LOGARITHMIC DEGENERATIONS OF LANDAU-GINZBURG MODELS
FOR TORIC ORBIFOLDS AND GLOBAL tt* GEOMETRY

ETIENNE MANN AND THOMAS REICHELT

ABsTrRACT. We discuss the behavior of Landau-Ginzburg models for toric orbifolds near the
large volume limit. This enables us to express mirror symmetry as an isomorphism of Frobenius
manifolds which aquire logarithmic poles along a boundary divisor. If the toric orbifold admits
a crepant resolution we construct a global moduli space on the B-side and show that the
associated tt*-geometry exists globally.
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1. INTRODUCTION

The present paper deals with classical Hodge-theoretic mirror symmetry for smooth toric Deligne-
Mumford stacks. One of the first mathematical incarnations of this type of mirror symmetry
was a theorem of Givental identifying a solution (the so-called J-function) of the Quantum
D-module of a (complete intersection inside a) smooth toric variety with a generalized hyper-
geometric function (the I-function). This has laid the foundation to express mirror symmetry
as an equivalence of differential systems matching the Quantum D-module on the A-side with
certain (Fourier-Laplace transformed) Gauk-Manin systems coming from an algebraic family of
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maps (the Landau-Ginzburg model) on the B-side. An analytic proof of this fact using oscillat-
ing integrals was given by Iritani in [Iri09]. A purely algebraic proof was given in [RS15] where
it was also shown that the Frobenius manifold an the A-side, which encodes the big quantum
cohomology, is isomorphic to a Frobenius manifold on the B-side which comes from the Landau-
Ginzburg model. The construction of Frobenius manifolds is a classical subject in singulartity
theory. The first examples arose from the work of K.+ M. Saito on the base space of a semi-
universal unfolding and later it was shown by Sabbah partly with Douai [DS03],[DS04],[Sab06]
that these results carry over to an algebraic map which satisfies certain tameness assumptions.
However, their construction is not unique in the sense that it depends on the choice of a good
basis, which provides a solution to a Birkhoff problem, and on the choice of a primitive section.
To circumvent this problem a careful analysis of the Fourier-Laplace transformed Gauf-Manin
system and its degeneration along a boundary divisor, which contains the large volume limit, was
carried out in [RS15] in the case of Landau-Ginzburg models which serve as mirror partners for
smooth nef toric varieties. Beyond the smooth case partial results for weighted projective spaces
were obtained in [DM13]| where mirror symmetry is proven as an isomorphism of logarithmic
Frobenius manifolds without pairing.

In this paper we prove mirror symmetry for smooth toric Deligne-Mumford stacks, satisfying
a positivity condition, as an isomorphism of logarithmic Frobenius manifolds, which general-
izes the theorem obtained in [RS15] for smooth nef toric varieties. In order to ensure a good
behavior of the connection and the pairing along the boundary divisor a careful choice of the
coordinates on the complexified Kdhler moduli space is needed. Since the Fourier-Laplace trans-
formed Gaufk-Manin system is a cyclic D-module, the generator is a canonical candidate for the
primitve section. The Birkhoff problem is solved at the large volume limit where we identify the
fiber of the holomorphic bundle with the orbifold cohomology of the toric Deligne-Mumford stack.

The notion of tt* geometry was introduced by Cecotti and Vafa in their study of moduli spaces of
N = 2 supersymmetric quantum field theories. Hertling [Her03] formalized this structure under
the name of pure and polarized TERP-structures and showed that the base space of a semi-
universal unfolding of an isolated hypersurface singularity carries such a structure. In the case of
a tame algebraic map, a theorem of Sabbah [Sab08| shows that the corresponding Fourier-Laplace
transformed Gaufi-Manin system underlies a pure and polarized TERP-structure. In [RS15] this
was used to show that a Zariski open subset of the base space of the Landau-Ginzburg model
carries a pure and polarized TERP-structure. Using mirror symmetry this induces ¢t* geome-
try on the quantum D-module. Iritani [Iri09] gave an intrinsic description of the corresponding
real structure on the A-side using K-theory. In this paper the result of [RS15] is generalized
to toric orbifolds. If the toric orbifold X admits a crepant resolution Z we construct a global
base space which contains two limit points corresponding to the large volume limit points of X
and Z respectively. We prove that there exists tt*-geometry on the whole moduli space which,
when restricted to some analytic neighborhood of the large volume limits, is isomorphic to the
tt*-geometry coming from the quantum cohomology of X resp. Z. The result here is in the
sprit of Y.Ruan’s Crepant Transformation conjecture which has stimulated a lot of research:
[BMP11, BMP09, Per07, BG09b, BG09a, BG09¢c, BG08, BGP08, CLLZ14, CLZZ09, CIT09,
Coa09, CR13, Rua06, Iwa08, LLW11, LLW13, LLQW14].

Shortly after finishing this paper we learned that Coates-Corti-Iritani-Tseng [CCIT16] also stud-
ied Hodge-theoretic mirror symmetry for toric orbifolds. While their result is broader in the
sense that firstly they allow orbifolds with generic stabilizer, secondly they do not need the
nef assumption and thirdly they construct a mirror Landau-Ginzburg model even for the big
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orbifold quantum cohomology, their construction is inherently local on the complexified Kahler
moduli space since they use a formal version of the Gaufi-Manin system in the non-nef case and
an analytic version of the Gaufl-Manin in an analytic neighborhood of the large volume limit.
The Gaul-Manin system which we construct in this paper is defined on the whole complexified
Kahler moduli space and is algebraic. These two facts are essential in the proof of the existence
of tt*-geometry on the whole Kéhler moduli space.

We give a short overview of the contents of this paper: In section 2 we recall some standard facts
on toric Deligne-Mumford stacks. An import ingredient in the construction of the mirror Landau-
Ginzburg model is the extended stacky fan of Jiang [Jia08]. This enables us to introduce the
extended Picard group and the extended Kéhler cone which are needed to construct coordinates
on the base space of the mirror Landau-Ginzburg model. In section 3 we review the notion
of the Fourier-Laplace transformed Gauf-Manin system and cite some results of [RS15],[RS17]
which identifies the FL-Gauf-Manin system of a family of Laurent polynomials with a FL-
transformed GKZ-system for which an explicit description as a cyclic D-module is available. In
the fourth section we use the results of the previous section to calculate the FL-transformed
Gauf-Manin system corresponding to the Landau-Ginzburg model (cf. Proposition 4.4). As a
next step we show that the FL-transformed Brieskorn lattice is coherent over the tame locus of
the Landau-Ginzburg model (Theorem 4.10). We then analyze the degeneration behavior along
a boundary divisor which contains the large volume limit. Finally we prove that there exists a
canonical germ of a logarithmic Frobenius manifold associated to the Landau-Ginzburg model.
Section 5 reviews orbifold quantum cohomology and the Givental connection. We show that the
big quantum cohomology gives rise to a logarithmic Frobenius manifold (Proposition 5.7). In
section 6, using a Givental-style mirror theorem of Coates, Corti, Iritani and Tseng [CCIT15], we
combine the last two sections to express mirror symmetry for toric Deligne-Mumford stacks as an
isomorphism of logarithmic Frobenius manifolds (Theorem 6.6). In section 7 we consider a toric
orbifold X admitting a crepant resolution Z and construct a global Landau-Ginzburg model. We
prove that there exists a pure and polarized variation of TERP structures on the base space M
of this model which gives the tt*-geometry of the corresponding quantum D-modules in different
neighborhoods of M.

2. SOME TORIC FACTS

Let G be a free abelian group. We associate to it the group ring C[G] which is generated by
the elements x9 for g € G. Its maximal spectrum Specm(C[G]) = Hom(G,C*) is naturally a
commutative algebraic group (i.e. a torus). Let a: G — H be a group homomorphism between
the free abelian groups G and H. This induces a ring homomorphism

¢a : C|G] — C[H],
7 9
and a morphism of algebraic groups
¥q : Specm(C[H]) — Specm(C[G]) .
Choose a basis g1,...,9n resp. hi,...,h, of G resp. H. The homomorphism a is then given

by a matrix A = (a;;) with a(g;) = Z;n:l a;jh;. The bases also determine coordinates x; = x%

resp. y; = X" which identifies Specm(C[G]) with (C*)" and Specm(C[H]) with (C*)™. In these
coordinates the map v, is given by
)™ —(CH",
(y17 LR 7ym) = (yﬂla oo 7ygn)
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where y% =[]\, y; .
2.1. Toric Deligne-Mumford stacks. A toric Deligne-mumford stack is constructed by a so-
called stacky fan which was introduced by [BCS05]. A stacky fan
¥=(N,%,0a)
consists of

e a finitely generated abelian group N of rank d,

e a complete simplicial fan ¥ in Ng := N ®z Q, where we denote by (k) the set of
k-dimensional cones of ¥ and by {p1,..., pm} the rays of ¥,

e a homomorphism a : Z™ — N given by elements ai,...a, of N with a; € p; and
a(e;) = a;, where ey, ..., e, is the standard basis of Z™.

Assumption: In the rest of the paper we will assume that N is torsion-free.
If we choose a basis vy,...,vq of N the map a is given by a matrix A = (ag;).

The morphism a gives rise to a triangle in the derived category of Z-modules

7™ %5 N — Cone(a) 2Ny
We apply the derived functor RHom(—,Z) and consider the associated long exact sequence
(2.1) 0 — N* %5 (Z™)* — Ext! (Cone(a),Z) — 0,

where the injectivity of a* follows from the fact that the image of a has finite index in N and the
surjectivity of (Z™)* — Ext'(Cone(a),Z) follows from Ext!(N,Z) = 0, i.e. from our assump-
tion that N is free.

Applying Hom(—,C*) to the exact sequence (2.1) gives the short exact sequence
0— G 2% (C)™ — Hom(N*,C*) — 0,

where G := Hom(Ext'(N,Z),C*). Here we have used the fact that C* is a divisible group, hence
Hom(—,C*) is exact.

The set of anti-cones is defined to be

A= {I c{1,...,m}| Zonpi is a cone inZ} .
il
Each I € A gives rise to a subvariety C! € C™ given by {(x1,...,2,) € C™ | x; =0 fori ¢ I}.
We set
Us:=Cm\ [ .
IgA
The toric Deligne-Mumford stack associated to this data is the following quotient stack:
X :=X(X2) :=[Ua/G],

where G acts on U4 via 1q.

For o € ¥ we set

(2.2) I,:={ie{l,....,m}|a; €c}.



and define
Box(o)={a e N |a= Zriai,ogri <1}.
ai€o
We set
Boz(X) = U Boz (o).
oES

The inertia stack ZX(X) is the fiber product taken over the diagonal maps X — X x X. Its
components are indexed by the set Boz(X):

X)) = || Xo,
vEBox(X)

where X/, is the toric orbifold X' (3 /o (v)) with o(v) being the smallest cone in ¥ which contains
v (cf. [BCS05] Section 4).

We have the following description of the orbifold cohomology ring of X'. As a Q-vector space it
is isomorphic to the direct sum of the cohomology groups of the components of its inertia stack:

;rb(XvQ) = @ H*imv (X(U)7Q) )

vEBox(X)

where i, := Y r; for v € Box(X). The orbifold cohomology of X carries a product which makes

H} ,(X,Q) into a graded algebra. A combinatorial description in terms of the fan has been

given by Borisov, Chen and Smith [BCS05] and, in the semi-projective case, by Jiang and Tseng
[JT08]. We equip

QN] = P ax
ceN

with the product

N Xt if there exists o € ¥ such that ¢1,¢; € 0,
0 otherwise .

Let ¢ € N and o(c) be the minimal cone containing ¢. Then ¢ can be uniquely expressed as
Cc = Z riQ; .
a;€oa(c)
We define

deg(x©) := deg(c) = Zri .
Using this graduation Q[N] becomes a graded ring. By [BCS05] we have the following isomor-
phism of Q-graded rings:
Q[N]
{3201 klai)x
Denote by PL(X) the free Z-module of continuous piece-wise linear functions on ¥ having integer

values on N. We have the natural embedding of N* = Hom(N, Z) into PL(X), where the cokernel
of this map is isomorphic to the Picard group of the underlying coarse moduli space X := X (X):

(23) :T'b(X7Q) =

k€ N*}’

(2.4) 0— N*— PL(X) = Pic(X) — 0.
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We have isomorphisms

0—=N"®@Q——=PL(E)®Q — Pic(X)®Q——0

A

0—=N*"®Q Qm H2(X,Q) —=0

where the image of the standard gemerator D; € Q™ in PL(X) ® Q is the piece-wise linear
function having value 1 on a; and 0 on a; for j € {1,...,m} \ {i}. We denote the image of D;

in Pic(X) ® Q by [D;].

