M◦X
[z], zd− dyF∧

)
' 0
◦QMA

where 0
◦QMA = Γ(M◦X , ◦0QMA).

(3) There is a non-degenerate flat (−1)d-symmetric pairing

P : (QMA)|C∗z×M◦X
⊗ ι∗ (QMA)|C∗z×M◦X

→ OC∗z×M◦X .

(4) P ( ◦0QMA,
◦
0QMA) ⊂ zdOCz×M◦X , and P is non-degenerate on ◦

0QMA.

Proof. First notice that the map ψ̃ factorizes as (id×ψs) ◦ (id×ψc). The map (id×ψs) is non-
characteristic with respect to ◦M̂A since the singular locus of ◦M̂A is contained in ({0,∞}×Λ◦)
and the map (id × ψc) is non-characteristic with respect to any coherent DCz×T -module since
(id × ψc) is smooth. Hence the inverse image is nothing but the inverse image in the category
of meromorphic connections. The inverse image of the lattice ◦0M̂A is then simply given by the
formula (4.6).
The second point follows by base change and the fact that ψ̃∗ = (id× ψc)

∗ ◦ (id× ψs)
∗ is exact.

The third and fourth point follow from Proposition 3.10. �

Lemma 4.7.
(1) The DCz×MX -module QMA is isomorphic to the quotient DCz×T /I where J is the left

ideal generated by Ě and

�Xl :=

r∏
a=1

pa(l)>0

χpa(l)
a

m+e∏
i=m+1
li<0

D−lii

m∏
i=1
li<0

−li−1∏
ν=0

(Di − νz)−
r∏
a=1

pa(l)<0

χ−pa(l)
a

m+e∏
i=m+1
li>0

D li
i

m∏
i=1
li>0

li−1∏
v=0

(Di − νz)

where

Di =

{∑r+e
a=1miazχa∂χa for i = 1, . . . ,m

z∂χi−m+r
for i = m+ 1, . . . ,m+ e .

(2) The RCz×M◦X -module ◦0QMA is isomorphic to the quotient RCz×M◦X /J0 where J0 is the
left ideal generated by �Xl and Ě.

Proof. Notice that we have the following identifications

(1) pr+i(l) = [Dm+i](l) = lm+i for i = 1, . . . , e,
(2) mm+i,a = δr+i,a for i = 1, . . . , e
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where the second point follows from formula 4.3 and our choic of the basis (pa)a=1,...,r+e. We
can therefore write

�̃l =

r+e∏
a=1

pa(l)>0

χa
pa(l)

∏
i:li<0

−li−1∏
ν=0

(

r+e∑
a=1

miazχa∂χa − νz)−
r+e∏
a=1

pa(l)<0

χa
−pa(l)

∏
i:li>0

li−1∏
ν=0

(

r+e∑
a=1

miazχa∂χa − νz)

=

r∏
a=1

pa(l)>0

χpa(l)
a

e∏
i=1

lm+i>0

χ
lm+i

r+i

e∏
i=1

lm+i<0

χ
−lm+i

r+i

m+e∏
i=m+1
li<0

D−lii

m∏
i=1
li<0

−li−1∏
ν=0

(Di − νz)

−
r∏
a=1

pa(l)<0

χ−pa(l)
a

e∏
i=1

lm+i<0

χ
−lm+i

r+i

e∏
i=1

lm+i>0

χ
lm+i

r+i

m+e∏
i=m+1
li>0

D li
i

m∏
i=1
li>0

li−1∏
ν=0

(Di − νz)

=

e∏
i=1

χ
|lm+i|
r+i ·�Xl .

Since the χa are invertible on Cz ×MX this shows the first and second point. �

4.2. Logarithmic extension. Let Y be a smooth variety and D be a reduced normal-crossing
divisor in Y . Denote by RCz×Y (logD) the subsheaf of RCz×Y generated by OCz×Y , z2∂z and
z · p−1Der(logD), where p : Cz × Y → Y is the canonical projection and Der(logD) the sheaf of
logarithmic vector fields along D.

Recall the definition of the base space MX = Hom(Pice(X)?,C∗) ' (C∗)r+e of the Landau-
Ginzburg model from section 4.1.. The choice of a basis p1, . . . , pr+e determines a partial com-
pactificationMX ' Cr+e. Let DX ⊂MX be the normal crossing divisor given by χ1 · · ·χr = 0.
Denote by ∆ :=MX \M◦X and let ∆ be the closure of ∆ inMX . DefineM◦X :=MX \∆. We
denote by pX the point with coordinates χ1 = . . . = χr+e = 0.

Remark 4.8. Notice that until now any object with index A (like ◦
0QMA) only depends on

the matrix A which is given by the generators of the rays of the extended stacky fan. Moreover
there is no difference between the rays coming from the original stacky fan and the rays which
are added for the extended stacky fan.

Lemma 4.9. The point pX is contained inM◦X .

Proof. This follows with an easy adaption of the proof in [Iri09, Appendix 6.1]. �

Definition 4.10. Let 0QMlog,X
A be the quotient RCz×M

◦
X

(logDX )/IX where IX is the ideal
generated by (�Xl )l∈L and Ě.

Theorem 4.11. There is a Zariski open subset UX ⊂ M
◦
X containing the point pX such that

◦
0QMlog,X

A := 0QMlog,X
A |UX is OCz×UX -coherent.

Proof. Let R′(logDX ) be the sheaf associated to the ring

C[z, χ1, . . . , χr]〈zχ1∂χ1 , . . . , zχr∂χr , z∂χr+1 , . . . , z∂χr+e〉.

Notice that ◦0QMlog,X
A carries a naturalR′(logDX )-module structure. We denote the correspond-

ing R′(logDX )-module by Forz2∂z (
◦
0QMlog,X

A ). Notice that it is enough to prove the coherence
at the point pX for Forz2∂z (

◦
0QMlog,X

A ) since it is isomorphic to ◦0QMlog,X
A as a OCz×UX -module.
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Because of the operator Ě = z2∂z +
∑r+e
a=1

∑m+e
i=1 miazχa∂χa the module Forz2∂z (

◦
0QMlog,X

A ) is
isomorphic to R′(logDX )/(�Xl )l∈L. Now consider on R′(logDX ) the natural filtration F• given
by the orders of operators, i.e. the filtration F•R′(logDX ) is given on the level of global sections
by

FkC[z, χ1, . . . , χr]〈zχ1∂χ1
, . . . , zχr∂χr 〉 :=

P | P =
∑
|s|≤k

gs(z, χ)(zχ1∂χ1
)s1 · . . . · (zχr∂χr )sr

 .

This filtration induces a filtration F• on Forz2∂z (
◦
0QMlog,X

A ) which is good, i.e.

FkR′(logDX ) · FlForz2∂z (
◦
0QMlog,X

A ) = Fk+lForz2∂z (
◦
0QMlog,X

A ) .

We have a natural identification

grF• (R′(logDX )) = π∗OCz×T∗UX (logDX )

where T ∗UX (logDX ) is the total space of the vector bundle associated to the locally free sheaf
Ω1
UX (logDX ) and π : Cz × T ∗UX (logDX ) → Cz × UX is the projection. The symbols of all

operators �Xl for l ∈ L cut out a subvariety Cz × S of Cz × T ∗UX (logDX ).
It will be sufficient to show that the fiber over χ = 0 of S → UX is quasi-finite since this implies
that S → UX is quasi-finite in a Zariski open neighborhood of χ = 0. Since S is homogeneous this
shows that S is equal to the zero section of T ∗UX (logDX ) over this neighborhood. Adapting a
well-known argument from the theory of D-modules (see, e.g. [Pha79]) we see that the filtration
F• will become eventually stationary and we conclude by the fact that all FkForz2∂z (

◦
0QMlog,X

A )
are stationary in this neighborhood.

Therefore, it remains now to prove that that the fiber over z = χ = 0 of S → UX is quasi-finite.

First notice that in the limit z = χ = 0 the operators

Di =

{∑r+e
a=1miazχa∂χa for i = 1, . . . ,m

z∂χi−m+r
for i = m+ 1, . . . ,m+ e

in R′(logDX ) degenerate to

(4.12) Di =

{∑r
a=1miazχa∂χa for i = 1, . . . ,m

z∂χi−m+r
for i = m+ 1, . . . ,m+ e .

Since the fan Σ is simplicial, we have for each aj , j = m+ 1, . . . ,m+ e a cone relation lCj :

(4.13)
m∑
i=1

liai − ljaj = 0

with li, lj ∈ Z≥0. Because of p1, . . . , pr ∈ θ(K) ⊂ θ(Pic(X)) and the definition of the map Θ one
easily sees that

(4.14) pa(l) = 0

for all (cone) relations l. Hence the corresponding Box operator is

�XlCj
= (Dj)

lj −
m∏
i=1

li−1∏
ν=0

(Di − νz) .
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Because deg(ai) = 1 for i = 1, . . . ,m and deg(aj) ≤ 1 by Lemma 2.15 we get from (4.13) the
inequality lj ≥

∑m
i=1 li. Hence the symbol of �XlCj

is

(4.15) σ(�XlCj
) =

{
σ(Dj)

lj if deg(aj) < 1

σ(Dj)
lj −

∏m
i=1 σ(Di)

li if deg(aj) = 1

which degenerates to

(4.16) σ(�XlCj
)z=χ=0 =

{
σ(Dj)

lj if deg(aj) < 1

σ(Dj)
lj −

∏m
i=1 σ(Di)

li ifdeg(aj) = 1 .

Now suppose that {ai | i ∈ I} for I ⊂ {1, . . . ,m} is a primitive collection. Denote by lI ∈ L⊗Q
a primitive relation ∑

i∈I
ai −

m+e∑
j∈Iσ

ljaj = 0

where Iσ was defined in (2.2). We claim that

(4.17) pa(lI) ≥ 0 for a = 1, . . . , r .