2.2. Extended stacky fans. Toric Deligne-Mumford stacks can also be described by a so-called
extended stacky fan (cf. [Jia08]). To the datum of a stacky fan 3 = (N, X, a) one adds a map
Z¢ — N and writes S = {am+1,-..,am+e} for the image of the standard basis. By abuse of
notation we will call the following map still a:

a:Z"te — N,
e, —ale)=a; fori=1,...m+e.
The S-extended stacky fan 3¢ = (N, X, a) is given by the free group N, the fan ¥ and the map
a:Zmte - N.

Assumption: In the following we will choose a;, 41, ..., @mte in such a way so that a is surjective.

We denote by IL the kernel of a. This gives us as above the two exact sequences

(2.5) 0—L-—2zm* % N-—0,
(2.6) 0— N* — (Z"™%)* — L* — 0.
We denote by D1, ..., Dy . the standard basis of (Z™¢)*, i.e. D;(e;) = ;5 and by [D1], ..., [Dpme)

the images of Dy, ..., Dp4e in L*.

Applying the exact functor Hom(—,C*) to the sequence 2.6 gives a map
Yot G¢ = (C)™F,
where G¢ := Homgz(IL*,C*). We set
UG :=Ux x (C)°,
then G*® acts on U9 via 1), and the quotient stack
U/ G
is isomorphic to the stack X(X) by [Jia08|.

Remark 2.7. Given a stacky fan ¥ = (N, X, a) there exists a “canonical” choice of an extended
stacky fan 3°. Let Gen(o) be the subset of Box(o) of elements which are primitive in o N N,
i.e. which can not be generated by other elements in the semigroup ¢ N N and set Gen(X) :=

Uses Gen(a).

In the following we will always choose
S = Gen(Y)
and we will set

n:=m-de
6



and G :={ay,...,an} UGen(X). Notice that {ay,...,a,} N Gen(X) = 0, hence the cardinality
of G is n.

This choice of an extended stacky fan will allow us to give a different description of the orbifold
cohomology ring which will be very useful for our purposes.

We introduce for every a; € G a formal variable ©,. For a top-dimensional cone o € X(d) define
in C[®4,...,D,] the ideal

j(a)::< II 2:- I @;“|Zliai:0,lieN>.

1;>0,a;€0 1;<0,a; €0 a; €0
We call relations [ = (I4,...,l,) of such type cone relations. The ideal
J(®):= ), Jlo)
oeX(d)

is called the cone ideal of X.
Let K(X) be the ideal which is generated by

Ek.::ZamiDi for k=1,....d,
=1

where ay; is the k-th coordinate of a; € Z¢.

We call I C {1,...,n} a generalized primitive collection if the set {a; | ¢ € I} is not con-
tained in a cone of ¥ and if any proper subset of {a; | ¢ € I} is contained in some cone of ¥.. We
denote by GP(X) the set of generalized primitive collections.

The orbifold cohomology of X can then be expressed in the following way.

Lemma 2.8 (|[TW12| Lemma 2.4). Let deg(®;) = deg(a;) for i = 1,...,n, then we have an
isomorphism of graded C-algebras

CD1,...,Dn]
J(E)+KE) + (L, Di [ 1 € GP(X))

which sends ©; to x* fori=1,...n.

()

orb

Remark 2.9. We would like to remind the reader that the ordinary cohomology ring of the
underlying coarse moduli space X is given by

CD1,..., D]

H*(X,C) ~ KE) + (ILier @i [ T € P(X))

where P(X) is the set of primitive collections. Here a collection I C {1,...,m} is primitive if
the set {a; | i € I'} does not lie a cone of ¥ but any proper subset does.

2.3. The extended Picard group. We have the following commutative diagram (cf. (2.4))

0 N* (Zn)* L* 0

o

0 —— N* —— PL(¥) —— Pic(X) ——=0
7



where the map PL(X) — (Z™)* is given by
(2.10) ©: PL(X) — (Z™)*,
s ((,0(&1), R @(an)) .

We want to determine the image of this map. For this we consider the distinguished relations

(211) aerk—Zrkiai:O fOI’k:L...,e,
i€ly

which give elements [1,...,l. € L ® Q.

Lemma 2.12. The image of © is as saturated subgroup of (Z™)*, i.e.
(O(PL(2)) @2 Q)N(Z")* = ©(PL(Y)).
Proof. Denote by K the kernel of the map
@y — e
x> (z(lh), .., 2(le))
In order to show the claim it is enough to show the following equality
K=0(PL(X)).

since a kernel is always saturated. It is clear that ©(PL(X)) C K since a function in PL(X)
is linear on each cone ¢ € ¥. Now let v € K and let ¢ € X(d) be a maximal cone. Choose a

Z-basis aj,,...,a;j, in the set Gen(o) U {a; | a; € c}. The values u(aj,),...,u(a;,) determine
an element m, € N*. Since u € K we get u(a;) = my(a;) for alle a; € o with j = 1,...,n.
Repeating this for any cone we get an element in PL(Y¥) whose image under © is u. O

We denote by PL(X¢) the full sublattice of (Z™)* generated by ©(PL(X)) and the elements
Dty -y Diye = Dy, and call its image in IL* the extended Picard group Pic¢(X).

We get an exact sequence of Z-free modules

(2.13) 0 — N* — PL(X°) — Pic®(X) — 0.
The map © induces a map
(2.14) 0 : Pic(X) — Pic*(X).

Notice that the images of [D;] € Pic(X)®@ Q for i = 1,...,m in Pic®(X) ® Q are given by

0([Di]) = [Di] + Y kil Donya]
k=1

which follows from the formulas 2.10 and 2.11.

2.4. The extended Ké&hler cone. In this section we follow [Iri09]. Inside PL(X) we consider
the cone of convex functions CPL(Y). It has non-empty interior since X is projective. We denote
its Q>o-span in H?(X,Q) by K. Consider now the cone CPL(X¢) generated by O(CPL(X)) and
Dypt1; -, Dige. We denote the Q>g-span of ©(CPL(X)) resp. CPL(X°) in L* ® Q by K resp.
K¢ and call it the Kahler resp. extended Ké&hler cone.

We denote the image of anti-canonical divisor —Kx of X in Pic(X)® Q ~ H?(X,Q) by p. It is
given by p = [D1] +...[Dy,]. The toric variety X is weak Fano if p € K. Consider the following
class in L*

p:=[D1]+ ...+ [Dm+e] -
8



Later we will impose the following condition
peKe.
There is the following characterization of this condition

Lemma 2.15. [Iri09, Lemma 3.3] We have p € K¢ iff p € K and deg(a;) < 1 fori = m +
1,...,m+e.

Proof. The element p can be expressed in the following way

p=[Di]+...+ [Dire] = 0([D1]) + .. +Z 1—2% k]

=0([D1]) + ...+ 0([Dm]) + Z(l — deg(amx))[Drm-+1]
k=1

€ K (S3) @Q[Dmﬂc} .
k=1

The last term is in K¢ iff deg(am4r) < 1lfor k=1,...,e. a

Notice that the degree function deg gives rise to a piece-wise linear function ¢ which is given by
(2.16) wla;) =1 for i=1,...,m

This piece-wise linear function corresponds to the anti-canonical divisor. If we assume that X is
nef (i.e. p € K) then ¢ is a convex function.

Remark 2.17. It follows from Lemma 2.8 and Lemma 2.15 that for the choice S = Gen(X) we
have an isomorphism Horb(/'t’ Q) ~L*2Q.

We now introduce the so-called extended Mori cone. Set
A ={TUu{m+1,....m+e}|Ic A}
and
K:={decLoQ|{ic{l,...,m+e}|(D;d) € Z} € A},
T —{deLoQ|{ic{l,...,m+e}|(D;d) € Zso} € A°}.

Notice that the lattice L C K acts on K.
Denote by [-], || and {-} the ceiling, floor and fractional part of a real number.

Lemma 2.18 ([Iri09, Section 3]). The map
K/L — Boz(X),

m-—+te
dv(d) ==Y [(Di,d)]a;
i=1
is bijective.
Proof. We first notice that >.""*°[(D;,d)]a; € N. From the definition of K and the exact

sequence 2.5 we get
m-+te m-+te

(2.19) v(d) = > ({=(Di,d)} + (Dy, d))a Z{ (Diyd)}ya; = > {—(Di,d)}a;
i=1 a; €0

for some . This shows v(d) € Boxz(c). From the formula 2.19 we easily see that the map d —
v(d) factors through K — K/L. Choose v € Box(X). We can express v either as v = n;a;
9
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with n; € N since S = Gen(¥) or as v = > _,; ma; € Box(X) with r; € [0,1) (cf. (2.2) for the
definition of I,,). The equation Zaiea n;a; —Zielg r;a; = 0 gives rise to an element in K C L®Q,
this shows the surjectivity. In order to show injectivity let d,d’ € K with v(d) = v(d’). This
means there exists a 0,0’ € ¥ such that

Y {—(Did)}ai = v(d)=v(d) = Y {~(Di,d)}ai

since both cones are simplicial we find a cone ¢’ C o N o’ such that

o(d)= Y {~(Did)}a; = Y {~(Did)}a; = v(d)

a;Ec’’ a; €0’
and therefore {—(D;,d)} = {—(D;,d"}} for all i = 1,...m + e. Hence {(D;,d —d')} = 0 and
there fore d — d’ € IL. This shows the injectivity. O

Denote by Pic®(X)* C L®Q the lattice dual to the extended Picard group Pic?(X) C L* which
gives the following short exact sequence of free Z-modules

(2.20) 0 — Pic®(X)* — PL(X°)* — N — 0.
Lemma 2.21. There are the following inclusions
L cKcC Pic*(X)*.

Proof. The first inclusion follows from the fact that {1,...,m + e} € A°. In order to prove
the second equation we notice that for each v € Box(¥) we can write v = >, . nia; =
Zield r;a;. Denote by d, € L ® Q the element in K C L. ® Q which corresponds to the relation
Zaiea n;a; — Eiela ria; =. The proof of Lemma 2.18 shows that K is the union of the sets
dy, + L for v € Boxz(X). So in order to prove the second inclusion it is enough to show that
d, € Pic*(X)*. For this we need to check that L(d,) € Z for every L € Pic®(X). Recall
that Pic®(X) is the image of PL(X¢) C (Z")* which in turn is generated by ©(PL(X)) and
Dyi1,- -y Diye. Take a lift ¢ = O(p) + er:;neﬂ t:D; = > p(a;)D; + E;E:H t;D; of L in
PL(X¢). We have

m m-+te
L(dy) = @e(z nie; — Z rie;) = Zni@(ai) + Z ting — @(Z ria;) € Z
ai€o iel, i=1 i=m+1 icl,
since ¢ is integer-valued on N. O

3. LAURENT POLYNOMIALS AND GKZ-SYSTEMS

In this section we review some results from [RS15] and [RS17] concerning the relationship be-
tween (Fourier-Laplace-transformed) Gauk-Manin systems of families of Laurent polynomials
and (Fourier-Laplace-transformed) GKZ-systems.

Notation 3.1. We will first review some notations from the theory of algebraic D-modules. Let
X be a smooth algebraic variety over C of dimension d > 1. We denote by Dx the sheaf of alge-
braic differential operators and by Dx = I'(X, Dx) its sheaf of global sections. Recall when X
is affine there is an equivalence of categories between D-modules on X which are quasi-coherent
as Ox-modules and the corresponding Dx-module of global sections. If M is a D-module on
X we will write M for its module of global sections. We denote by M (Dx) the abelian cate-
gory of algebraic Dx-modules and the abelian subcategory of (regular) holonomic Dx-modules
by M;(Dx) (resp. M,,(Dx)). The full triangulated subcategory of D®(Dx) which consists
of objects with (regular) holonomic cohomology is denoted by D% (Dx) (resp. DP,(Dx)). Let
f: X — Y be a map between smooth algebraic varieties and let M € D?(Dx) and N € D?(Dy).
10



L
The direct (resp. inverse) image functors are defined by fi M := Rf.(Dy.x ® M) (resp.
L
fTN :=Dx_y ® fIN).

Let V' := C; x X be a trivial vector bundle on X of rank one and denote by ¥V = C, x X its
dual. Denote by can : V' x x V — C the canonical pairing between its fibers.

Definition 3.2. Let £ := Oyry ,pe™ " be the free rank one module with differential given by
the product rule. Denote by p1: V' xxV —= V', po: V' xxV — V the canonical projections. The
Fourier-Laplace transformation is defined by

L
FLx(M):=py(pf ML) for M € D:(Dy).

Set z =1/7 and denote by j, : C* x X < C, x X and j, : C* x X =V :=C, x X =PL\ {r =
0} x X the canonical embeddings. The partial, localized Fourier-Laplace transformation is defined
by

FL(M) := j.1 jT FLx(M)  for M e D}(Dy).

Set V :=C. x A, where A = C™ with coordinates Aq,...,An. Let Abeadxn integer matrix
with columns (ay, ..., a,) and entries ay; fork =1,...,d,i=1,...,nand 8 = (B1,...,8q4) € CL
We denote by L. C Z™ the Z-submodule of relations among the columns A4, ie. (l1,...,l,) € L

Definition 3.3. The Fourier-Laplace-transformed GKZ-system J\?f“"’ is the left Dy -module
Dy, [271]/I, where I is the left ideal generated by the operators ﬁb E), — Brz and E — Byz, which
are defined by

0, : H (z-0y,)7h — H (z-0y,)" forlel,

2:0;<0 2:1;>0

E = z%0, + Z ZAi0h,

=1

m
Ek = Zakiz/\l@&. .
i=1

We denote the corresponding Dy -module by M\Sfo”@),

Let Y = (C*)4, we define a related family of Laurent polynomials:
0a=(pa,pra) : Y x A — V:=Cy, x A,

(Ys Adses An) (—ZA@@@-,AL...,A“).
i=1

The Gauk-Manin system is the zeroth cohomology of the direct image of the structure sheaf
Oy «a in the category of D-modules:

HO(SOA,+OY><A) .
We now consider the localized partial Fourier-Laplace transform of the Gaufi-Manin system of
PA:

Gt = FLRNH (a1 Oyxa)-
11



Write Gt := H 0(177g+) for its module of global sections. Then there is an isomorphism of
Dg-modules (cf. e.g. [RS17, Lemma 3.4])

G 0 (035 A = dyoan).

where d is the differential in the relative de Rham complex Q3 /A"
The following result relates the localized FL-transform of the Gaufi-Manin system of ¢4 with a
certain FL-transformed GKZ-system.

Proposition 3.4. Assume Ry A = R?, then we have an isomorphism
Gt~ MY
Proof. This follows from [RS17, Proposition 3.3] and the assumption. g

In the following we set /\//TA = M\f’o) resp. M\A = M©0),

For certain parameters A € A the fibers of @ 4(-, A) acquire singularities at infinity. Outside this
set the singularities of the D-module Gt are particularly simple.

Let @ be the convex hull of the set {a; :=0,a,,...,a,}:
Q = conv(0,ay,...,a,) .
The volume of @ is denoted by
= vol(Q)
where the volume of a hypercube [0,1]? is normailzed to d!.
Let T be a face of Q and denote by Ylfrit’(’\o’é) the set

{(y1,-.-,ya) €Y | Z Aiy% =0 ykayk(z Aiy%) =0 forall ke({l,...,d}}.
a; €l a; el
We say that the fiber gpzl(/\o, A) has a singularity at infinity if there exists a proper face I" of
the Newton polyhedron @ such that YFCM’(AO’A) = (). The set
A% :={(Ao,A) € Cy, x A | A0 # @Q such that Y02 £ gy

is called the non-tame locus of ¢ 4. Notice that A% is independent of ¢ since O lies in the

interior of @, hence no proper face of @ contains 0. Denote the projection of A% to A by A%
Let A* := A\ {\-...- A\, =0} and define

A° = A%\ Abed
The following was proven in [RS17| Lemma 3.13:

Lemma 3.5. Consider M\A as a Dpy  x-module, where A is a smooth projective compactification
of A. Then M is regular outside ({z=0} x A) U (PL x (A\ A°)) and smooth on C: x A°.

Next we want to consider natural lattices in M\ 4. For this we need the notion of R-modules.

Definition 3.6. Let X be a smooth variety . Then the sheaf of (non-commutative) rings Re, x x
is by definition the O¢, x x -subalgebra of D¢, xx locally generated by 220,20y, , ..., 20,, , where
(1,...,2n) are local coordinates on X .

Definition 3.7.
(1) Let T be the left ideal in Re, xa+ generated by (@L) and (EAk)kzo’,,,,d (cf . Definition 3.3).

Write M 4 for the cyclic R-module Re, xax/Z.
12



(2) Consider the open inclusions A° C A* C A and define the D¢, x ao-module

OM\A = (M\A) |C,xA°

and the R, xae-module

My = <O*MA> .
|C. xA°

We now list some properties of the R-module QOM\ A

Proposition 3.8. |[RS17, Proposition 3.18, Corollary 3.19]

(1) The Oc, xpo-module OOM\A is locally-free of rank p.
(2) The natural map $Ma — My which is induced by the inclusion Re,xpae — De.xae 18
imjective.

The so-called Fourier-Laplace transformed Brieskorn lattice of the FL-transformed Gauf-Manin
system G7 is given by the following Rg, x pc-module:

H° (Q;jxd/\o//\o (2], 2d — dy¢A/\) .
If the semigroup NA is saturated we have the following identification:

Proposition 3.9. [RS17, Proposition 3.20| Let NA be a saturated semigroup. There exists the
following Rc_x ao-linear isomorphism

H (037 jpel)s 2 — dyoan ) = M

Proposition 3.10. [RS15, Corollary 2.19)
(1) There is a non-degenerate flat (—1)%-symmetric pairing
P (OM\A> ® " (OM\A> — OczxAe-

|CxxA° [CxxA°

where ¢ is the automorphism sending (z,\) to (—z, ).
(2) We have that P(¢Ma, M) C 290c_xne, and P is non-degenerate on ¢M 4. i.e., it
induces a mon-degenerate symmetric pairing

SMa ® l Mo

z- Mg z- M4

[z_dP] : — Opo.

4. CONSTRUCTION OF THE LANDAU-GINZBURG MODEL

4.1. Local Landau-Ginzburg models. Let X’ be a projective toric Deligne-Mumford stack
with extended fan 3¢ = (N, X, a) (cf. Remark 2.7). In this section we explain the construction
of a (Zariski local) Landau-Ginzburg model which will serve as a mirror partner for X'.

Recall the sequence 2.5
0—L-52Z"-*N-—0.
We apply the functor Hom(—,C*) to the sequence above which gives the following sequence of

algebraic tori:

1 — Hom(N,C*) — V' := Hom(Z",C*) 2 T := Hom(L,C*) —» 1.
13



We denote the standard basis of Z™ by eq,...,e,. This equips )’ with coordinates wy, ..., w,.
Consider the map

WY —CyxT,
(wla" -7wn) — (_Zwﬂwt(M))
i=1

Usually this map W’ is called the Landau-Ginzburg model of the toric orbifold X. However
to ensure a correct limit behavior we need to consider a covering of this model. Consider the
inclusion ¢ : L — Pic®(X)* (cf. Section 2.3 ), which gives rise to a covering 7 + M :=
Hom(Pic?(X)*,C*). We get the following cartesian diagram

VY

S

CtXTW(CtXM

Definition 4.1. Let X be a projective toric orbifold. The mirror Landau-Ginzburg model of X
s given by

W = (F,pra):Y — Cy x M.

We have to compute the Fourier-Laplace transformed Gauf-Manin system and the Brieskorn
lattice for the map W. For this we will construct a map C; x A* < C; x T such that W becomes
the pull-back of the map ¢4 from Section 3 (recall that A is the matrix corresponding to a after
the choice of a basis for N) under the cocatenated morphisms A* «— C; X T « C; x M .

Here we will identify A* := Hom(Z",C*) with A\ {A\;1-... - A, =0},

Since we assumed that N is free, we have Extl(N ,Z) = 0 which gives us the following commu-
tative diagram whose vertical maps are isomorphismsm

0 L—Ytszr % N 0
t
0 L L& N N 0

where £ = 5 +a with s : Z" — L and ¢! = t + g with g : N — Z". The maps satisfy the
following relations

(1) aot=0andsog=0
(2) aog=ridy and s0t=idy

Consider the push-out diagram

=2 (X @ X x) CIN] ® C[z"] ——C[Z"] (=i x) x'®
t® o Clt] ® C[z"] — C[t] ® C[L] t® !

QY —— >t ® X5(5k)
14



Here we made the following identifications
C[N] ® C[Z"] ®cpjecize) Clt] ® C[L] = C[N] @ C[L]
19X ®101m 1@ x5
1@1@t@1lm —Y (X" ®x* )
i=1
and
C[N]® C[L] — C[Z"]

Xn ® Xl — Xg(n)Xt(l) ]

This gives a cartesian diagram
Y XA <~——)

I
Ct XA*mCt XT

We denote by ¥ the concatenation s o ¥, and get the cartesian diagram

Y x A* y

o] |w

CtXA*-mCtXM

Choose some Z-basis p1, . .., pr+e in Pic?(X) which satisifes the following conditions:
(1) P1,-.-,Pr € Q(K) C ’Ce7
(2) pr4i = [Dpyi] fori=1,... e,
(3) p€ Cone(p1,...,Prie)-

The dual Z-basis of (pg)a=1

.....

Using the coordinates x, the map 1 is given by
flp = 1/)n : MX — A” ’
(X17 (R 7X’F) = (Xﬂlw .. 7Xﬂm+e)
where n := ¢ os with
n(ei) = Z NaiPa -
a=1
After the choice of the splitting above the Landau-Ginzburg model for X is given by
(4.2) W:V~2Y x My — Cy x My,

(1) —~ (=D x™y",x).
=1

rte equips My = Hom(Pic®(X)*, C*) with coordinates x1, . . .

y Xr+e-

Since L is a full sublattice in Pic®(X)* the map ¢ becomes an isomorphism after tensoring with

Q. Let
t: Picd(X)*Q —L®Q
be its inverse. We denote by
m: Pic’(X)*®2Q —Z"®zQ
15



the concatenation tot. With respect to the basis ey, ..., e, and the dual basis of p1,...,prie
the map m is given by the matrix M = (m;,). It follows that

r+e
(43) [Dz} = Z MiaPa, -
a=1

Now we want to compute the Fourier-Laplace transformed Gauf-Manin system of the map W.
We do this by computing an inverse image of the FL-transformed Gaufs-Manin system of 4.

Proposition 4.4. Let 1Z = (id,, ) : C, x M — C, x A*.

(1) The inverse image QM4 = JJF(*./T/I\A) is isomorphic to the quotient of Dc,xma /L,
where I is the left ideal generated by

—l;—1 r+e li—1 r+e
0, := H Xap“@ H H (Z Miq2XaOy, —VZ) — H )(,fp“@ H H(Z MiaZXaOy, —V7)
a:pq (1)>0 i:l; <0 v=0 a=1 a:pe(1)<0 i:;>0 v=0 a=1

for any I € L and by the single operator

r4+e m-+e

E:=2%9, + Z Z MiaZXaOy, -

a=1 i=1
(2) There is an isomorphism of D¢. xs-modules
QMA ~ FL%AOACX (HOW+OYXMX) .

Proof. We first choose bases wy,...,w,4e of L and vq,...,v4 of N and denote the dual bases
by wi,...,wy,. and vf,...,vy, respectively. This gives rise to coordinates 7i,...,7.1. on
7 = Hom(L,C*) and hy,...,hqg on H = Hom(N,C*). We set a; = a(e;), s; = s(e;) for
i=1,...,nand t, = t(w,) resp. g; = g(v;) fora=1,...,r+eresp. j=1,...,d.

We will first compute the inverse image under the map 5, which was induced by the linear
morphism s : Z"™ — L. We factor s in the following way:

s: 2" YL NS L

where p; is the projection to the first factor. Hence we get a factorization of 15 given by

Yo, T — T x H,
(T1yeeoymr) = (11,00, Try 1,00, 1),

1/)(575‘) :TXH—)A*,
(Tioeeos T b, ha) o (250 B pombe - poeee)

r+e _sp1

where 751 := [, 1 7,** etc. and the inverse of (5 q) is given by

zb(;}a):A*—VTxH,
>\15---7)\m e) AL17"'aA£TaAgl7"'aAgd .
+
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Notice that the ideal Z in Definition 3.3 is generated by

(H A?’) D—HAZ IT o o)™ = T (¥ (z0n)" forlel,

i:1;>0 a:1; <0 @:1; >0
—1;—1 l;—1
= H)\l H H (zXi0y, —vz) 7l — H H (zXi0y, —vz)t forlel,
i:l; <0 v=0 i:1; >0 v=0
m-—+te
E:=2%9, + Z 2ZAi0h, ,
=1
m-+te
Ek = Z akiz)\ﬁ)\i .
i=1

We have the following transformation rules for the coordinate change (s q):

r+e d
XiOx, = > tisTiOn, + Y ginhaOn,
b=1 k=1

where t;; = D;(t(wp)).