Recall that pa ∈ K and that K is the image of Θ(CPL(Σ)). Let ϕa ∈ CPL(Σ) be a convex,
piece-wise linear function such that Θ(ϕa) is a preimage of pa. By the definition of Θ (cf. (2.10))
we have

pa(lI) =
∑
i∈I

ϕa(ai)−
∑
j∈Iσ

ljϕa(aj) =
∑
i∈I

ϕa(ai)− ϕa(
∑
j∈Iσ

ljaj)

≥ ϕa(
∑
i∈I

ai)− ϕa(
∑
j∈Iσ

ljaj) = 0 .

Additionally, the following inequality

#I =
∑
i∈I

1 ≥
∑
j∈Iσ

lj

is true for the relation lI , because deg(ai) = 1 for i = 1, . . . ,m. Clearing denominators we get
a relation l′I := c · lI ∈ L for some c ∈ Z>1. The symbol of a box operator with respect this
relation is

σ(�Xl′I ) =

r∏
a=1

χ
pa(l′I)
a

∏
j∈Iσ

σ(Dj)
l′j −

∏
i∈I

σ(Di)
c for #I =

∑
j∈Iσ

lj

and

σ(�Xl′I ) = −
∏
i∈I

σ(Di)
c for #I >

∑
j∈Iσ

lj .

For χ = (χ1, . . . , χr+e) = 0 this gives

(4.18) σ(�XlI )|z=χ=0 = −
∏
i∈I

σ(Di)
c

in both cases.
Notice that for i = 1, . . . , r the Di, and therefore also the σ(Di) satisfy

m∑
i=i

akiDi =

m∑
i=1

aki

r∑
a=1

miazχa∂χa =

r∑
a=1

(
m∑
i=1

akimia

)
zχa∂χa = 0 .(4.19)

23



If we keep Remark 2.9 in mind, identify Di with σ(Di) for i = 1, . . . , r and use the relations
(4.15), (4.19), (4.18) we see that the dimension of the reduced ring (S|z=χ=0)red satisfies the
bound:

dimC

(
(S|z=χ=0)red

)
≤ H∗(X(Σ),C) ·

m+e∏
j=m+1

lj

where here we denote by lj the j-th component of lCj .
In conclusion, this shows that the variety S over z = χ = 0 is zero dimensional. This finishes
the proof.

�

Proposition 4.20. Let ◦0QMlog,X
A be the R(logD)-module defined above. We have the following

isomorphism of finite-dimensional commutative algebras:
◦
0QMlog,X

A |z=χ=0 ' H
∗
orb(X ,C) .

Proof. Let l ∈ L be a cone relation. The corresponding box operator in the limit z = χ = 0 is
equal to

(�Xl )|z=χ=0 :=

m+e∏
i=1
li<0

D−lii −
m+e∏
i=1
li>0

Dli
i(4.21)

where we have used the fact that for a cone relation l we have pa(l) = 0 for a = 1, . . . , r.

Now suppose that I ⊂ {1, . . . ,m+e} is a generalized primitive collection and consider a primitive
relation lI : ∑

i∈I
ai −

m+e∑
j=1
aj∈σI

ljaj = 0 .

where σI is the unique minimal cone containing
∑
i∈I ai. Notice that we have pa(lI) ≥ 0 for

a = 1, . . . , r which can be shown similarly to (4.17).
We now claim that there exists an a ∈ 1, . . . , r such that pa(lI) > 0. Notice that the kernel of
the map

L −→ Zr ,
l 7→ (p1(l), . . . , pr(l)) .

is e-dimensional, since p1, . . . , pr is part of a basis of Pice(X). Because the pa vanish on all cone
relations for a = 1, . . . , r (cf. (4.14) and the space of cone relations has rank e, the claim follows
by dimensional reasons. We therefore get

(4.22) (�XlI )|z=χ=0 = −
∏
i∈I

Di .

Using Lemma 2.8 and the formulas (4.19), (4.21) and (4.22) we get the following surjective map

(4.23) H∗orb(X ,C) � ◦
0QMlog,X

A |z=χ=0 ,

by sending Di to Di.

Notice that ◦0QMlog,X
A is coherent by the theorem above and its generic rank is equal to µ by

Proposition 3.8. Since H∗orb(X ,C) is also µ-dimensional and the dimension of the fibers of a
coherent sheaf is upper-semi-continuous, we conclude that the map above is an isomorphism.

�
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Corollary 4.24. The OCz×UX -module ◦
0QMlog,X

A is locally free of rank µ.

Proof. Since DX ⊂ MX is a normal crossing divisor it carries a natural stratification {Si}i∈I
by smooth subvarieties. The restriction of ◦0QMlog,X

A to Si is equipped with a DC∗z×Si-module
structure, so that it must be locally free. Since each stratum contains pX in its closure the
claim follows again by semi-continuity of the dimension of the fibers of a coherent sheaf and from
Proposition 4.20 above. �

The R(logD)-module structure on ◦
0QMlog,X

A induces a flat meromorphic connection denoted
by ∇. Let EX be the restriction ( ◦0QMlog,X

A )|Cz×{χ=0} and let EX = Γ(Cz, EX ) be its module of
global sections.

Lemma 4.25. There is a canonical isomorphism

αX : OCz ⊗C H
∗
orb(X ,C)

'−→ EX .

It comes equipped with a connection

∇res,χ : EX −→ EX ⊗ z−2Ω1
Cz

induced by the residue connection of ∇. Let πX : 0
◦QM log,X

A → EX be the canonical projection.
Set FX := πX (C[zχ1∂χ1 , . . . , zχr∂χr , z∂χr+1 , . . . , z∂χr+e ] and denote by FX ⊂ EX the correspond-
ing sheaf a C-vector spaces. Then αX (1 ⊗ H∗orb(X ,C)) = FX . The connection operator ∇res,χ∂z

sends FX into z−2FX ⊕ z−1FX .

Proof. Recall that EX is a quotient of C[z, zχ1∂χ1
, . . . zχr∂χr , z∂χr+1

, . . . , z∂χr+e ] and EX /zEX is
canonically isomorphic to H∗orb(X ,C). Denote by w1, . . . , wµ a basis of H∗orb(X ,C) which can be
represented as monomials s := (s1, . . . , sµ) in C[zχ1∂χ1 , . . . zχr∂χr , z∂χr+1 , . . . , z∂χr+e ] of degree
d1, . . . , dµ. Denote by (EX )(0) the localization of EX at 0. By Nakayama’s lemma the basis
s1, . . . , sµ lifts to a basis in (EX )(0) and hence provides a basis in a Zariski open neighborhood
of 0 ∈ Cz. Since the (si) are global sections we have to show that they are nowhere vanishing.
From the presentation of ◦0QMlog,X

A we see that

(z2∇res,χ∂z
)

r∏
a=1

(zχa∂χa)ka ·
r+e∏
b=r+1

(z∂χb)
kb

=(z2∂z)
r∏
a=1

(zχa∂χa)ka ·
r+e∏
b=r+1

(z∂χb)
kb

=

r∏
a=1

(zχa∂χa)ka ·
r+e∏
b=r+1

(z∂χb)
kb ·

(
(z2∂z) +

r+e∑
c=1

kc · z

)

=

(
−
r+e∑
a=1

m∑
i=1

miazχa∂χa + z ·

(
r∑
a=1

ka +

r+e∑
b=r+1

kb ·

(
1−

m+e∑
i=1

mib

)))
r∏
a=1

(zχa∂χa)ka ·
r+e∏
b=r+1

(z∂χb)
kb .

Hence, we have

(4.26) (z2∇res,χ∂z
)(s) = s · (A0 + zA∞)

where A0, A∞ ∈ M(µ × µ,C) and A∞ is a diagonal matrix with entries d1, . . . , dµ. Since the
connection has no singularities in C∗z we conclude that s is nowhere vanishing, hence is a C[z]-
basis of EX . This contruction gives the isomorphism αX which is of course independent of the
choice of the basis s. �
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Remark 4.27. Notice the the entries d1, . . . , dµ of the matrix A∞ are the (algebraic) degrees of
the cohomology classes corresponding to the operators

∏r
a=1(zχa∂χa)ka ·

∏r+e
b=r+1(z∂χb)

kb . For the
first factor this is clear because elements in the untwisted sector have (algebraic) degree one. For
the second factor we recall that themia are matrix entries of the mapm : Pice(X)?⊗Q −→ Zn⊗Q
with respect to the basis e1 . . . , en and the dual basis of p1, . . . , pr. It follows from Lemma 2.12
that the elements l1, . . . , le defined in (2.11) are part of the dual basis of p1, . . . , pr+e, namely
li = p∗r+i. Hence

m+e∑
i=1

mib = 1−
∑
i∈Iσ

rki where b = r + k

Since
∑
i∈Iσ rki is the (algebraic) degree of Dm+k the claim follows.

Lemma 4.28. Write QMlog,X
A for the restriction (0QMlog,X

A )|C∗z×UX . Then for any a ∈ {1, . . . , r}
the residue endomorphisms

zχa∂χa ∈ EndOC∗z
((QMlog,X

A )|C∗z×{χ=0})

are nilpotent.

Proof. Under the identification of ( ◦0QMlog,X
A )z=χ=0 with H∗orb(X,C) the action of the opera-

tor zχa∂χa corresponds to the cup product with Da. Hence the class of zχa∂χa is nilpotent in
EndC(( ◦0QMlog,X

A )|z=χ=0). On the other hand, the class of zχa∂χa gives rise to a well-defined

element of EndOz
(

( ◦0QMlog,X
A )χ=0

)
, which is flat on C∗z with respect to the residue connec-

tion. Its eigenvalues are algebraic functions on Cz which are constant on C∗z and take the value
zero at the origin. This implies that the eigenvalues are zero over all of Cz, hence the residue
endomorphisms are nilpotent as required. �

Denote by DX the reduced normal-crossing divisor in UX given by {χ1 · . . . ·χr = 0} and denote
its components by Da for a = 1, . . . , r.