Since 9)(g,q) is an isomorphism, we have that wz; a) (*/\//\IA) is isomorphic to D¢, xa-/Z’ where the
left ideal 7' is generated by
r+e —1l;—1 r+e li—1 r+e

2;: wb(l H H ZD (wp))270r, — V2 H H ZD (wp))2Tp0r, — v2)

b=1 i:l;<0 v=0 b=1 :0; >0 v=0 b=1

for any [ € L and by the Euler operators

r+e m-+te
E/ = Zaz + Z <Z Dl(t(wb))> Tbaﬂ'b )
b=1 \i=1
E,’c::hkahk fOI‘k:].,...,d.
Notice that we used the relations hy0p, = in the presentation of Di . We also used the formulas

m-+te m-+te r+e d r+e

. . . l;s liag; ;i Spi
H Ail’ _ H Il" s, 'ﬁl, a; _ E bi H hkz ki _ TbZ,, bi
i=1 i=1 b=1 k=1 b=1

and

Zlisib = Zliwif (s(ei)) = wy (s(t(D) = wy (D).

It is now easy to see that the inverse image LDj(*M\A) ~ 1/’;1/’(4;,:1)(*/\714) is isomorphic to
Dc, x7/Z" where the left ideal Z” is generated by 0J; and E'.
We will now compute the inverse image under .. Denote by ¢z, ..., Gr+e the basis in Pic?(X)*
dual to p1,...,prre C Pic®(X). With respect to the bases wy,..., Wrie T€SP. q1,...,Grte the
Z-linear map c is given by a matrix C = (¢qp), i.e. c(wp) = ZZ;? Caba- We factorize this matrix
to obtain

C=Cy-D-Cy
with Cy = (c},),C2 = (¢3,) € GL(r,Z) and D = diag(dy,...,dr+c) a diagonal matrix with
strictly positive integer entries.

17



The factorization of C gives also a factorization of R = C~!, i.e.
R=Ry D' Ry
with R; = (rl,) = C; ' € GI(r,Z). We define new bases

T

+

e r+e

/o 2 o 1
wy, = ThpWh and qn = E Conda -
1 a=1

<
Il

With respect to these bases ¢ is diagonal, i.e. ¢(w},) =dp, - g},

The choice of these bases gives rise to coordinate changes on 7 and M y:

r+e r+e
/o Tgh d I Cflm
Th = Tp an Xh = Xa
b=1 a=1

with inverses

r4+e ) r4+e L
Ty = H(T;L)Chb and Xa = H(X;l)rha .
h=1 h=1

Hence we get a factorization of 1) = 1) o Kk o 1)1, where the maps are given by

T — T,
r+e . r+e y
(T{, e 7Tvi+e) — (7’1 = H(T;L)Chlﬁ ce s Trge = H(T}/L)Ch,r+e) ,
h=1 h=1
K: My — T,
d drie
(Xll’ o ’X;“+€) = (T{ = (X/l) 17' <. ,Trl’+e = (X;”Jre) * ) )
Yot My — My,
r+e 5 r+e )
C
(o Xrwe) = 06 = [N oo = [[ Ot ree).
a=1 a=1
Notice that we have the following transformation rule:
r+e
T0n, = > T ThOr -
h=1

Since vy is an isomorphism 1} Dc, «7/Z" is isomorphic to De, x7/J" where J" is generated by

r+e —l;i—1 r+e li—1 rte
O] = H(T,’l)(“’h) ) H H (Z Di(t(wy,)) 27,07 —v2) — H H(Z Di(H(w},))214,05 —vz)
h=1 i1;<0 v=0 h=1 §:1;>0 v=0 h—=1

where [ € L and

r+e /m+te
20+ (Z Di(t(w;))> 2ThO -
h=1 \i=1
Here we have used that
r+e r+e [/r+e wy (1) r+e r+e
HT;WT(D - H (H(ﬁ)c%) - H(T;L) bt Chpwy (1) — H(T;L)w;)*@
b=1 h=1

b=1 \h=1 h=1
18



and

r+e r+e r+e
Z D;(t(wp)) 2707, = Z D;(t(wp))z (Z rghT,'laT;)
h=1

b=1
r+e r+e
=3 Di(t(>_ rgpws))zm 0
h=1 b=1
r+e

—ZD (wh,) 277,05 -

In order to compute x+ D, x7/I" ~ kKt Dc,x7/J, we first notice that

K De,x7/T =~ Omy @ 6~ H(Dexr/T)
where the operators xj, resp. x},0y: act by
(xn) " (foP)=fenP
resp.
XnOy; (f ® P) = x40y (f) @ P+ f @ (dn7},07 )P

An easy computation shows that ™ D¢, «,/J" is isomorphic to the quotient D¢, x7/J’ where
the left ideal J’ is generated by

+ —l;—1 li—1
ﬁ )¢ (@)@ H H ET:D tot(qy,))2x, 0y, —v2) H H zr:D tor(qy,))2x, 0y, —v2)
h=1 ;<0 v=0 h=1 i1;>0 v=0 h=1

for any [ € L and by the single operator

r+e /m+te
220, + Z (Z D;(to t(q%))) 2X3,0x; -
Here we used c(w},) = dp, - pl,, i.e. ¢*((q},)*) =dp, - (w},)*.
The final step consists in computing 1/12 +w1 Dc.x7/Z" which is completely parallel to the com-

putation of the inverse image under ;. Therefore the first claim follows.

For the second claim consider the cartesian diagram

Y x My Y x A*
W\L l‘PA
Ct X My () (Ct x A*

We have the following isomorphisms
4= T Ma)
~ Pt FLYHO (04,4 Oy xar)
~ FLY; (ide, x ¥)TH (04,4 Oy xa)
~ FLY  (H'W, Oy xmz)

where the third isomorphism follows from the compatibility of the localized Fourier-Laplace
transform with base change and the fourth isomorphism is base change with respect to the
diagram above.

O
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Write M% := 171 (A°) = {(X1s- -+, Xrte) € My | W = —371¢ yiya is Newton non-degenerate}.

We have the following statement for the Brieskorn-lattice:

Proposition 4.5.

(1) The inverse image (in the category of O-modules)
(4.6) 0 QM4 = J*(OOM\A) = Oc.xm3, ® 1;—1(00/\7A)

carries a natural structure of an Rc.xms, -module. It is isomorphic to the quotient
Re.xms, /Lo, where Iy is the left ideal generated by (ﬁg);em and E.
(2) There exists the following Rc. x ms, -linear isomorphism
H (935755 s 2] 2d — dyFA) = QM

where FQM 4 = T'(MS,, FOM4).
(3) There is a non-degenerate flat (—1)%-symmetric pairing

P . (QMA)K:;XM?( X L* (QMA)‘C;XMOX — OC;XMOX'
(4) P(7QM a4, QM 4) C Zdoczx/\/lg(, and P is non-degenerate on ¢QM 4.

Proof. First notice that the map 1Z factorizes as (id X 1) 0 (zd x 1¢). The map (id X 1)) is non-
characteristic with respect to M A since the singular locus of M A is contained in ({0, 00} x A°)
and the map (id x 1)) is non-characteristic with respect to any coherent D¢, x7-module since
(id x 1)) is smooth. Hence the inverse image is nothing but the inverse image in the category
of meromorphic connections. The inverse image of the lattice OOM\ 4 is then simply given by the
formula (4.6).

The second point follows by base change and the fact that {/;* = (id X 1)* o (id X 1s)* is exact.
The third and fourth point follow from Proposition 3.10. O

Lemma 4.7.

(1) The Dc, x My -module QM 4 is isomorphic to the quotient Dc, <71/ where J is the left
ideal generated by E and

m-+e m —l;—1 m+e m l;—1
H wd 1 2 11 1 @-ve) H WO I e 11 1@ =v2)
i=m+1 i=1 i=m41 i=1 p=0
pa(l)>0 1; <0 1;<0 pa(l)<0 ;>0 1;>0

where

9. — {Zzti MiaZXaOy, fori=1,....m
;=

ZaXi—m+r fori=m+1,... m+e.

(2) The Re. xms, -module QM 4 is isomorphic to the quotient Rczng(/jo where Jo is the
left ideal generated by DLX and E.

Proof. Notice that we have the following identifications

(1) p'r'Jr'L(D = [-Derz](D = lm+i for i = 1,... €5
(2) Mumtiq=0rtiqfori=1,...,e
20



where the second point follows from formula 4.3 and our choic of the basis (pg)a=1,... r+e- We
can therefore write

r+e —1;—1 r+e r+e l;—1 r+e
l — l
= D 11 [T O miazxady, - - e 11 [T minzxady, — v2)
pa(l)>0 :l; <0 v=0 a=1 pa(1)<0 :0; >0 v=0 a=1
m-te m —l;—1
_ a mti mi —1;
fHXa HXT HXmH@ IT II (@ -»2)
i=m-+1 =1 p=0
pa(l)>0 ,,L+L>0 m+¢<0 ;<0 ;<0
m-+te m l;—1
l —lmii limti l;
- H X" H Xot' H it I 2 11 112 -v2)
i=m+1 i=1 p=0
pa(l)<0 mJH<0 mJrl>0 1;>0 1;>0
_ |lm+1
= erﬂ
Since the x, are invertible on C, x My this shows the first and second point. O

4.2. Logarithmic extension. Let Y be a smooth variety and D be a reduced normal-crossing
divisor in Y. Denote by Rc, xy (logD) the subsheaf of Rc,xy generated by Oc.xy, 220, and
z-p~1Der(logD), where p : C, x Y — Y is the canonical projection and Der(logD) the sheaf of
logarithmic vector fields along D.

Recall the definition of the base space My = Hom(Pic*(X)*,C*) ~ (C*)"*¢ of the Landau-
Ginzburg model from section 4.1.. The choice of a basis p1,...,p,1. determines a partial com-
pactification My ~ C"*¢. Let Dy C My be the normal crossing divisor glven by x1---xr =0.
Denote by A := My \ M and let A be the closure of A in M. Define My = ./\/lx \ A. We
denote by px the point with coordinates x1 = ... = Xr4e = 0.

Remark 4.8. Notice that until now any object with index A (like fFQM 4) only depends on
the matrix A which is given by the generators of the rays of the extended stacky fan. Moreover
there is no difference between the rays coming from the original stacky fan and the rays which
are added for the extended stacky fan.

Lemma 4.9. The point px is contained in ﬂ;

Proof. This follows with an easy adaption of the proof in [Iri09, Appendix 6.1]. a

Definition 4.10. Let cOM9* be the quotient Re_xie, (logDx)/Ix where Ly is the ideal
generated by (DLX)LGIL and E.

Theorem 4.11. There is a Zariski open subset Uy C M} containing the point px such that
OQMlOg X Q/\/llog X Uy 18 Oc. xuy -coherent.

Proof. Let R'(logDx) be the sheaf associated to the ring
Clz, X15 - > X [{(2X10x1 5 -+, 2Xr Oy, s 205,y - -5 20,1 )-

Notice that OOQMZ;Q ¥ carries a natural R’ (logD x)-module structure. We denote the correspond-
ing R (logDx)-module by For,2y_(fQM'9Y). Notice that it is enough to prove the coherence
at the point py for For,z2p_( OQMlog ) since it is isomorphic to FOM’y log.% 35 a Oc, xu»-module.
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Because of the operator E = 229, + Y7 1¢ ?:{e Mia2Xa0y, the module For,z5. (O‘QMljg’X) is

a=1

isomorphic to R'(logDx)/(0 )icL.. Now consider on R’(logDy) the natural filtration F, given

by the orders of operators, i.e. the filtration FyR’(logDyx) is given on the level of global sections
by

FiClz, x1, -, Xrl{(2X10x1» - - -, 2Xr0y,.) = P | P = Z 9s(2, X)(2x10x, )" - oo - (2Xr0y, )"
ls|<k

This filtration induces a filtration Fy on Forzzaz(ooQMfgg ’X) which is good, i.e.
FyR/(logDx) - FiFor.25 (QM9™) = FiyiForg (§QMRY).
We have a natural identification

grd (R'(logDx)) = m.0c. xT*tix (logD )

where T*Ux (logDx) is the total space of the vector bundle associated to the locally free sheaf
Qi,x (logDy) and 7 : C, x T*"Ux(logDx) — C, X Ux is the projection. The symbols of all
operators DlX for I € L cut out a subvariety C, x S of C, x T*Ux (logDx).

It will be sufficient to show that the fiber over x = 0 of S — Uy is quasi-finite since this implies
that S — Uy is quasi-finite in a Zariski open neighborhood of x = 0. Since S is homogeneous this
shows that S is equal to the zero section of T*Uxy (logDx) over this neighborhood. Adapting a
well-known argument from the theory of D-modules (see, e.g. [Pha79]) we see that the filtration
F, will become eventually stationary and we conclude by the fact that all Fi,For,25_ (OOQMfX'q ’X)
are stationary in this neighborhood.

Therefore, it remains now to prove that that the fiber over z = x = 0 of S — Uy is quasi-finite.

First notice that in the limit z = xy = 0 the operators

g — ZZJS MiazXaOy, fori=1,....,m
’ 20y, _ s fori=m+1,... m+e

in R'(logD~) degenerate to

(4.12) D, = > i MiaZXaOy, for z =1,....m
20y, _sn fori=m+1,...,m+e.
Since the fan ¥ is simplicial, we have for each a;, j =m +1,...,m 4+ e a cone relation lcj:
(4.13) Z liai — ljaj =0
i=1

with [;,l; € Z>¢. Because of p1,...,p, € §(K) C 8(Pic(X)) and the definition of the map © one
easily sees that

(4.14) Pa(l) =0

for all (cone) relations [. Hence the corresponding Box operator is

m lifl
ngj =) -1 ]2 -v2).
i=1v=0
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Because deg(a;) = 1 for i = 1,...,m and deg(a;) < 1 by Lemma 2.15 we get from (4.13) the
inequality I; > " | I;. Hence the symbol of ng is

(4.15) (O ) = {U(@j)lj if deg(a;) <1

J(.@j)lj — H:r;l O'(gi)li 1fdeg(aj) = 1

which degenerates to

oDy if deg(a;) <1
(4.16) O’(DX )z=x=0 = {J(Dj)lj ~ T, o(D;)h ifdeg(a;) =1.

Now suppose that {a; | i € I} for I C {1,...,m} is a primitive collection. Denote by [; € L® Q
a primitive relation

m-+te
D= laj=0
i€l jel,
where I, was defined in (2.2). We claim that
(4.17) pa(l;) >0 for a=1,...,r.

Recall that p, € K and that K is the image of ©(CPL(X)). Let ¢, € CPL(X) be a convex,
piece-wise linear function such that O(y,) is a preimage of p,. By the definition of © (cf. (2.10))

we have
Pally) =D walai) = > Ligala) =D ¢alai) = @a( Y lia;)

i€l J€El, el j€l,
> 0a(D_ai) = pa( Y Lja;) = 0.
el jel,

Additionally, the following inequality

#I=D 1> 1

il jel,
is true for the relation I; , because deg(a;) = 1 for i = 1,...,m. Clearing denominators we get
a relation [} := c¢-I; € L for some ¢ € Z~;. The symbol of a box operator with respect this

relation is

T

o) = [[ & [ o(@)% ~[[o(@)°  for #1=Y_1

a=1 Jj€l> el jEI,
and
o(Of) =—[[e(@)°  for #I1>> 1,
el jel,

For x = (X1, -+, Xr+e) = 0 this gives
(4.18) (O jz=y=0 = — [ [ o(D:)°

in both cases.
Notice that for i = 1,...,r the D;, and therefore also the o(D;) satisfy

(4.19) ia;ﬂ-Di = iakiimmzxaah = XT: <i ammm) ZXaOy, = 0.
i=i i=1 =1

a=1 \i=1
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If we keep Remark 2.9 in mind, identify ®; with ¢(D;) for ¢« = 1,...,r and use the relations
(4.15), (4.19), (4.18) we see that the dimension of the reduced ring (S|.—,—o)"" satisfies the
bound: a

m-—+te
dime ((Sjemy=0)™) < H*(X(2),0)- ] 4
j=m+1
where here we denote by [; the j-th component of lc,--
In conclusion, this shows that the variety S over z = y = 0 is zero dimensional. This finishes
the proof. N
O

Proposition 4.20. Let OOQMZ’Q’X be the R(logD)-module defined above. We have the following
isomorphism of finite-dimensional commutative algebras:

OOQMZXQ"X orb (X, C).

‘z:X:O =

Proof. Let | € IL be a cone relation. The corresponding box operator in the limit z = x = 0 is
equal to

m-—+te m-+te
x —1; I
(4.21) =) )lz:X:O = H D; " - H D;
<o )
where we have used the fact that for a cone relation [ we have p,(I) =0fora=1,...,r.
Now suppose that I C {1,...,m+e} is a generalized primitive collection and consider a primitive
relation [;:
m-+te
Zai - Z ljaj =0.
el j=1
aj€or

where o7 is the unique minimal cone containing )., a;. Notice that we have p,(l;) > 0 for
a =1,...,r which can be shown similarly to (4.17).

We now claim that there exists an a € 1,...,r such that p,(l;) > 0. Notice that the kernel of
the map

L—7Z",
is e-dimensional, since p1,...,p, is part of a basis of Pic?(X). Because the p, vanish on all cone
relations for a = 1,...,r (cf. (4.14) and the space of cone relations has rank e, the claim follows
by dimensional reasons. We therefore get
(4.22) (O ja=y=0 = — [ [ D -

iel
Using Lemma 2.8 and the formulas (4.19), (4.21) and (4.22) we get the following surjective map
(4.23) 5(X,C) = FOMEHY
by sending ©,; to D;.

x=0"’

Notice that OOQMEXQ ¥ is coherent by the theorem above and its generic rank is equal to p by
Proposition 3.8. Since H},(X,C) is also pu-dimensional and the dimension of the fibers of a
coherent sheaf is upper-semi-continuous, we conclude that the map above is an isomorphism.

O
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Corollary 4.24. The Oc, xu., -module OOQMloq’ is locally free of rank p.

Proof. Since Dy C My is a normal crossing divisor it carries a natural stratification {S;}iecr
by smooth subvarieties. The restriction of QMY to S; is equipped with a De: x 5,-module
structure, so that it must be locally free. Since each stratum contains py in its closure the
claim follows again by semi-continuity of the dimension of the fibers of a coherent sheaf and from
Proposition 4.20 above. O

The R(logD)-module structure on OQMlOg * induces a flat meromorphic connection denoted
by V. Let Ex be the restriction (OOQMZX )i, x{x=0} and let Ex =T'(C,,Ex) be its module of
global sections. B

Lemma 4.25. There is a canonical isomorphism
ax : Oc, ®c Hy(X,C) = Ex.
It comes equipped with a connection

VresX : Ex — Ex ® 22O,

induced by the residue connection of V. Let my : (‘)’QMlAOg’X — Ex be the canonical projection.
Set Fy := mx(Clzx10x,, - -, 2XrOx,» 20x, 11+ - - -, 20y, .| and denote by Fx C Ex the correspond-
ing sheaf a C-vector spaces. Then ax(l ® Horb()(,(C)) = Fx. The connection operator Vgis’z
sends Fx into 27 2Fry ® 2 ' Fx.

20

Proof. Recall that Ex is a quotient of C[z, 2x10y,, - . . 2xr0y,., 20y, ot

canonically isomorphic to H*

Jand Ex/zEx is

P10ttt

(X,C). Denote by wi,...,w, a basis of HY (X, C) which can be

orb
represented as monomials s := (s1,...,5,) in Clzx10y,, ... 2XrOx,, 20x, ;1 - - -, 20y, .| of degree
di,...,d,. Denote by (Ex)q) the localization of Ex at 0. By Nakayama’s lemma the basis
51,...,8, lifts to a basis in (Ex)) and hence provides a basis in a Zariski open neighborhood

of 0 € C,. Since the (s;) are global sections we have to show that they are nowhere vanishing.
From the presentation of OOQMfXg ¥ we see that

T r+e
( 2v""53 X) H(ZXaaxa)ka : H (ZaXb)kb
a=1 b=r+1
r r+e
:(zZaz) H(ZXaaXa)ka : H (28Xb)kb
a=1 b=r+1
r r+e rte
= H(ZXaaXa)ka ’ H (ZaXb)kb ’ <(2282) + Z ke - Z)
a=1 b=r+1 =
r+e m r+e m+e r4e
= <szmz){a3xa +z- (Zk + Z ky - <1 - Z mib))) H 2X a0y, ) H (z@xb)kb
a=11i=1 b=r+1 i=1 =1 b=r+1
Hence, we have
(4.26) (2*Vg, *)(s) = 5~ (Ao + 24x0)

where Ag, A € M(p x p,C) and A is a diagonal matrix with entries dy,...,d,. Since the

connection has no singularities in C we conclude that s is nowhere vanishing, hence is a C[z]-

basis of Ex. This contruction gives the isomorphism «y which is of course independent of the

choice of the basis s. O
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Remark 4.27. Notice the the entries di, ..., d, of the matrix A, are the (algebraic) degrees of
the cohomology classes corresponding to the operators [/ _, (2xa0y. )" Zifﬂ (20y, ). For the
first factor this is clear because elements in the untwisted sector have (algebraic) degree one. For
the second factor we recall that the m;a are matrix entries of the map m : Pic®(X)*@Q — Z"®Q
with respect to the basis e; ..., e, and the dual basis of py,...,p,. It follows from Lemma 2.12
that the elements ly,...,l. defined in (2.11) are part of the dual basis of p1, ..., prte, namely
l; = py,;. Hence

m-+e
Zmibzl—Zmi where b=r+k
i=1 i€l,

Since } ;¢ 1, Tki is the (algebraic) degree of D,, 1k the claim follows.

Lemma 4.28. Write Q./\/ll:g’xfor the restriction (o QMEXQ’X)W: xity- Then foranya € {1,...,r}
the residue endomorphisms

2Xady, € Endo,. (QME")jcsx {x=0})
are nilpotent.

Proof. Under the identification of (OOQMZQ’X)Z:XZO with H} , (X,C) the action of the opera-
tor zxq0y, corresponds to the cup product with ©,. Hence the class of zx,0,, is nilpotent in

Endc((ooQMfffg’X) 2=x=0)- On the other hand, the class of zx,0y, gives rise to a well-defined

element of Endp, (OOQMZQ’X)XZO), which is flat on C} with respect to the residue connec-

tion. Its eigenvalues are algebraic functions on C, which are constant on C} and take the value
zero at the origin. This implies that the eigenvalues are zero over all of C,, hence the residue

endomorphisms are nilpotent as required. O
Denote by Dy the reduced normal-crossing divisor in Uy given by {x1 ... x» = 0} and denote
its components by D, for a =1,...,r.

Proposition 4.29. There is a non-degenerate flat (—1)%-symmetric pairing
P goMP @0 oMY — 290 i
i.e. P is flat on C5 x (Ux \ Dx) and the induced pairings
P (¢QM) .o @ U (§QMS?) .o — 27Oy
and P : (FQMY9) p, ® (eQM'{?)p, — 2%Oc_xp, are non-degenerate.

Proof. Denote by M,, a = 1,...,r, the unipotent monodromy automorphism corresponding to
a counter-clockwise loop around the divisor C* x D, and by M, the monodromy automorphisms
corresponding to a counter-clockwise loop around z = 0. Denote by M, , resp. M, ¢ their
unipotent and semi-simple part. We set N, = logM, and N, = logM, ,. Denote by H*
the space of multi-valued flat sections on which the monodromy operators M, and M, act.
Let fi,..., fu be a basis of flat multi-valued sections of QM 4|csxy, Which is adapted to the
generalized eigenspace decomposition of the space H with respect to the automorphisms M,
and M,. We define the single-valued sections

r
N N
'svi = eflng(piJrzwzi) I | e~ log Xa 575 fz

a=1
for some p; such that e2™%i is the generalized eigenvalue of f; with respect to M,. These sections
provide a basis for OOQMfg’X‘C* - Notice that P(s;, ;) is holomorphic on CZ x (Ux \ Dx).

By the flatness of P we get that P(5;,5;) = 277~ P(f;, f;) which shows that P(5;,5;) extends
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over C; x Uy and is non-degenerate. Together with Proposition 4.5 we get a non-degenerate
pairing on the restriction OOQMng’Xl(C KU\ {0} x D OINCE, {0} x Dy has codimension two in
C. x Uy, P extends to a non-degenerate pairing on OOQMZ'Q’X. a
Lemma 4.30. The induced pairing P : Ex®t*Ex — 2%C[2], restricts to a pairing P : Fx xFy —
2%C. The pairing z=*P on Fy coincides under the identification made in Lemma 4.25 with the
orbifold Poincaré pairing on HY,,(X,C) up to a non-zero constant.