Proposition 4.29. There is a non-degenerate flat (−1)d-symmetric pairing

P : ◦0QMlog,X
A ⊗ ι∗ ◦0QMlog,X

A −→ zdOCz×UX

i.e. P is flat on C∗z × (UX \DX ) and the induced pairings

P : ( ◦0QMlog
A )|z=0 ⊗ ι∗( ◦0QMlog

A )|z=0 −→ zdOU
and P : ( ◦0QMlog

A )|Da ⊗ ι∗( ◦0QM
log
A )Da −→ zdOCz×Da are non-degenerate.

Proof. Denote by Ma, a = 1, . . . , r, the unipotent monodromy automorphism corresponding to
a counter-clockwise loop around the divisor C∗×Da and by Mz the monodromy automorphisms
corresponding to a counter-clockwise loop around z = 0. Denote by Mz,u resp. Mz,s their
unipotent and semi-simple part. We set Na = logMa and Nz = logMz,u. Denote by H∞

the space of multi-valued flat sections on which the monodromy operators Ma and Mz act.
Let f1, . . . , fµ be a basis of flat multi-valued sections of QMA|C∗z×UX which is adapted to the
generalized eigenspace decomposition of the space H∞ with respect to the automorphisms Mz

and Ma. We define the single-valued sections

s̃i = e− log z(ρi+
Nz
2πi )

r∏
a=1

e− logχa
Na
2πi fi

for some ρi such that e2πiρi is the generalized eigenvalue of fi with respect toMz. These sections
provide a basis for ◦0QMlog,X

A |C∗z×UX
. Notice that P (s̃i, s̃j) is holomorphic on C∗z × (UX \DX ).

By the flatness of P we get that P (s̃i, s̃j) = z−ρi−ρjP (fi, fj) which shows that P (s̃i, s̃j) extends
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over C∗z × UX and is non-degenerate. Together with Proposition 4.5 we get a non-degenerate
pairing on the restriction ◦

0QMlog,X
A |(Cz×UX )\{0}×DX . Since, {0} ×DX has codimension two in

Cz × UX , P extends to a non-degenerate pairing on ◦
0QMlog,X

A . �

Lemma 4.30. The induced pairing P : EX⊗ι∗EX → zdC[z], restricts to a pairing P : FX×FX →
zdC. The pairing z−dP on FX coincides under the identification made in Lemma 4.25 with the
orbifold Poincaré pairing on H∗orb(X,C) up to a non-zero constant.

Proof. Let {d0, . . . , dt} = {q ∈ Q | H2q
orb(X ,C) 6= 0} where di < dj for i < j. Set rk =

dimH2dk
orb (X,C) and notice that d0 = 0, dt = d and r0 = rt = 1. Choose a homogeneous basis

w1,d0 , w1,d1 , . . . , wr1,d1 , . . . , w1,dt−1 , . . . , wrt−1,dt−1 , w1,dt

where wi,dk ∈ H2dk
orb (X,C). Denote by s1,d0 , s1,d1 , . . . , sr1,d1 , . . . , s1,dt−1

, . . . , srt−1,dt−1
, s1,dt the

corresponding sections of EX under the isomorphism αX of Lemma 4.25. By Lemma 4.28
and a construction similar to the one in the proof of Proposition 4.29 we can find sections
s̃1,d0 , s̃1,d1 , . . . , s̃r1,d1 , . . . , s̃1,dt−1

, . . . , s̃rt−1,dt−1
, s̃1,dt which satisfy (s̃i,dk)|Cz×{χ=0} = si,dk and

∇zχa∂χa

(
r∏
c=1

elogχc
Na
2πi s̃i,dk

)
= 0 for a = 1, . . . , r ,

∇z∂χb

(
r∏
c=1

elogχc
Na
2πi s̃i,dk

)
= 0 for b = r + 1, . . . , r + e .

From the definition of the sections s̃i,dk and the flatness of P then follows

P (s̃i,dk , s̃j,dl)(z, χ) = P (si,dk , sj,dl)(z)

and therefore

0 = zχa∂χaP (s̃i,dk , s̃j,dl) = P (∇zχa∂χa s̃i,dk , s̃j,dl)− P (s̃i,dk ,∇zχa∂χa s̃j,dl) ,
0 = z∂χbP (s̃i,dk , s̃j,dl) = P (∇z∂χb s̃i,dk , s̃j,dl)− P (s̃i,dk ,∇z∂χb s̃j,dl) .

By continuity this holds on Cz × {χ = 0}. This shows the multiplication invariance of the
corresponding pairing on EX ' C[z]⊗C H

∗
orb(X ,C). It follows from equation 4.26 that

z∇res,q

∂z
(si,dk) = dk · si,dk +

1

z

rk+1∑
m=1

Θm,i,ksm,dk+1 for k < t ,

z∇res,q

∂z
(s1,dt) = d · s1,dt ,

where Θm,i,k := (Ǎ0)u,v with u = m +
∑k
l=1 rl and v = i +

∑k−1
l=1 rl and Ǎ0 is the matrix

with respect to the basis s1,0, . . . , s1,dt of the endomorphism −c1(X )∪. Since the pairing is
multiplication invariant it is clear that P (si,dk , sj,dl) = 0 for dk + dl > d since H2(dk+dl)

orb (X ,C) is
zero in this case. For dk + dl ≤ d we compute

z∂zP (si,dk , sj,dl)(4.31)

=P (dk · si,dk +
1

z

rk+1∑
m=1

Θm,i,ksi,dk+1, sj,dl) + P (si,dk , dl · sj,dl +
1

z

rl+1∑
m=1

Θm,j,lsj,dl+1)

=(dk + dl)P (si,dk , sj,dl) +
1

z

(
P (

rk+1∑
m=1

Θm,i,ksi,dk+1, sj,dl) + P (si,dk ,

rl+1∑
m=1

Θm,j,lsj,dl+1)

)
.
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In the case dk + dl = d this amounts to

(z∂z − d)P (si,dk , sj,dl) = −1

z

(
P (

rk+1∑
m=1

Θm,i,ksi,dk+1, sj,dl) + P (si,dk ,

rl+1∑
m=1

Θm,j,lsj,dl+1)

)
.

Hence P (si,dk , sj,dl) ∈ zdC. For dj + dk < d we get by induction

(z∂z−(dk+dl))P (si,dk , sj,dl) = −1

z

(
P (

rk+1∑
m=1

Θm,i,ksi,dk+1, sj,dl) + P (si,dk ,

rl+1∑
m=1

Θm,j,lsj,dl+1)

)
∈ zdk+dlC

Since P (si,dk , sj,dl) ∈ zdC[z] we conclude that P (si,dk , sj,dl) = 0 for dk + dl < d.
It remains to show that the pairing z−nP coincides, under the isomorphism α : 1⊗H∗orb(X,C)→
F and possibly up to a non-zero constant, with the Poincaré pairing on the cohomology algebra.
First notice that by construction, z−nP , seen as defined on H∗orb(X,C) is again multiplication
invariant. It suffices now to show that P (1, a) equals the value of the Poincaré pairing on 1
and a. But as we have seen above, P (1, a) can only be non-zero if a ∈ H2n

orb(X,C). Since
dimH2n

orb(X,C) = 1, the P on H∗orb(X,C) is entirely determined by the non-zero complex number
P (s1,d0 , s1,dt).

�

Proposition 4.32. Consider the OCz -module EX with the connection ∇res,χ and the subsheaf
FX ⊂ EX from lemma 4.25.

(1) Let ÊX := OP1
z×{0} ⊗C FX be an extension of EX to a trivial P1-bundle. Then the

connection ∇res,χ has a logarithmic pole at z = ∞ with spectrum (i.e., set of residue
eigenvalues) equal to the (algebraic) degrees of the cohomology classes of H∗orb(X,C).

(2) The pairing P on EX extends to a non-degenerate pairing P : ÊX⊗OP1
ι∗ÊX → OP1(−d, d),

where OP1(a, b) is the subsheaf of OP1(∗{0,∞}) consisting of meromorphic functions with
a pole of order a at 0 and a pole of order b at ∞.

Proof. The formula 4.26 shows that the connection ∇res,χ has a logarithmic pole at z = ∞
and Remark 4.27 shows that the residue eigenvalues are equal to the (algebraic) degrees of the
cohomology classes of H∗orb(X ). This shows the first point. The second point follows from
Proposition 4.29 and the definition of ÊX .

�

Set j 1
z

: C∗z → P1
z \ {0} and E∞ := ψ 1

z
j 1
z ,!

(EanX )∇
res,χ

|C∗z
(where ψ 1

z
is the nearby cycle functor at

z = ∞). It is known (cf. e.g. [Her02, Lemma 7.6, Lemma 8.14] that there is a correspondance
between logarithmic extensions of flat bundles and filtrations on the corresponding local system
of flat sections. With respect to the connection (z2∇res,χ∂z

)(s) = s · (A0 + zA∞), the isomorphism

(4.33) FX
'−→ E∞

is given by multiplication with z−A∞z−A0 .

Lemma 4.34. The filtration F• on FX is given by

Fp =
∑
|k|≥−p

C
(
(zχ1∂χ1)k1 · . . . · (zχr∂χr )kr · (z∂χr+1)l1 · . . . (z∂χr+e)le

)
.

The residue endomorphism Na of QMlog,X
A along C∗z×Da acts on E∞ and satisfies NaF• ⊂ F•−1.

Proof. The first claim follows from the identification of H∗orb(X ) with FX and the computation
of the residue connection (z2∇res,χ∂z

)(s) in Lemma 4.25. The second claim is immediate since the
residue endomorphism is induce by left multiplication with zχa∂χa . �
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The next result gives an extension of 0QMlog
A to a family of trivial P1-bundles, possibly after

restricting to a smaller analytic open subset inside Uan. Set r := inf{|χ| : χ 6∈ M◦X } and let
B := Br(0) ⊂ UanX the open ball with radius r.

Proposition 4.35. There is an analytic open subset VX ⊂ UanX still containing the point pX and

a trivial holomorphic bundle 0Q̂M
log,X
A → P1

z × VX such that

(1) (0Q̂M
log,X
A )|Cz×VX

∼= (( ◦0QMlog,X
A )an)|Cz×VX ,

(2) (0Q̂M
log,X
A )|P1

z×{0}
∼= (ÊX )an,

(3) The connection ∇ has a logarithmic pole along D̂X on 0Q̂M
log,X
A , where D̂X is the

normal crossing divisor ({z =∞} ∪
⋃r
a=1{χa = 0}) ∩ P1

z × VX ,
(4) The given pairings P : ◦0QMlog,X

A ⊗ ι∗ ◦0QMlog,X
A → zdOCz×U◦X and P : ÊX ⊗OP1z

ι∗ÊX →
OP1

z
(−d, d) extend to a non-degenerate pairing

P : 0Q̂M
log,X
A ⊗OP1z×VX

ι∗0Q̂M
log,X
A → OanP1

z×VX (−d, d) ,

where the latter sheaf is defined as in point 3. of proposition 4.32,
(5) The residue connection along 1

z = τ = 0

∇res,z=∞ : 0Q̂M
log,X
A /τ · 0Q̂M

log,X
A −→ 0Q̂M

log,X
A /τ · 0Q̂M

log,X
A ⊗ Ω1,an

{∞}×VX (log({∞} ×D)).

has trivial monodromy around {∞}×D and the element of 1 ∈ F ⊂ H0(P1
z×U0, 0Q̂MA

log,X
)

is horizontal for ∇res,z=∞.

Proof. Set D̃ :=
⋃r
a=1{χa = 0} ∩B. A logarithmic extension of (QMlog,X

A )an|C∗z×(B\D̃)
over

({z =∞}×B)∪(P1
z\{0}×D̃) is given by a Zr+1-filtration on the local system L = (QMlog,X

A )an,∇|C∗z×(B\D̃)
,

which is split iff the extension is locally free (cf. [Her02, Lemma 8.14].

We are looking for an holomorphic vector bundle Q̂MA → (P1
z \ {0}) × B which should satisfy

two constraints. First, Q̂MA should restrict to ( ◦0QMlog,X
A )an|C∗z×B

on C∗z×B and second it should
restrict to (ÊX )an|P1

z\{0}
over P1

z \ {0} × {χ = 0}.
The Zr-filtration P• corresponding to the extension over C∗z×D̃ is trivial since its the Deligne ex-
tension due to Lemma 4.28. Let L∞ be the space of multi-valued flat sections of (QMlog,X

A )an|C∗z×(B\D̃)

and let E∞ be the space of multi-valued flat sections of EanX from above. We have an isomor-

phism L∞ → E∞ which is given by multiplication with
∏r
a=1 χ

Na
2πi
a , where Na is the logarithm

of the (uni-potent part of the ) monodromy, and restriction to {χ = 0}. This allows us to shift
the filtration F• on E∞ (resp. FX ) to a filtration F ′• on L∞, which we denote by the same
letter. This gives a Zr+1-filtration (F•, P•) which is split, since P• is trivial. The corresponding
extension Q̂MA has logarithmic poles along ({z = ∞} × B) ∪ (P1 \ {0} × D̃) and restricts to
( ◦0QMlog,X

A )an|C∗z×B
on C∗z×B resp. (ÊX )an|P1

z\{0}
on P1

z\{0}×{χ = 0}. We therefore can glue Q̂MA

and ( ◦0QMlog,X
A )an|Cz×B to a holomorphic bundle on P1

z×B, which is trivial on on P1
z×{χ = 0} since

its restriction is isomorphic to EX . Because triviality is an open condition there exists a subset
VX ⊂ B such that the restriction of the glued bundle to P1

z×VX is trivial. This shows the points
1. to 3. . For the fourth point notice that the flat pairing P gives rise to a pairing on L∞ which
in turn gives rise to a pairing on E∞. The pole order property of this pairing on ÊX at z = ∞
can be encoded by an orthogonality property of the filtration F• with respect to that pairing
(see e.g. [Her03, Theorem 7.17, Definition 7.18]). Hence the same property must hold for P and
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F• seen as defined on L∞, so we conclude P : 0Q̂M
log,X
A ⊗OP1z×VX

ι∗0Q̂M
log,X
A → OanP1

z×VX
(−d, d)

as required.
The last statement follows from the fact that the residue connection ∇res,z=∞ defined on
0Q̂M

log,X
A /z−1

0Q̂M
log,X
A has trivial monodromy aroundDX∩{z =∞}×B if for any a = 1, . . . , r

the nilpotent part Na of the monodromy of L kills grF
′

• , i.e. NaF• ⊂ F•−1. Using the identifi-
cation (L∞, F ′•) with (E∞, F •) this has been shown in Lemma 4.34. From this follows that the
element 1 is a global sections over P1

z × VX and flat with respect to the residue connection.
�

4.3. Frobenius structures. We begin with a definition from [Rei09] which formalizes the struc-
ture which we obtained in Proposition 4.35.

Definition 4.36. Let M be a complex manifold of dimension bigger or equal than one and
D ⊂M be a simple normal crossing divisor.

(1) A log-TEP(d)-structure on M is a holomorphic vector bundle H → P1
z ×M which is

equipped with an integrable connection ∇ with a pole of order two along {0} ×M and
a logarithmic pole along (Cz ×D) and a flat, (−1)d-symmetric, non-degenerate pairing
P : H⊗ ι∗H → zdOCz×M . If D is empty we will simply denote it as a TEP(d)-structure.

(2) A log-trTLEP(d)-structure on M is a holomorphic vector bundle Ĥ → P1
z × M such

that p∗p∗Ĥ = Ĥ (where p : P1
z × M � M is the projection) which is equipped with

an integrable connection ∇ with a pole of order two along {0} ×M and a logarithmic
pole along (P1

z ×D) ∪ ({∞} ×M) and a flat, (−1)d-symmetric, non-degenerate pairing
P : Ĥ ⊗ ι∗Ĥ → OP1

z×M (−d, d). If D is empty we will simply denote it as a trTLEP(d)-
structure.

Here, ι is the automorphism sending (z,m) to (−z,m).

Proposition 4.37. Let X (Σ) be a projective toric Deligne-Mumford stack with an S-extended
stacky fan Σe with S = Gen(Σ) and let W : Y ×MX −→ C ×MX the corresponing Landau-

Ginzburg model. Then the tuple (0Q̂M
log,X
A ,∇, P ) from Proposition 4.35 is a log-trTLEP(d)-

structure on VX ⊂Man
X .

Proof. This follows from Proposition 4.35. �

The following theorem which is a combination of Proposition 1.20 and Theorem 1.22 in [Rei09]
gives sufficient conditions when a given log-trTLEP(d)-structure can be unfolded to a logarithmic
Frobenius manifold.

Theorem 4.38. Let (M, 0) be a germ of a complex manifold and (D, 0) ⊂ (M, 0) be a nor-
mal crossing divisor. Let (H, 0),∇, P ) be a germ of a log-trTLEP(d)-structure on P1 × (M, 0).
Suppose that there is a section ξ ∈ H0(P1 × (M, 0),H) whose restriction to {∞} × (M, 0) is
horizontal for the residue connection ∇res : H/z−1H → H/z−1H⊗ Ω1

{∞}×M (log(∞}×D)) and
which satisfies the conditions

(IC) The map Θ(logD)|0 → p∗H|0 induced by [z∇•](ξ) : Θ(logD)→ p∗H is injective.
(GC) The vector space p∗H|0 is generated by ξ and its images under iteration of the maps U

and [z∇X ] for any X ∈ Θ(log)D.
(EC) ξ is an eigenvector for the residue endomorphism V ∈ EndO{∞}×M (H/z−1H).

Then there exists a unique (up to canonical isomorphism) gern of a logarithmic Frobenius manfold
on (M̃, D̃) with a unique embedding i : M ↪→ M̃ with i(M)∩D̃ = i(D) and a unique isomorphism
H → p∗ΘM̃ (logD̃)|i(M) of log-trTLEP(d)-structures.
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Using the theorem above we are now able to construct a logarithmic Frobenius manifold from
the Landau-Ginzburg model corresponding to a projective toric Deligne-Mumford stack.

Theorem 4.39. Let W : Y ×MX → C×MX be the Landau-Ginzburg model corresponding to
a projective toric Deligne-Mumford stack. Then there exists a canonical logarithmic Frobenius
manifold on (VX × Cµ−r, 0) with logarithmic pole along (D × Cµ−r, 0).

Proof. In order to apply Theorem 4.38 to the log-trTLEP(d)-structure obtained in Proposition
4.35 we define the section ξ to be the class of 1. Because of Proposition 4.35 5. this section is
flat with respect to the residue connection along 1

z = τ = 0. The conditions (IC) and (GC)

follow from the identification of ( ◦0QMlog,X
A )|0 with the cohomology ring (H∗orb(XΣ,C),∪) (cf.