Proof. Let {do,...,d;} = {g € Q | H>%(X,C) # 0} where d; < d; for i < j. Set 7, =

dimefé" (X, C) and notice that dy = 0, d; = d and r9 = r; = 1. Choose a homogeneous basis

wl,d07 wl,d17 AR 7w’l"1,d17 AR 7w1,dt717 AR aw’l"tfl,dtfl bl wl,dt

2d
where w; g, € H,'F(X,C). Denote by $1.dy,S1,dys---sSri,dys---»>Sldsv1s--+»Sry_1,dy_1>51,d, the

corresponding sections of £y under the isomorphism ay of Lemma 4.25. By Lemma 4.28
and a construction similar to the one in the proof of Proposition 4.29 we can find sections
§1’d0,§1,d1, ey §T1’d1, ey §1’dt71, ey §Tt—17dt717§17dt Wthh satisfy (gi,dk,)lﬁch{XZO} = Si,dk and

T
Na _
V 2xady, (H elogxcwsi,dk> =0 for a=1,...,r,
c=1

T
Ng _
Vo, <Helogxc2ﬂsi,dk> =0 for b=r+1,....,7r+e.
c=1

From the definition of the sections §; 4, and the flatness of P then follows
P(§i7dk7§j7dz)(zvX) = P(Si,dkﬁsjydz)(z)
and therefore
0 = 2XaOx, P(3i,ar: Sjar) = P(Vayaoy, Side: 8j,d) — PSidis Vaxaoy, Sid.)
0= ZaXbP(§i7dk7§j,dz) = P(vzf‘)xb gi,dwgﬂdz) - P(gi,dwvzaxb §j,d1) :

By continuity this holds on C, x {x = 0}. This shows the multiplication invariance of the
corresponding pairing on Ex ~ C[z] ®¢ H* (X, C). It follows from equation 4.26 that

orb
Tk+1
res,q
2V T (Sidy) = di - Sivay, + 2 E Om,ikSm,de+1  for k <t,
m=1

where Op, ;1 = (Ao)um with v = m + Zle rpand v = @ + Z;:ll r; and Ag is the matrix
with respect to the basis s10,...,51,4, of the endomorphism —c;(X)U. Since the pairing is
multiplication invariant it is clear that P(s; 4, , $;.4,) = 0 for dj +d; > d since H(?T(Z”d’)(é\,’, C) is
zero in this case. For d + d; < d we compute

(4.31)  20.P(siay,55.d,)

Tk+41 Ti41
=P(dy; - 8i,dy +- ) OmikSidyi1:55.a) + Psia, di - sj.a, +2 > " Omjisja)
m=1 m=1
1 Th+1 Tl4+1
=(di + di) P(si,a1> 8j,a0) + - P(Y . Omiksiaets Sia) + Psiag, Y, Omjisiat) | -
m=1 m=1
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In the case di 4+ d; = d this amounts to

1 Tk+1 Ti+1
(20, — d)P(Si,de]}dz) = - (P(Zl Om,i kSi,dy+1 Sj,dz) + P(Si,dw Zl Gm,j,lsj,dz+1) :
m= m=

Hence P(8; .4, 8j.4,) € 2%C. For dj + dy < d we get by induction

Tk+1 Ti4+1
(20.—(d+d1)) P(sidy > 85.a,) = —é (P(Z OmikSidit 15 55.0) + PlSides D @m,jJSj,dz-‘rl)) € tdiC

m=1 m=1
Since P(s;.4,,55.4,) € 2°C[2] we conclude that P(s; 4, ,5;4,) = 0 for d +d; < d.
It remains to show that the pairing =" P coincides, under the isomorphism o : 1® H ,(X,C) —
F and possibly up to a non-zero constant, with the Poincaré pairing on the cohomology algebra.
First notice that by construction, z~"P, seen as defined on H} (X, C) is again multiplication
invariant. It suffices now to show that P(1,a) equals the value of the Poincaré pairing on 1
and a. But as we have seen above, P(1,a) can only be non-zero if a € H2%(X,C). Since
dimH?" (X,C) = 1, the P on H} ,(X,C) is entirely determined by the non-zero complex number
P(s1,dy,51,d,)-

O

Proposition 4.32. Consider the Oc_-module Ex with the connection V"X and the subsheaf
Fx CEx from lemma 4.25.

(1) Let EAX = Opixqo} ®c Fx be an extension of Ex to a trivial Pl-bundle. Then the
connection V"X has a logarithmic pole at z = oo with spectrum (i.e., set of residue
eigenvalues) equal to the (algebraic) degrees of the cohomology classes of H},, (X, C).

(2) The pairing P on Ex extends to a non-degenerate pairing P : g;{@@ﬂﬂ *Ex — Op (—d,d),
where Op1 (a,b) is the subsheaf of Op1 (x{0,00}) consisting of meromorphic functions with
a pole of order a at O and a pole of order b at co.

Proof. The formula 4.26 shows that the connection V™**X has a logarithmic pole at z = oo
and Remark 4.27 shows that the residue eigenvalues are equal to the (algebraic) degrees of the
cohomology classes of H} ,(X). This shows the first point. The second point follows from
Proposition 4.29 and the definition of Ex.

d
Set ji : CI — P1\ {0} and E> := w%jiy!(ggg")l%gs'x (where 1 is the nearby cycle functor at
z = 00). It is known (cf. e.g. [Her02, Lemma 7.6, Lemma 8.14] that there is a correspondance
between logarithmic extensions of flat bundles and filtrations on the corresponding local system
of flat sections. With respect to the connection (zQVgié’i)@) =s-(Ap+ 2zAx), the isomorphism
(4.33) Fy = E>
is given by multiplication with z~ 4 z~4o,
Lemma 4.34. The filtration Fy on Fx is given by

Fy= Y C((xa0)" oo (20, )™ - (204, )" - (20,,)") -

|k|>—p
The residue endomorphism N, of QMfZg’X along Cx D, acts on E*° and satisfies NoFy C Fo_1.

Proof. The first claim follows from the identification of H ., (X) with Fx and the computation

of the residue connection (z2vgjs’5)(§) in Lemma 4.25. The second claim is immediate since the
residue endomorphism is induce by left multiplication with 2,0y, . g
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The next result gives an extension of OQMfZ‘q to a family of trivial P'-bundles, possibly after
restricting to a smaller analytic open subset inside U". Set r := inf{|x|: x & ﬂ;} and let
B := B,(0) C U%" the open ball with radius 7.

Proposition 4.35. There is an analytic open subset Vy C U™ still containing the point px and

log,
a trivial holomorphic bundle OQMAg — ]P’i x Vy such that

log,X o °
(1) QM4 ieoxva = ((FQMEP) ™) e s,
log,X ~ /8 \an
(2) (0QM4 )Pt x {0y = (Ex)",
~ —— log,X ~
(3) The connection V has a logarithmic pole along Dx on OQMAg , where Dy 1is the
normal crossing divisor ({z = oo} UJ._{Xxa = 0}) NPL X Va,
(4) The given pairings P : OOQMng’X QL* OOQMZXQ’X — 240¢, xus, and P Ex ®(9P; CEx —
Op1(—d, d) extend to a non-degenerate pairing
log,X log,X an
10OM," " @0 CoQMyTT Opi'x vy (—d, d)
where the latter sheaf is defined as in point 3. of proposition 4.32,
(5) The residue connection along =7 =0

1
PLxVy

log,X log,X log,X log,X

esE=oo . OQMA /,7— OQMA — OQMA /T OQMA Q}O‘?}vax(log({oo} X D))

——log,X
has trivial monodromy around {oo}x D and the element of 1 € F C HO(PLxU°,0OM 4 ! )

is horizontal for V7¢%#=,

Proof. Set D :=J_,{xa = 0} N B. A logarithmic extension of (QM'% X)T(g*x(B\D) over
({z = oo} x B)U(P\{0} x D) is given by a Z" ! -filtration on the local system £ = (QM" 9% )Y

|Cx x(B\D)’
which is split iff the extension is locally free (cf. [Her02, Lemma 8.14].

We are looking for an holomorphic vector bundle QM4 — (PL\ {0}) x B which should satisfy
two constraints. First, oM, 4 should restrict to ( OQ./\/llog X)‘C* «p on C; x B and second it should

restrict to (Ex)ﬁlﬁ\{o} over PL\ {0} x {x = 0}.

The Z"-filtration P, corresponding to the extension over C} x D is trivial since its the Deligne ex-
tension due to Lemma 4.28. Let L™ be the space of multi-valued flat sections of (QM'¢? X)“‘C”* (B\D)
and let E*° be the space of multi-valued flat sections of £3" from above. We have an isomor-
phism L> — E°° which is given by multiplication with [/ _, xé’”, where NV, is the logarithm
of the (uni-potent part of the ) monodromy, and restriction to {x = 0}. This allows us to shift
the filtration Fy on E°° (resp. Fx) to a filtration F, on L%, ‘which we denote by the same
letter. This gives a Z"T!-filtration (F,, P,) which is split, since P, is trivial. The corresponding
extension OM 4 has logarithmic poles along ({z = co} x B) U (P! \ {0} x D) and restricts to
(FoMigo® )ft x p on C% x B resp. (‘(’A‘X)rpyi\{o} on P1\ {0} x {x = 0}. We therefore can glue oM,
and ( OQ./\/llog *yan ¢, x p to a holomorphic bundle on PP x B, which is trivial on on P x{x = 0} since
its restriction is isomorphic to £x. Because triviality is an open condition there exists a subset
Vx C B such that the restriction of the glued bundle to IP’]Z: x Vy is trivial. This shows the points
1. to 3. . For the fourth point notice that the flat pairing P gives rise to a pairing on L which
in turn gives rise to a pairing on E°°. The pole order property of this pairing on Ex at z =00
can be encoded by an orthogonality property of the filtration F, with respect to that pairing
(see e.g. [Her03, Theorem 7.17, Definition 7.18]). Hence the same property must hold for P and
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—log,X

——log,X
F, seen as defined on L*°, so we conclude P : OQMAg B0y, ¢ WOM, = Blx Vi (—d,d)

as required.
The last statement follows from the fact that the residue connection V"¢%*=°° defined on

—_ O_(]7

0 QM /2T O@Z%X has trivial monodromy around Dxﬂ{z =oo}xBifforanya=1,...,r
the nilpotent part N, of the monodromy of £ kills grf", i.e. N,F, C F,_,. Using the identifi-
cation (L*°, F,) with (E°°, F'*) this has been shown in Lemma 4.34. From this follows that the
element 1 is a global sections over P! x Vy and flat with respect to the residue connection.

O

4.3. Frobenius structures. We begin with a definition from [Rei09] which formalizes the struc-
ture which we obtained in Proposition 4.35.

Definition 4.36. Let M be a complex manifold of dimension bigger or equal than one and
D C M be a simple normal crossing divisor.

(1) A log-TEP(d)-structure on M is a holomorphic vector bundle H — PL x M which is
equipped with an integrable connection V with a pole of order two along {0} x M and
a logarithmic pole along (C, x D) and a flat, (—1)%-symmetric, non-degenerate pairing
P:HRUH — 290c_xnr- If D is empty we will simply denote it as a TEP(d) structure.

(2) A log—trTLEP(d) structure on M is a holomorphic vector bundle 7 — PL x M such
that p*p*’;fl = H (where p : PL x M — M s the projection) which is equipped with
an integrable connection V with a pole of order two along {0} x M and a logarithmic
pole along (PL x D) U ({00} x M) and a flat, (—1)%-symmetric, non-degenerate pairing
P:HeUH— Op1 s (—d, d). If D is empty we will simply denote it as a trTLEP(d)-
structure.

Here, 1 is the automorphism sending (z,m) to (—z,m).

Proposition 4.37. Let X(X) be a projective toric Deligne-Mumford stack with an S-extended

stacky fan 3¢ with S = Gen(X) and let W : Y x My — C x My the corresponing Landau-
log,X

Ginzburg model. Then the tuple (o Q./\/IA ,V, P) from Proposition 4.35 is a log-trTLEP(d)-
structure on Vy C M.