Proposition 4.20 and Formula 4.23), the definition of the Di for i = 1, . . . , n (cf. Formula
4.12) and the representation of H∗orb(XΣ,C) in Lemma 2.8. The condition (EC) follows from
Proposition 4.32 1. �

5. Orbifold Quantum cohomology

In this section we review some constructions from orbifold quantum cohomology.
Let X be a smooth proper Deligne-Mumford stack over C. The inertia stack of X is defined by

IX := X ×X×X X

with respect to the diagonal morphism ∆ : X → X ×X . A geometric point on IX is given by a
geometric point x ∈ X and an element g ∈ Aut(X ) of the isotropy group. We call g the stabilizer
of (x, g) ∈ IX . The inertia stack is a smooth Deligne-Mumford stack but different components
will in general have different dimensions. Let T be the the index set of the components of IX .
Let 0 ∈ T be the distinguished element corresponding to the trivial stabilizer. We thus have

I =
⊔
v∈T
Xv .

The orbifold cohomology of X is defined, as a vector space, by H∗orb(X ,C) := H∗(IX ,C), hence
we have

H∗orb(X ,C) = H∗(X ,C)⊕
⊕
v∈T ′

H∗(Xv,C)

where T ′ := T \ {0} is the index set of the twisted sectors.
In order to define a grading on the orbifold cohomology , we associate to any v ∈ T a rational
number called the age of Xv.
The genus zero Gromov-Witten invariants with descendants are defined by

〈α1ψ
k1
1 , . . . , αlψ

kl
l 〉0,l,d :=

∫
[M0,l(X ,d)]vir

l∏
i=1

ev∗i (αi)ψ
ki
i

where αi ∈ H∗orb(X ), d ∈ H2(X,Z), ki is a non-negative integer,M0,l(X , d) is the moduli stack
of genus zero, l-pointed stable maps to X of degree d, [M0,l(X , d)]vir is the virtual fundamental
class, evi is the evaluation map at the i-th marked point

evi :M0,l(X , d)→ IX

and ψi = c1(Li) where Li is the line bundle overM0,l(X , d) whose fiber at a stable map is the
cotagent space of the coarse curve at the i-th marked point. The correlator 〈α1ψ

k1
1 , . . . , αlψ

kl
l 〉0,l,d

is non-zero only if d ∈ EffX ⊂ H2(X;Z), where EffX is the semigroup generated by effective stable
maps.

31



We choose a homogeneous basis T0, . . . , Tµ of H∗orb(X ), where T0 = 1 ∈ H0(X ,C), T1, . . . , Tr ∈
H2(X ) and Ti ∈

⊕
k 6=0,2H

k(X )⊕
⊕

v∈T ′ H
∗(Xv). We denote by T 0, . . . , Tµ the basis of H∗(X )

which is dual with respect to the orbifold Poincaré pairing.
Let α, β, τ ∈ H∗orb(X ,C) and write τ = τ ′ + δ where δ ∈ H2(X ,C) and τ ′ ∈

⊕
k 6=2H

k(X ) ⊕⊕
v∈T ′ H

∗(Xv). We define the the big orbifold quantum product ◦τ as the formal family of
commutative and associative products on H∗orb(X )⊗ CJEffX K:

α ◦ γ :=
∑

d∈EffX

∑
l,k≥0

1

l!
〈α, γ, τ, . . . , τ︸ ︷︷ ︸

l−times

, Tk〉0,l+3,d T
kQd

=
∑

d∈EffX

∑
l,k≥0

eδ(d)

l!
〈α, γ, τ ′, . . . , τ ′︸ ︷︷ ︸

l−times

, Tk〉0,l+3,d T
kQd

where the last equality follows from the divisor axiom. The Novikov ring EffX was introduced to
split the contribution of the different d ∈ EffX . However, we will make the following assumption:

Assumption 5.1. The orbifold quantum product ◦τ is convergent over an open subset U ⊂
H∗orb(X ):

U = {τ ∈ H∗orb(X ) | <(δ(d)) < −M,∀d ∈ EffX \ {0}, ||τ ′|| < e−M}

for some M � 0 (here || · || is the standard hermitan norm on H∗orb(X )).

Using this assumption, we can setQ = 1. We will denote this product onH∗orb(X ,C) parametrized
by τ ∈ U by (H∗(X ,C), ◦τ ).
Let t0, . . . , tµ be the coordinates on H∗orb(X ) determined by the homogeneous basis.

Definition 5.2. The Givental connection is the tuple (Fbig,∇Giv, P ) which consists of the trivial
holomorphic vector bundle Fbig := H∗(X ,C)× (U × P1

z), the connection ∇Giv

∇∂tk :=
∂

∂tk
− 1

z
Tk◦τ ,

∇z∂z := z
∂

∂z
+

1

z
E ◦τ +µ

where µ : H∗orb(X ,C)→ H∗orb(X ,C) is the grading operator given by µ(Tk) = deg(Tk)/2 and the
holomorphic Euler vector field E is given by

c1(TX ) +

µ∑
k=1

(
1− deg(Ti)

2

)
tkTk

and the pairing

P : Fbig ⊗ ι∗Fbig −→ OP1
z×U (−d, d) ,

(a, b) 7→ zd(a(z), b(−z))orb

where ι(z, t) = (−z, t) and (−,−)orb is the Orbifold Poincaré pairing.

Notice that the connection ∇Giv is flat (cf. . [Iri09, § 2.2]) and the pairing P is non-degenerate,
(−1)d-symmetric and ∇Giv-flat.

Let Hgen
orb (X ) ⊃ H2(X ) be a minimal homogeneous subspace which generates H∗orb(X ) with

respect to the orbifold cup-product. We write Hgen
orb (X ) = H2(X )⊕H ′orb(X ).
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Definition 5.3. (1) Let α, γ ∈ H∗orb(X ) and τ ∈ Hgen
orb (X ) ∩ U . Define the semi-small

quantum product as the restricton of the quantum product to parameter space Hgen
orb (X ):

α ◦ γ =
∑

d∈EffX

∑
l,k≥0

eδ(d)

l!
〈α, γ, τ ′, . . . , τ ′︸ ︷︷ ︸

l−times

, Tk〉0,l+3,d T
kQd

for τ = δ + τ ′ ∈ H2(X ) ⊕ H ′orb(X ).
(2) The semi-small Givental connection (Fss,∇Giv, P ) is the restriction of the Givental con-

nection to (Hgen
orb (X ) ∩ U)× P1

z.

Let Lξ → X be a orbifold line bundle corresponding to ξ ∈ Pic(X ). For any point (x, g) ∈ Xv ⊂
IX the stabilizer g acts on the fiber Lx by a rational number. This number depends only on the
sector v, hence we denote the number by fv(ξ) and call it the age of Lξ along Xv.
Iritani defined an action of Pic(X ) on (Fbig,∇Giv, P ) and showed that it is equivariant with
respect to this action:

Proposition 5.4. For each ξ ∈ Pic(X ) there is an isomorphism of Gbig

H∗orb(X ,C)× (U × C) −→ H∗orb(X ,C)× (U × C) ,

(α, τ, z) 7→ (dG(ξ)α,G(ξ)τ, z)

which preserves the connection ∇Giv and the pairing P , where G(ξ), dG(ξ) : H∗orb(X ) −→
H∗orb(X ) are defined by

G(ξ)(τ0 +
∑
v∈T ′

τv) = (τ0 − 2πiξ0) +
∑
v∈T ′

e2πifv(ξ)τv ,

dG(ξ)(τ0 +
∑
v∈T ′

τv) = τ0 +
∑
v∈T ′

e2πifv(ξ)τv

where τv ∈ H∗(Xv) and ξ0 is the image of ξ in H2(X ,Q).

It follows from the Proposition above that the Givental connection is invariant under the action
of Pic(X ), however, as observed in [DM13], the functions t0, χ1 = et1 , . . . χr = etr , tr+1, . . . , ts
are not coordinates on H∗orb(X ,C)/P ic(X ). Therefore we mod out only a subgroup namely the
subgroup Pic(X) of line bundles with zero age , i.e. fv(ξ) = 0. The set U is invariant under the
action of Pic(X).

Let V be the quotient of U by the action of Pic(X) and denote by π : U → V the natural
projection. Set χi = eti for i = 1, . . . , r, then t0, χ1, . . . , χr, tr+1, . . . , ts are coordinates for V .

Lemma 5.5.

(1) There is a trTLEP(d)-structure (Gbig,∇Giv, P ) on V such that π∗(Gbig,∇big, P ) = (Fbig,∇big, P ).
(2) Set Vgen := π(Hgen

orb (X ) ∩ U). There is a trTLEP(d)-structure (Gss,∇Giv, P ) on Vgen
such that π∗(Gss,∇Giv, P ) = (Fss,∇Giv, P ) and (Gss,∇Giv, P ) = (Gbig,∇Giv, P )|Vgen .

Proof. The statements are a direct consequence of Proposition 4.4. The connection of (Gbig,∇big, P )
is given by

∇∂tk :=
∂

∂tk
− 1

z
Tk◦κ ,

∇χj∂χj := χj
∂

∂χj
− 1

z
Tj ◦κ for j = 1, . . . , r ,(5.6)

∇z∂z := z
∂

∂z
+

1

z
E ◦κ +µ
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for κ ∈ V . �

Let T0, . . . , Tµ be a homogeneous basis of H∗orb(X ) as above. We assume that 1 = T0 ∈ H0(X ,Z),
T1, . . . , Tr ∈ H2(X ) and Tr+1, . . . , Tµ is a basis of

⊕
k 6=0,2H

k(X )⊕
⊕

v∈T ′ H
∗(X(v)). Addition-

ally we assume that T1, . . . , Tr is a Z-basis of Pic(X) ⊂ H2(X ,Z) and lies in the Kähler cone
K ⊂ H2(X ).

The choice of the basis T0, . . . , Tµ gives rise to an embedding j : H2(X,C)/P ic(X) ↪→ Cr. Let
V ′gen resp. V ′ be the closure of image of j × id.

Proposition 5.7. There exist extensions (Gbig, ∇̂Giv, P ) resp. (Gss, ∇̂Giv, P ) of (Gbig, ∇̂Giv, P )

resp. (Gss, ∇̂Giv, P ) to a log-trTLEP(n)-structure on V ′ resp. V ′gen. Moreover, there is a struc-
ture of a logarithmic Frobenius manifold on V ′.

Proof. The first statement follows from the form of the connection 5.6. The second statement
follows from [Rei09, Proposition 1.10 and Proposition 1.11], where the vector ξ in loc. cit.
corresponds to T0 = 1 here. �

We now recall the fundamental solution of the Givental connection. Define

L(τ, z)α := e−δ/zα−
∑

d∈EffX\{0}
l>0,0≤k≤s

1

l!
〈e
−δ/zα

z + ψ
, τ ′, . . . , τ ′, Tk〉0,l+2,de

δ(d)T k

where τ = δ + τ ′.
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The following proposition summarizes the properties of the fundamental solution.

Proposition 5.8 ([Iri09, Proposition 2.4]).

(1) L(τ, z) satisfies the following differential equations:

∇∂tkL(τ, z)α = 0, ∇z∂zL(τ, z)α = L(τ, z)(µα− ρ

z
α)

where α ∈ H∗orb(X ), ρ := c1(TX) ∈ H2(X ) and µ is the grading operator from Definition
5.2. If we put z−µzρ := exp(−µ log z) exp(ρ log z), then

∇∂tkL(τ, z)z−µzρα = 0, ∇z∂zL(τ, z)z−µzρα = 0 .

(2) L(τ, z) is convergent and invertible on U × C∗.
(3) (L(τ,−z)α,L(τ, z)β)orb = (α, β)orb
(4) dG(ξ)L(G(ξ)−1τ, z)α = L(τ, z)e2πiξ0e2πifv(ξ)α for α ∈ H∗(Xv). In particular

dG(ξ)L(G(ξ)−1τ, z)α = L(τ, z)α

for ξ ∈ Pic(X).
(5) Define L̃(τ, z) := L(τ, z)z−µzρ, then

∇∂tk L̃(τ, z)α = 0, ∇z∂z L̃(τ, z)α = 0 .

Since L and therefore also L̃ is invertible, then the sections si := L̃(Ti) are a basis of flat sections.
The J-function of X is given by L(τ, z)−11 = L(τ, z)−1T0. We set J̃ :=

∑s
i=0 J̃iTi :=

∑s
i=0(si, T0)orbTi =

L̃(τ, z)−1(T0) and get the formula

(5.9) 1 = T0 =

s∑
i=0

J̃isi on C∗z × U .

6. Mirror correspondance

Let X be projective, toric orbifold. In order to state the mirror theorem for toric orbifolds we
have to introduce the I-function.

Definition 6.1. The I-function of a toric orbifold X is defined by

I(χ, z) = e
∑r+e
a=1 e

pa logχa/z
∑
d∈K

χd
∏∞
ν=d〈Di,de(Di + (〈Di, d〉 − ν)z)∏∞

ν=0(Di + (〈Di, d〉 − ν)z)
1v(d) .

We collect a few facts about the I-function.

Lemma 6.2.

(1) e−
∑r+e
a=1 e

pa logχa/zI(χ, z) ∈ H∗orb(X )[z, z−1]Jχ1, . . . , χr+eK.
(2) The function e−

∑r+e
a=1 e

pa logχa/zI(χ, z) is a convergent power series in χ1, . . . , χr+e if and
only if ρ ∈ Ke. In this case, the I-function has the asymptotics

I(χ, z) = 1 +
τ(χ)

z
+ o(z−1) .

The function τ , which take values in H≤2
orb(X ), is a local embedding and is called the

mirror map.
(3) Set Ĩ := Iz−ρzµ then

Ě(Ĩ) = 0 and �Xl (Ĩ) = 0 for l ∈ L .
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Proof. The first point follows directly from the definition of the I-function. The second point is
[Iri09, Lemma 4.2]. The third point follows from �̃l =

∏e
i=1 χ

|lm+i|
r+i · �Xl (cf. Lemma 4.7) and

the [Iri09, lemma 4.19] (Note that Iritani proves this for the equivariant I-function. In order to
to get the statement one simply has to consider the equivariant limit λ→ 0). �

There is the following theorem which compares the I-function from above and the J-function
which has been introduced in Section 5.

Theorem 6.3. [CCT15, Theorem 31, Remark 33] Let ρ ∈ Ke, then the I-function and the
J-function coincide up to a coordinate change given by the mirror map τ ,i.e.

I(χ, z) = J(τ(χ), z) .

We can now identify the two log-trTLEP(d)-structures (0Q̂M
log,X
A ,∇, P ) and (Gss,∇Giv, P ).

Proposition 6.4. There exists an analytic neighborhood WX of 0 in VX such that there is an
isomorphism

θ : (0Q̂M
log,X
A )|P1

z×WX −→ (idP1
z
× τ)∗Gss|P1

z×WX
of log-trTLEP(d)-structures on WX .

Proof. As a first step we define a morphism of holomorphic vector bundles with meromorphic
connections

γ :
(

( ◦0QMlog,X
A )an|Cz×WX ,∇

)
−→ (idCz × τ)∗

(
Gss|Cz×WX , ∇̂

Giv
)
,

1 7→ 1 = T0 .

We set �̃Xl := (idCz × τ)∗�Xl and Ẽ := (idCz × τ)∗Ě. In order to show that the morphism above
is well-defined, the following equations have to hold:

�̃Xl (χ1, . . . , χr+e, z, ∇̂Givzχ1∂χ1
, . . . , ∇̂Givzχr∂χr

, ∇̂Givz∂χr+1
, . . . , ∇̂Givz∂χr+e

)(1) = 0 for all l ∈ L ,

Ẽ(χ1, . . . , χr+e, z, ∇̂Givzχ1∂χ1
, . . . , ∇̂Givzχr∂χr

, ∇̂Givz∂χr+1
, . . . , ∇̂Givz∂χr+e

)(1) = 0 .(6.5)

We are using the presentation 1 =
∑s
i=1 J̃isi of the section 1 on C∗z ×WX . Since the si are flat

sections the equations above are equivalent to

�Xl (χ1, . . . , χr+e, z, zχ1∂χ1
, . . . , zχr∂χr , z∂χr+1

, . . . , z∂χr+e)((idCz × τ)∗J̃i) = 0 ,

Ě(χ1, . . . , χr+e, z, zχ1∂χ1
, . . . , zχr∂χr , z∂χr+1

, . . . , z∂χr+e)((idCz × τ)∗J̃i) = 0 .

But this follows from Theorem 6.3 and Lemma 6.2. Since the equations (6.5) hold on C∗z ×WX
they hold on Cz ×WX by continuity. In order to show that they are isomorphic it is enough to
prove this on the germs at 0 (since we are allowed to shrink WX if necessary). By Nakayama’s
lemma it is even enough to show this on the fiber over 0. But this is clear since both fibers are
isomorphic to H∗orb(X ) and the action of ∇̂Givzχ∂χi

and ∇̂Givz∂χj
resp. zχ∂χi resp. z∂χj for i = 1, . . . , r

and j = r+1, . . . , r+e generate the fibers at 0. It remains to show that this isomorphism extends
to an isomorphism of log-trTLEP(d)-structures.
Denote by D ⊂ WX the normal-crossing divisor given by χ1 · . . . · χr = 0. We will show that
the extensions to {z = ∞} × P1

z \ {0} × D coincide under the isomorphism γ. First notice
that γ gives an identification of local systems (( ◦0QMlog,X

A )an|C∗z×WX
)∇ ' ((idC∗z × τ)∗Gss|C∗z×WX )∇.

The extension is then encoded by the Zr+1-filtrations (F ′•, P•) resp. (F̃ ′•, P̃•). Since we already
know that the extension over C∗z × D coincide we conclude that P• = P̃•. Hence it is enough
to show F ′• = F̃ ′•. Arguing as in Proposition 4.35 it is enough to show that the extensions over
P1
z × {χ = 0} coincide. But this is clearly the case since the subspace FX which generates the
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extension of EX is identified under γ with the subspace generated by T1, . . . , Tr+e which in turn
generates the extension of Gss|Cz×{χ=0}.

�

Using the proposition above we can now deduce an isomorphism of logarithmic Frobenius man-
ifolds.

Theorem 6.6. There is a unique germ Mir : (WX ×Cµ−(r+e), 0) −→ (V, 0) which identifies the
logarithmic Frobenius manifold coming from the big orbifold quantum cohomology (cf. Proposition
5.7 to the one coming from the Landau-Ginzburg model (cf. Theorem 4.39). Its restriction to
WX corresponds to the isomorphism θ of log-trTLEP(d)-structures.

Proof. This follows from Proposition 6.4 and the uniqueness statement in Theorem 4.38. �

7. Crepant resolutions and global tt∗-geometry

In this section we will first recall the notion of a (pure and polarized) variation of TERP-
structures. If a TERP-structure is pure and polarized it gives rise to tt∗-geometry on the un-
derlying space. We will show that the quantum D-module of a toric orbifold X underlies such a
variation of pure and polarized TERP-structures. Our main result is that if X admits a crepant
resolution Z than the pure and polarized TERP-structures glue which gives global tt∗-geometry.

Definition 7.1 ([Her03, Definition 2.12], [HS10, Definition 2.1]). LetM be a complex manifold
and n ∈ Z. A variation of TERP-structures on M of weight d consists of the following set of
data

(1) A holomorphic vector bundle H on Cz ×M
(2) A R-local system L on C∗z ×M, together with an isomorphism

L ⊗R OanC∗z×M −→ H
an
|C∗z×M

such that the induced connection extends to a meromorphic connection ∇ on H such that
∇ has a pole of Poincaré rank 1 along {0} ×M.