Proof. This follows from Proposition 4.35. O

The following theorem which is a combination of Proposition 1.20 and Theorem 1.22 in [Rei09]
gives sufficient conditions when a given log-trTLEP(d)-structure can be unfolded to a logarithmic
Frobenius manifold.

Theorem 4.38. Let (M,0) be a germ of a complex manifold and (D,0) C (M,0) be a nor-
mal crossing divisor. Let (H,0),V, P) be a germ of a log-trTLEP(d)-structure on P! x (M, 0).
Suppose that there is a section ¢ € HO(P! x (M,0),H) whose restriction to {oo} x (M,0) is
horizontal for the residue connection V' : H/27'H — H/z71H ® Q}Loo}xM(log(oo} x D)) and
which satisfies the conditions

(IC) The map ©(logD)|g — p«H|o induced by [2V,](§) : O(logD) — p.H is injective.

(GC) The vector space p.H|o is generated by § and its images under iteration of the maps U

and [zV x| for any X € ©(log)D

(EC) € is an eigenvector for the residue endomorphism V € Endo, .y, (H/27'H).
Then there exists a unique (up to canonical zsomorphzsm) gern of a logarithmic Frobenius manfold
on (M, D) with a unique embedding i : M < M with i(M)ND = i(D) and a unique isomorphism

H—p ®M(logD) ) of log-trTLEP(d)-structures.
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Using the theorem above we are now able to construct a logarithmic Frobenius manifold from
the Landau-Ginzburg model corresponding to a projective toric Deligne-Mumford stack.

Theorem 4.39. Let W :Y x My — C x My be the Landau-Ginzburg model corresponding to
a projective toric Deligne-Mumford stack. Then there exists a canonical logarithmic Frobenius
manifold on (Vi x CF=7,0) with logarithmic pole along (D x CF=", 0).

Proof. In order to apply Theorem 4.38 to the log-trTLEP(d)-structure obtained in Proposition
4.35 we define the section £ to be the class of 1. Because of Proposition 4.35 5. this section is
flat with respect to the residue connection along 1 = 7 = 0. The conditions (IC) and (GC)

follow from the identification of (OOQMfZg’X)m with the cohomology ring (H}.,(Xs,C),U) (cf.
Proposition 4.20 and Formula 4.23), the definition of the D; for i = 1,...,n (cf. Formula
4.12) and the representation of H* ,(Xx,C) in Lemma 2.8. The condition (EC) follows from

orb

Proposition 4.32 1. O

5. ORBIFOLD QUANTUM COHOMOLOGY

In this section we review some constructions from orbifold quantum cohomology.
Let X be a smooth proper Deligne-Mumford stack over C. The inertia stack of X is defined by

IxX =X XXX/\/X

with respect to the diagonal morphism A : X — X x X'. A geometric point on IX is given by a
geometric point € X and an element g € Aut(X) of the isotropy group. We call g the stabilizer
of (z,g) € IX. The inertia stack is a smooth Deligne-Mumford stack but different components
will in general have different dimensions. Let T be the the index set of the components of IX.
Let 0 € T be the distinguished element corresponding to the trivial stabilizer. We thus have

I:|_|XU.

veT

The orbifold cohomology of X is defined, as a vector space, by H},,(X,C) := H*(IX,C), hence
we have
wo(X,C) = H*(X,C) & €P H*(X,,C)

veT’
where 7" := T\ {0} is the index set of the twisted sectors.
In order to define a grading on the orbifold cohomology , we associate to any v € T a rational
number called the age of &,.
The genus zero Gromov-Witten invariants with descendants are defined by

l

<mﬁ%wmﬁ%w:/‘ IT ev; ()it

Mo, (X,d)]vir i

(X), d € Hy(X,Z), k; is a non-negative integer, My (X, d) is the moduli stack
Ui is the virtual fundamental

where o; € H)

of genus zero, I-pointed stable maps to X of degree d, [Mo (X, d)]
class, ev; is the evaluation map at the i-th marked point

ev; : Mo (X,d) — IX

and v; = ¢1(L;) where L; is the line bundle over Mo (X, d) whose fiber at a stable map is the
cotagent space of the coarse curve at the i-th marked point. The correlator <a11/)f1, . ,aﬂ/Jlkl )0,1,d
is non-zero only if d € Effy C Hy(X;Z), where Effy is the semigroup generated by effective stable
maps.
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We choose a homogeneous basis Ty, ..., T, of H? ,(X), where Ty =1 € H(X,C), T1,..., T, €
H?(X)and T; € Di.z0.2 H*(X)® @, H*(X,). We denote by T, ..., T# the basis of H*(X)
which is dual with respect to the orbifold Poincaré pairing.

Let a, 8,7 € H} ,(X,C) and write 7 = 7/ + & where § € H*(X,C) and 7’ € @kﬁHk(X) ®

D, H*(X,). We define the the big orbifold quantum product o, as the formal family of
commutative and associative products on H} ,(X) @ C[Effx]:

1
aoy = Z Zﬁ(a,%ﬂ.~~,T7Tk>0,l+37diQd

deEffx 1,k>0 | times
3(d)
e
/ / k ~d
E § I <O‘a’737_a"'a7_7Tk>O,l+3,dT Q
deEffx L,E>0 ! t".
—times

where the last equality follows from the divisor axiom. The Novikov ring Eff y was introduced to
split the contribution of the different d € Effy. However, we will make the following assumption:

Assumption 5.1. The orbifold quantum product o, is convergent over an open subset U C

H:rb(X).
= {7 € Hy,(X) | R(5(d)) < —M,Vd € Effx \ {0}, |7']] < e}
for some M >0 (here | - || is the standard hermitan norm on H? ,(X)).

Using this assumption, we can set = 1. We will denote this product on H}, , (X, C) parametrized
byTeUby (H*(X,C),0,).
Let %o, ...,t, be the coordinates on H

* »(X) determined by the homogeneous basis.

Definition 5.2. The Givental connection is the tuple (F*9, V& P) which consists of the trivial
holomorphic vector bundle F*9 := H*(X,C) x (U x PL), the connection V%

0 1

Vo, = 7 — -
ke 8tk z

Tko'r ;

g 1
Vs, i=2—+—-FEo,+pu

0, =z
where p : HY ,(X,C) — H ,(X,C) is the grading operator given by u(Ty) = deg(Tx)/2 and the

holomorphic Euler vector field E is given by

TX + Z ( deg > ti Ty,

and the pairing
P:FM @ F" — Opyy(—d,d),
(a,b) — 2%(a(2),b(=2))ors
where 1(z,t) = (—z,t) and (—, —)orp s the Orbifold Poincaré pairing.
Notice that the connection V&% is flat (cf. . [Iri09, § 2.2]) and the pairing P is non-degenerate,
(—1)%-symmetric and V&-flat.

Let HY7'(X) D H?*(X) be a minimal homogeneous subspace which generates H ,(X) with

orb

respect to the orbifold cup-product. We write H?%'(X) = H*(X) & H! ,(X).

orb
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Definition 5.3. (1) Let o,y € H:,(X) and 7 € H?7'(X)NU. Define the semi-small

orb orb
quantum product as the restricton of the quantum product to parameter space HI%'(X):
eé(d) / / kd
QoY = Z Z [T <G{,’Y,T7...,T,Tk>07l+3)dTQ

deEffx 1,k20 l—times

fort=6+71 € H*(X) ® H, ,(X).
(2) The semi-small Givental connection (F**, VY P) is the restriction of the Givental con-
nection to (HI"(X)NU) x PL.

Let L — X be a orbifold line bundle corresponding to ¢ € Pic(X). For any point (z,g) € &, C
ZX the stabilizer g acts on the fiber L, by a rational number. This number depends only on the
sector v, hence we denote the number by f,(§) and call it the age of L¢ along &,,.
Iritani defined an action of Pic(X) on (F'9, V& P) and showed that it is equivariant with
respect to this action:
Proposition 5.4. For each & € Pic(X) there is an isomorphism of G¥*9

ort(X, C) X (U x C) — Hy, (X,C) x (U x C),

(a,7,2) = (dG(§)a, G(&)T, 2)

which preserves the connection V& and the pairing P, where G(£),dG(&) : H},
H> (X)) are defined by

orb
G(E)(ro+ > 7)) = (10— 2mige) + Y 2Mifo©Or,

(X) —

veT’ veT’
dG(&)(To + Z Ty) =To + Z e2mifoOr,
veT’ veT’

where T, € H*(X,) and &y is the image of & in H*(X,Q).

It follows from the Proposition above that the Givental connection is invariant under the action
of Pic(X), however, as observed in [DM13], the functions tq,x1 = €'',...xr = € tpi1,...,1s
are not coordinates on H (X, C)/Pic(X). Therefore we mod out only a subgroup namely the
subgroup Pic(X) of line bundles with zero age , i.e. f,(§) = 0. The set U is invariant under the
action of Pic(X).

Let V' be the quotient of U by the action of Pic(X) and denote by 7 : U — V the natural
projection. Set x; = e’ for i = 1,...,r, then tg, X1,..., Xrstrt1,-..,ts are coordinates for V.

Lemma 5.5.

(1) There is a trTLEP(d)-structure (G¥9, V¢ P) on 'V such that 7*(G*9, Vb9, P) = (Fb9 Vb9 P).
(2) Set Vyep == w(H!Y(X) N U). There is a trTLEP(d)-structure (G**, VY, P) on Vyep

such that (gss, VG“), P) — (]:ss7 VGiv’ P) and (gss7 VGM),P) — (gbig’ vGiv, P)Ivgen'

Proof. The statements are a direct consequence of Proposition 4.4. The connection of (G*9, V%% P)
is given by

o 1
Vo, i= — Tiow ,
atk atk kO
0 1 .
(5.6) Vo, = Xig— ~ ;Tj O for j=1,...,r,
Xi
0 1
vzﬁz =z +-Eo, +u
0, =z



for k e V. O

Let Ty, ..., T, be a homogeneous basis of H, (X) as above. We assume that 1 =Ty, € H*(X, Z),
Ty,...,T. € H*(X) and T,1,...,T}, is a basis of Divo2 H*(X) ® @ e H* (X)) Addition-
ally we assume that 74,...,7T, is a Z-basis of Pic(X) C H?(X,Z) and lies in the Kihler cone
K C H2(X).

The choice of the basis Ty, ..., T, gives rise to an embedding j : H?(X,C)/Pic(X) — C". Let

Viyen 1esp. V' be the closure of image of j x id.

Proposition 5.7. There exist extensions (?big, VEir P) resp. (G, V" P) of (GY9, VY P)
resp. (G, V9", P) to a log-trTLEP(n)-structure on V' resp. V.. Moreover, there is a struc-
ture of a logarithmic Frobenius manifold on V.

Proof. The first statement follows from the form of the connection 5.6. The second statement
follows from [Rei09, Proposition 1.10 and Proposition 1.11], where the vector & in loc. cit.
corresponds to Tp = 1 here. O

We now recall the fundamental solution of the Givental connection. Define

—5/= 1 e / 5(d) ok
L(r,z)a:=e a— E l7<7z+1p T T Th)0,042,0€°\ YT
dEEffy\{0}
1>0,0<k<s

where 7 =6 + 7.
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The following proposition summarizes the properties of the fundamental solution.

Proposition 5.8 ([Iri09, Proposition 2.4]).
(1) L(t,2) satisfies the following differential equations:
Vo, L(1,2)a =0, V.o L(7,2)a = L(1,2)(pa — goz)
where o € HY (X)), p:=c1(TX) € H*(X) and p is the grading operator from Definition
5.2. If we put 2z "2zP .= exp(—pulog z) exp(plog z), then
Vo, L(1,2)z7"2Pa =0, V. L(1,2)z" "2 a=0.

(2) L(t,z) is convergent and invertible on U x C*.
3 (L(T7—Z)057L(T, Z)ﬁ)orb = (avﬁ)orl? )
(4) dG(6)L(G(€)~'7, 2)a = L(1, z)e*0e?™ifo Oy for a € H*(X,). In particular

dG(E)L(G(&) ™1, 2)a = L(r1, 2)a

for & € Pic(X).
(5) Define L(t,z) := L(r, z)2" 2", then

Vo, L(1,z)a =0, V.o.L(T,2)a=0.

Since L and therefore also L is invertible, then the sections s; := L(T}) are a basis of flat sections.
The J-function of X is given by L(7,2) ~'1 = L(1,2) ' Ty. Weset J := Y7o JiT; :== > i_o(8i,T0)ors i =
L(7,2)71(Tp) and get the formula

(59) 1= To = Zjlsz on Cz xU.
i=0

6. MIRROR CORRESPONDANCE

Let X be projective, toric orbifold. In order to state the mirror theorem for toric orbifolds we
have to introduce the I-function.