(3) A polarization P : L ⊗ ι∗L −→ idRC∗z×M, which is (−1)d symmetric and which induces
a non-degenerate pairing

P : H⊗Cz×M ι∗H −→ zdOCz×M

where non-degenerate means that the induced symmetric pairing [z−dP ] : H/zH⊗H/zH →
OM is non-degenerate.

We now state the definition of a pure and polarized TERP-structure.

Definition 7.2. Let (H,L, P, d) be a variation of TERP-structures onM. LetM be the complex
manifold with the conjugate complex structure and γ : P1 ×M → P1 ×M be the involution
(z, x) 7→ (z−1, x). Consider γ∗H which is a holomorphic vector bundle on (P1 \ {0})×M . Let
OP1CanM be the subsheaf of CanP1×M consisting of functions which are annihilated by ∂z. Define a
locally free OP1CanM-module Ĥ by glueing H and γ∗H via the following identification on C∗z ×M:
Let x ∈M and z ∈ C∗z and define

c : H|(z,x) −→ (γ∗H)|(z,x) ,

a 7→ ∇-parallel transport of z−d · a .

Then c is an anti-linear involution and identifies H|C∗z×M with γ∗H|C∗z×M. The involution c

restricts to complex conjugation (with respect to L) in the fibres over S1 ×M.
(1) (H,L, P, d) is called pure iff Ĥ = p∗p∗Ĥ, where p : P1 ×M→M.
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(2) Let (H,L, P, d) be pure, then

h : p∗Ĥ ⊗CanM p∗Ĥ −→ CanM
(s, t) 7→ z−dP (s, c(t))

is a hermitian form on p∗Ĥ. We call (H,L, P, d) a pure and polarized TERP-structure
if this form is positive definite.

Theorem 7.3. The restriction of the quantum D-module G of a toric orbifold to Cz ×WX \DX
underlies a variation of pure and polarized TERP-structures of weight d.

Proof. The proof carries over almost word for word from the manifold case in [RS15, theorem
5.3]. So we just give a sketch of the proof and refer the reader to loc. cit. for details. Using

the mirror isomorphism θ : (0Q̂M
log,X
A )|P1

z×WX → (idP1
z
× τ)∗Gss|P1

z×WX
it is enough to show that

◦
0QMA underlies a variation of pure and polarized TERP-structures. Notice that the underlying
D-module ◦QMA is isomorphic to FLlocM◦X H

0W+OY×M◦X by the description (4.2) and Proposition
4.4 (2). The Riemann-Hilbert correspondence gives DR(H0W+OY×M◦X ) ' pH0RW∗CY×M◦X .
Therefore DR(H0W+OY×M◦X ) carries a real structure pH0RW∗RY×M◦X . It follows from [Sab97,
Theorem 2.2] that the local system of flat sections of (◦QMA,∇) is equipped with a real structure.
That ◦QMA is pure and polarized follows from [Sab08, Theorem 4.10]. �

The proof of the theorem above shows that variation of pure and polarized TERP-structures
exists on a Zariski open subset of the complexified Kähler moduli spaceMX . In the remaining
part of the paper we glue the complexified Kähler moduli space of a toric Deligne-Mumford stack
X to the complexified Kähler moduli space of a crepant resolution and show that the correspond-
ing variation of TERP-structures also glue on the common domain of definition. This gives the
global tt∗ geometry.

Let X be a simplical, numerical-effective toric variety with fan ΣX . Let a1, . . . , am ∈ N be the
primitive generators of the ray ρ1, . . . , ρm. The canonical stacky fan Σ = (N,ΣX , a) is given
by a(ei) = ai for i = 1, . . . ,m. We denote the corresponding Deligne-Mumford stack by X .
Assume that there exists a crepant toric resolution π : Z → X of X. We denote by ΣZ the
corresponding fan. The rays of ΣZ are denoted by ρ1, . . . , ρm, ρm+1, . . . , ρm+e and the primitive
integral generators by a1, . . . , am, am+1, . . . , am+e (notice that the first m primitive generators
are the same as the primitive generators of X since Z is a resolution of X). The following lemma
is well-known, but the authors could not find a suitable reference.

Lemma 7.4. We have the following equivalence

π : Z −→ X is crepant ⇔ am+1, . . . , am+e ∈ ∂conv(a1, . . . , am)

where conv(a1, . . . , am) is the convex hull of a1, . . . , am.

Proof. The exceptional divisor of π is the divisor
∑m+e
i=m+1Di, where Di is the torus invariant

divisor corresponding to ρi. We write

KZ = π∗KX +

m+e∑
i=m+1

diDi

where the di are the discrepancies of π, i.e. π is crepant if di = 0 for all i ∈ {m+ 1, . . . ,m+ e}.
Denote by ψKX : NQ −→ Q the piece-wise linear function corresponding to the Q-Cartier divisor
KX . The pullback of KX along π is represented by the same piece-wise linear function, i.e.
ψπ∗KX = ψKX . Now fix some k ∈ {m + 1, . . . ,m + e}. Since ΣX is a complete fan there is a
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unique minimal cone σ(ak) ∈ ΣX containing ak. Since the fan ΣX is simplicial we can write
uniquely

ak =

m∑
i=1

ai∈σ(ak)

κiai .

We have ψπ∗(KX)(ak) =
∑
ai∈σ(ak) κi, hence for the discrepancy dk we get

dk =

m∑
i=1

ai∈σ(ak)

κi − 1.

This shows ak lies in the convex hull of {ai : ai ∈ σ(ak)} if and only if dk = 0. Since we assumed
X to be nef we have ∂conv(a1, . . . , am) =

⋃
σ∈ΣX

conv{ai | ai ∈ σ, i = 1, . . . ,m}, which shows
the claim. �

The crepantness of π puts several restrictions on X.

Lemma 7.5. Assume that π : Z → X is a crepant resolution, then
(1) X is an SL-orbifold.
(2) Gen(ΣX) = {am+1, . . . , am+e}.

Proof.

(1) Let c ∈ N be arbitrary and let σ(c) be the unique minimal cone of ΣX containing c. As
above we can write uniquely

c =

m∑
i=1

ai∈σ(c)

κiai.

The claim is equivalent to the fact that deg(c) :=
∑
ai∈σ(c) κi ∈ N. Since ΣZ is a

subdivision of ΣX , hence also complete, we can find a unique minimal cone σ′(c) ∈ ΣZ
containing c and with σ′(c) ⊂ σ(c). Because ΣZ is regular we can uniquely write

c =

m+e∑
j=1

aj∈σ′(c)

κ′jaj

with κ′j ∈ N. Hence we have

c =

m+e∑
j=1

aj∈σ′(c)

κ′jaj =

m+e∑
j=1

aj∈σ′(c)

κ′j

 m∑
i=1

ai∈σ(aj)

κijai

 .

Because the σ(c) was chosen to be minimal and because of the lemma above, this gives

deg(c) =

m+e∑
j=1

aj∈σ′(c)

κ′j

 m∑
i=1

ai∈σ(aj)

κij

 =

m+e∑
j=1

aj∈σ′(c)

κ′j · 1 ∈ N .

(2) Let σ be a cone of ΣX . First notice that the degree deg(c) of an element c is additive
inside a fixed cone, i.e. for c, c′ ∈ σ we have deg(c+c′) = deg(c)+deg(c′). Because of the
first point this shows that {am+1, . . . , am+e} ⊂ Gen(ΣX), since their degree is minimal.
Now assume that c ∈ Gen(ΣX). Because ΣZ is a regular fan, there exists a cone σ′ ∈ ΣZ
such that c =

∑
aj∈σ′ κjaj with κj ∈ N. Since c ∈ Gen(ΣX), we conclude that c = ai0

for some i0 ∈ {m+ 1, . . . ,m+ e}.
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�

We get the following statement from deg(ai) = 1 for i = m+ 1, . . . ,m+ e.

Corollary 7.6. The orbifold cohomology H∗orb(X) is H2
orb-generated.

Consider the sequence

(7.7) 0 −→ L −→ Zm+e −→ N −→ 0 .

Since Z is smooth, we get the exact sequence

0 −→ N? −→ (Zm+e)? ' PL(ΣZ) −→ L? ' Pic(Z) −→ 0

when we apply Hom(−,Z) to sequence (7.7).

We get the following commutative diagram with exact rows:

0 // N∗ // PL(ΣX) //
� _

Θ

��

Pic(X) //
� _

θ

��

0

0 // N∗ // PL(ΣeX) //
� _

��

Pice(X) //
� _

��

0

0 // N∗ // PL(ΣZ) // Pic(Z) // 0

The image of the Kähler cone KX under the embedding Pic(X) ⊗ Q θ−→ Pice(X) ⊗ Q '
Pic(Z) ⊗ Q is a face of the Kähler cone KZ by [OP91, Theorem 2.5]. We need the following
lemma

Lemma 7.8. The images of Dj ∈ (Zm+e)? ' PL(ΣZ) for j ∈ {m+ 1, . . . ,m+ e} do not lie in
KZ .

Proof. The element Dj seen as a piece-wise linear function on the fan ΣZ satisfies Dj(ai) = δij .
For We have

aj =

m∑
i=1

ai∈σ(aj)

κiai

where σ(aj) is the minimal cone in ΣX containing aj . Therefore 1 = Dj(aj) = Dj(
∑
ai∈σ(aj)

κiai) >∑
ai∈σ(aj)

κiDj(ai) = 0 which shows that Dj 6∈ CPL(ΣZ) for i = m + 1, . . . ,m + e. Since we
have N? ⊂ CPL(ΣZ) we see that [Dj ] 6∈ KZ . �

The lemma above shows that we get two r+ e dimensional cones in Pic(Z)⊗Q, namely KZ and
KeX which intersect along the face KX . Now consider the lattice Pice(X) inside Pic(Z)⊗Q. We
will choose two different Z-bases for Pice(X). The first one is p1, . . . , pr+e with the property
that p1, . . . , pr is a Z-basis of the image of θ and [Dm+i] = pr+i for i = 1, . . . , e. The second
basis q1, . . . , qr+e is chosen such that

(1) pi = qi for i = 1, . . . , r,
(2) qi lies in KZ for i = 1, . . . , r + e.

Denote the cones generated by p1, . . . , pr+e resp. q1, . . . , qr+e by CX resp. CZ . Let ΣM be the
fan (with respect to the lattice Pice(X)) generated by the cones CX and CZ together with its
faces. The global Kähler moduli space M is the smooth toric variety corresponding to the fan
ΣM. This space is covered by two chartsMX ' Cr+e resp. MZ ' Cr+e corresponding to the
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cones CX resp. CZ .

If we apply the results of Section 4 to the toric orbifold X resp. toric manifold Z we get the
following isomorphisms of variations of (pure and polarized) TERP -structures from Proposition
6.4 and Theorem 7.3:

(0QMlog,Z
A )|Cz×(WZ\DZ) −→ (idCz × τZ)∗GssZ|Cz×(WZ\DZ) ,

(0QMlog,X
A )|Cz×(WX \DX ) −→ (idCz × τX )∗GssX|Cz×(WX \DX )

where WZ ⊂Man
Z resp. WX ⊂Man

X are analytic neighborhoods of pZ resp. pX .

Remark 7.9. Notice that there is a small caveat here. We have choosen the basis q1, . . . , qr+e
as a Z-basis of Pice(X) ⊂ Pic(Z). In order to apply the results of Section 4 and 5 in the case
X = Z we should choose a basis of Pic(Z) instead of a basis which only generates a sublattice
(of finite index). Notice that this requirement is actually not needed and was only inserted for
the ease of exposition.

Theorem 7.10. There exists a variation of TERP-structures 0QMA on the global Kähler moduli
spaceM and analytic neighborhoods WZ ,WX ⊂Man of the large volume limits pZ , pX such that

(0QMA)|Cz×(WZ\DZ) ' (idCz × τZ)∗GssZ|Cz×(WZ\DZ) ,

(0QMA)|Cz×(WX \DX ) ' (idCz × τX )∗GssX|Cz×(WX \DX ) .

Proof. The proof follows from the fact that 0QMZ
A = 0QMXA since the sequences (7.7) are equal

for the fan ΣZ and the extended stacky fan ΣeX . �

8. The crepant resolution F2 → P(1, 1, 2)

Consider the following fans

Fan ΣX of P(1, 1, 2) Fan ΣZ of F2

The generators of the fan ΣX are given by a1 := (1, 0), a2 := (0, 1), a3 := (−1,−2), the generator
of the extended ray is a4 := (0,−1). The short exact sequence (2.6) is given by

0 // N? ' Z2

 1 0
0 1

−1 −2
0 −1


//⊕4

i=1 ZDi

(
1 0 1 −2
0 1 0 1

)
// L? ' Z2 // 0

where we have chosen [D1], [D2] as a basis for L?. The image of Θ : PL(ΣX) →
⊕4

i=1 ZDi is
given by Θ(PL(ΣX)) = {aD1 + bD2 + cD3 +dD4 | d = 1

2a+ 1
2c}. The lattice PL(Σe) is given by

{aD1 + bD2 + cD3 + dD4 ∈
⊕4

i=1 ZDi | 1
2a + 1

2c ∈ Z} and Pice(X) is generated by 2[D1], [D2]
or equivalently by [D2], [D4].
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Pice(X)

L?

Extended Kähler cone of P(1, 1, 2)

Kähler cone of F2

[D1], [D3]

[D2][D4]

For a basis of Pice(X) we choose p1 = [D2] and p2 = [D4] inside the extended Kähler cone of
P(1, 1, 2) . Therefore we have

[D1] =
1

2
p1 −

1

2
p2 [D2] = p1 D1 =

1

2
zχ1∂χ1 −

1

2
zχ2∂χ2 D2 = zχ1∂χ1 ,

[D3] =
1

2
p1 −

1

2
p2 [D4] = p2 D3 =

1

2
zχ1∂χ1

− 1

2
zχ2∂χ2

D4 = z∂χ2
.

From Proposition 4.4 we get the following operators defining QMX
A where χ1 and χ2 are coor-

dinates with respect to the basis p1, p2:

Ě = z2∂z + 2zχ1∂χ1
,

�X(0,1,0,1) = χ1 −D2D4 = χ1 − zχ1∂χ1z∂χ2 ,

�X(1,0,1,−2) = D2
4 −D1D3 = (z∂χ2

)2 − 1

4
(zχ1∂χ1

− zχ2∂χ2
)
2
,

�X(1,1,1,−1) = χ1D4 −D1D2D3 = χ1(z∂χ2
)− 1

4
(zχ1∂χ1

− zχ2∂χ2
)2zχ1∂χ1

.

We now compute the operators for QMZ
A. For a basis of Pice(X) ⊂ Pic(Z) inside the Kähler

cone of F2 we choose: q1 = [D2] and q2 = 2[D1] and get

[D1] =
1

2
q2 [D2] = q1 D1 =

1

2
zη2∂η2 D2 = zη1∂η1 ,

[D3] =
1

2
q2 [D4] = q1 − q2 D3 =

1

2
zη2∂η2 D4 = zη1∂η1 − zη2∂η2 .

We get the following operators where η1 and η2 are coordinates corresponding to the basis q1, q2:

Ě = z2∂z + 2zη1∂η1 ,

�Z(0,1,0,1) = η1 −D2D4 = η1 − (zη1∂η1)(zη1∂η1 − zη2∂η2) ,

�Z(1,0,1,−2) = η2
2D4(D4 − z)−D1D3 = η2

2(zη1∂η1 − zη2∂η2)(zη1∂η1 − zη2∂η2 − z)−
1

4
(zη2∂η2)2 ,

�Z(1,1,1,−1) = η1η
2
2D4 −D1D2D3 = η1η

2
2(zη1∂η1 − zη2∂η2)− 1

4
(zη1∂η1)(zη2∂η2)2 .

We want to solve the Birkhoff problem in a family (cf. [Sab07, Chapter VI.2]) for QMX
A and

QMZ
A and compare the solutions. First consider the following basis of QMX

A :

1, (zχ1∂χ1
), z∂χ2

, (zχ1∂χ1
)2 .
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The connection is then given by

d+
1

z


0 0 χ1 0
1 0 0 2χ1χ2

0 0 0 χ1

(
4− χ2

2

)
0 1 0 0

 dχ1

χ1
+


0 0 0 χ1χ2

0 0 0 0
0 0 0 0
0 0 0 0

 dχ1

χ1

+
1

z


0 χ1 − 2χ1χ2

4−χ2
2

0

0 0 0 χ1

1 0 0 0
0 0 1

4−χ2
2

0

 dχ2 +


0 0 0 χ1

0 0 0 0
0 0 χ2

4−χ2
2

0

0 0 0 0

 dχ2

+


0 0 −2χ1 0
−2 0 0 −4χ1χ2

0 0 0 −2χ1

(
4− χ2

2

)
0 −2 0 0

 dz

z2
+


0 0 0 −2χ1χ2

0 1 0 0
0 0 1 0
0 0 0 2

 dz

z
.

Notice that this basis does not solve the Birkhoff problem in family since the basis is not flat
with respect to the residue connection at z =∞ . Consider now the basis

1, (zχ1∂χ1
),

1

2

√
4− χ2

2(z∂χ2
), (zχ1∂χ1

)2 − χ1χ2 .(8.1)

With respect to this basis the connection is given by

d+
1

z


0 χ1χ2

1
2χ1

√
4− χ2

2 0
1 0 0 χ1χ2

0 0 0 2χ1

√
4− χ2

2

0 1 0 0

 dχ1

χ1
+

1

z


0 χ1

−χ1χ2

2
√

4−χ2
2

0

0 0 0 χ1
2√

4−χ2
2

0 0 − 2χ1χ2√
χ2
2−4

0 0 1

2
√

4−χ2
2

0

 dχ2

+


0 −2χ1χ2 −χ1

√
4− χ2

2 0
−2 0 0 −2χ1χ2

0 0 0 −4χ1

√
4− χ2

2

0 −2 0 0

 dz

z2
+


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 2

 dz

z

and therefore solves the Birkhoff problem in a family. Notice that one can read of a differential
equation for the mirror map from the connection matrices above. It is given by

Mir−1(χ1, χ2) = (χ1, κ(χ2))

with ∂κ
∂χ2

=

√
4−χ2

2

2 . That is

κ(χ2) =
χ2

√
4− χ2

2

4
+ arcsin(

χ2

2
) .

A similar computation shows that the basis

1, (zη1∂η1), (1−
√

1− 4η2
2) · (zη1∂η1) +

√
1− 4η2

2 · (zη2∂η2), (zη1∂η1)2 − η1(8.2)

provides a solution for the Birkhoff problem in a family for QMZ
A.

The gluing of the Kähler cones given in the figure above encodes the following change of coordi-
nates

χ1 = η1η2, χ2 = η−1
2 .

Computing carefully the change of coordinates and the change of basis from (8.1) to (8.2) shows
that the two solutions of the Birkhoff problem are the same which means that the extensions at
infinity are the same. One should mention that in [CIT09], Corti-Iritani-Tseng prove a similar
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statement but as we are working on a global D-module, which is defined globally on the B-side,
we do not need an analytic continuation argument.
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