Definition 6.1. The I-function of a toric orbifold X is defined by

I(X7 Z) — eZZii ePa log Xa/z Z Xd HV:DODiyﬂ(Di + <<Di’ d> — Z/>Z)
B deK HV:O(Di+(<Di7d> _V)Z)

We collect a few facts about the I-function.

1’[)(d) .

Lemma 6.2.

(1) e Zafie™ losxe/2[(x, 2) € Hzy(X)[z, 27 [xts - oo Xorel.-

(2) The function e” oLl ePalog Xa/2](x, z) is a convergent power series in X1, . .., Xr+e if and
only if p € K¢. In this case, the I-function has the asymptotics

I(X,z)zl—l—@—ko(z*l).

The function T, which take values in HSQ(X), 15 a local embedding and is called the

orb
mirror map.
(3) Set I :=1I1z"Pz" then

E(I)=0 and DLX(f):O for lel.
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Proof. The first point follows directly from the definition of the I-function. The second point is
[Iri09, Lemma 4.2]. The third point follows from [J;, = I, X‘Tlr;rbl 0% (cf. Lemma 4.7) and
the [Iri09, lemma 4.19] (Note that Iritani proves this for the equivariant I-function. In order to
to get the statement one simply has to consider the equivariant limit A — 0). O

There is the following theorem which compares the I-function from above and the J-function
which has been introduced in Section 5.

Theorem 6.3. [CCT15, Theorem 31, Remark 33| Let p € K¢, then the I-function and the
J-function coincide up to a coordinate change given by the mirror map T,i.e.

I(x,2) = J(1(x), 2) -

——log,X .
We can now identify the two log-trTLEP(d)-structures (g QMAg ,V,P) and (G**, V& P).

Proposition 6.4. There exists an analytic neighborhood Wx of 0 in Vy such that there is an

isomorphism
log,X .
0: (0QM, JipLxwa — (idpr X T)*GPr o,

of log-tr TLEP(d) -structures on Wx.

Proof. As a first step we define a morphism of holomorphic vector bundles with meromorphic
connections

75 (MBS s V) — (ide. % )" (G2 sawy s V)
1 1="Ty,.

We set ELX = (idc, % T)*DLX and E := (idc, x 7),E. In order to show that the morphism above
is well-defined, the following equations have to hold:

OF Ot Xober 2 VYo, oo ViR, VB L VEGY )(1) =0 foralll €L,
(6.5)  E(X1s--wsXrtes 2 Vo, - Virra, s VE3L s VY (1) =0,

We are using the presentation 1 = Zi:l J;s; of the section 1 on C% x Wx. Since the s; are flat
sections the equations above are equivalent to

DLX(Xl, ey Xrtes 2y ZX10x s - o5 2XrOy, s 205,y - -5 20y, ) ((idc, X T)*jl) =0,
E’(Xl, ooy Xrdes 25 ZX10x1 5 - -5 2Xr Oy, s 20y, 415 -+ 20y, ) ((ide, X T)*jl) = 0.

But this follows from Theorem 6.3 and Lemma 6.2. Since the equations (6.5) hold on C; x Wy
they hold on C, x Wy by continuity. In order to show that they are isomorphic it is enough to
prove this on the germs at 0 (since we are allowed to shrink Wy if necessary). By Nakayama’s
lemma it is even enough to show this on the fiber over 0. But this is clear since both fibers are
isomorphic to H* , (X') and the action of VG“é and VG“’J resp. zx0y, resp. 20y, fori=1,...,r

orb
and j = r+1,...,r+e generate the fibers at 0. "It remains to show that this isomorphism extends
to an isomorphism of log-trTLEP(d)-structures.
Denote by D C Wy the normal-crossing divisor given by xi - ... x» = 0. We will show that

the extensions to {z = oo} x PL\ {0} x D coincide under the isomorphism . First notice

that ~ gives an identification of local systems ((fQM'?% X)‘C*XWX)V ~ ((idcs x r)*gﬁgzxwx)v

The extension is then encoded by the Z"+!-filtrations (F., P,) resp. (F.,P,). Since we already

know that the extension over C; x D coincide we conclude that P, = 15.. Hence it is enough

to show F), = }7_'.’ Arguing as in Proposition 4.35 it is enough to show that the extensions over

P! x {x = 0} coincide. But this is clearly the case since the subspace Fx which generates the
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extension of £y is identified under v with the subspace generated by 11, ..., T+, which in turn
generates the extension of gﬁgz  {x=0}"

O

Using the proposition above we can now deduce an isomorphism of logarithmic Frobenius man-
ifolds.

Theorem 6.6. There is a unique germ Mir : (W x CH=(+€) 0) — (V,0) which identifies the
logarithmic Frobenius manifold coming from the big orbifold quantum cohomology (cf. Proposition
5.7 to the one coming from the Landau-Ginzburg model (cf. Theorem 4.39). Its restriction to
W corresponds to the isomorphism 0 of log-trTLEP (d)-structures.

Proof. This follows from Proposition 6.4 and the uniqueness statement in Theorem 4.38. ]

7. CREPANT RESOLUTIONS AND GLOBAL tt*-GEOMETRY

In this section we will first recall the notion of a (pure and polarized) variation of TERP-
structures. If a TERP-structure is pure and polarized it gives rise to tt*-geometry on the un-
derlying space. We will show that the quantum D-module of a toric orbifold X underlies such a
variation of pure and polarized TERP-structures. Our main result is that if X admits a crepant
resolution Z than the pure and polarized TERP-structures glue which gives global tt*-geometry.

Definition 7.1 ([Her03, Definition 2.12], [HS10, Definition 2.1]). Let M be a complex manifold
and n € Z. A wvariation of TERP-structures on M of weight d consists of the following set of
data

(1) A holomorphic vector bundle H on C, x M
(2) A R-local system L on C% x M, together with an isomorphism
L @r O(%ELXM — ﬁéijM

such that the induced connection extends to a meromorphic connection V on ‘H such that
V has a pole of Poincaré rank 1 along {0} x M.

(3) A polarization P : L @ 1*L — iRy pq, which is (—1)¢ symmetric and which induces
a non-degenerate pairing ’

P:H Q. x M VH — ZdO(czxM
where non-degenerate means that the induced symmetric pairing [z~ 9P)] : H/zH@H /2 H —
O is non-degenerate.

We now state the definition of a pure and polarized TERP-structure.

Definition 7.2. Let (H, L, P, d) be a variation of TERP-structures on M. Let M be the complex
manifold with the conjugate complex structure and v : P x M — P! x M be the involution
(z,z) = (271, 2). Consider v*H which is a holomorphic vector bundle on (P1\ {0}) x M . Let
OpCYy be the subsheaf of Cgl', \, consisting of functions which are annihilated by 0z. Define a

locally free Op1C{}-module H by glueing H and v*H via the following identification on Ci x M:
Let x € M and z € C; and define

¢ Hjzw) — (VH)|) 5

a +—  V-parallel transport of z=% - a .

Then c is an anti-linear involution and identifies Hcxxam with V*Hw*xﬂ' The involution c
restricts to complex conjugation (with respect to L) in the fibres over ST x M.

(1) (H,L, P,d) is called pure lﬁ’z’:L = p*pH, where p: Pt x M — M.
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(2) Let (H,L, P,d) be pure, then
h: pH @can pH — CH
(s,t) — z_dP(s,c(t))

is a hermitian form on p*'}:l. We call (H,L, P,d) a pure and polarized TERP-structure
if this form is positive definite.

Theorem 7.3. The restriction of the quantum D-module G of a toric orbifold to C, x Wy \ Dy
underlies a variation of pure and polarized TERP-structures of weight d.

Proof. The proof carries over almost word for word from the manifold case in [RS15, theorem
5.3]. So we just give a sketch of the proof and refer the reader to loc. cit. for details. Using

—log,X

the mirror isomorphism 6 : (0QMy )p1xwa — (idp1 X 7)*GiF1 gy, it is enough to show that
0QM 4 underlies a variation of pure and polarized TERP-structures. Notice that the underlying
D-module ° QM 4 is isomorphic to FLlAO/[CS( HOW, Oy Mg, by the description (4.2) and Proposition
4.4 (2). The Riemann-Hilbert correspondence gives DR(H'W, Oy rs,) ~ pHORW*QYXMSY.
Therefore DR(H'W, Oy y a5, carries a real structure PHORW. Ry, s, - 1t follows from [Sab97,
Theorem 2.2] that the local system of flat sections of (° QM 4, V) is equipped with a real structure.
That °QM 4 is pure and polarized follows from [Sab08, Theorem 4.10]. O

The proof of the theorem above shows that variation of pure and polarized TERP-structures
exists on a Zariski open subset of the complexified Kéhler moduli space M y. In the remaining
part of the paper we glue the complexified Kéhler moduli space of a toric Deligne-Mumford stack
X to the complexified Kdhler moduli space of a crepant resolution and show that the correspond-
ing variation of TERP-structures also glue on the common domain of definition. This gives the
global tt* geometry.

Let X be a simplical, numerical-effective toric variety with fan X x. Let a1,...,a,, € N be the
primitive generators of the ray pi,...,pm. The canonical stacky fan ¥ = (N,Xx,a) is given
by a(e;) = a; for i = 1,...,m. We denote the corresponding Deligne-Mumford stack by X.
Assume that there exists a crepant toric resolution 7 : Z — X of X. We denote by X7 the
corresponding fan. The rays of ¥ are denoted by p1,..., pm,Pm+1,- - Pm+e and the primitive
integral generators by ai,...,am,Gm+1,---,am+e (notice that the first m primitive generators
are the same as the primitive generators of X since Z is a resolution of X). The following lemma
is well-known, but the authors could not find a suitable reference.

Lemma 7.4. We have the following equivalence
w:Z — X s crepant & Aty -y Gmre € Jconv(ay, ..., an)

where conv(ay, ..., ay) is the convex hull of ai, ..., ap.

m-—+te

imma1 Di, where D; is the torus invariant

Proof. The exceptional divisor of 7 is the divisor )
divisor corresponding to p;. We write

m-+te
Kz=m"Kx+ Y dD;
i=m-+1
where the d; are the discrepancies of 7, i.e. 7 is crepant if d; =0 for alli € {m+1,...,m+e}.

Denote by ¥k : Ng — Q the piece-wise linear function corresponding to the Q-Cartier divisor

Kx. The pullback of Kx along 7 is represented by the same piece-wise linear function, i.e.

Yarky = YKy Now fix some k € {m+1,...,m + e}. Since Xx is a complete fan there is a
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unique minimal cone o(ay) € X x containing ay. Since the fan Y x is simplicial we can write

uniquely
m
ap = E RiQ; .
i=1
a;€0(ay)

We have ¢« (k) (ar) = Z%Ea(ak) ki, hence for the discrepancy dj we get

dk = Em: KR; — 1.
i=1

a;€o(ay)
This shows ay lies in the convex hull of {a; : a; € o(ax)} if and only if dj, = 0. Since we assumed
X to be nef we have dconv(ay,...,an) = U,cx, convia; | a; € 0,4 =1,...,m}, which shows
the claim. O

The crepantness of m puts several restrictions on X.

Lemma 7.5. Assume that 7 : Z — X is a crepant resolution, then
(1) X is an SL-orbifold.
(2) Gen(Xx) = {am+t1s---Qmie}-

Proof.

(1) Let ¢ € N be arbitrary and let o(c) be the unique minimal cone of X x containing c¢. As
above we can write uniquely

m
Cc = E RiQy; .
i=1

ai'Ea(c)
The claim is equivalent to the fact that deg(c) := >°, c,() ki € N. Since Xz is a

subdivision of Y x, hence also complete, we can find a unique minimal cone o’(c) € Xz
containing ¢ and with ¢’(¢) C o(c). Because ¥z is regular we can uniquely write

m-—+te
_ E !
Cc = lijCLJ
j=1
aj€a’(c)
with £} € N. Hence we have
m-+te m+te m
c= E Kja; = E K E KijQy
j=1 j=1 i=1
a.jEzr/(c) a.jeo'/(c) a;€a(aj)

Because the o(c) was chosen to be minimal and because of the lemma above, this gives

m-+te m m+e
deg(c) = g K g kij | = g K;-1eN.
=1 i=1 =1
aan’(c) a;€o0(ay) ajéa/(c)

(2) Let o be a cone of Xx. First notice that the degree deg(c) of an element c¢ is additive
inside a fixed cone, i.e. for ¢,¢’ € o we have deg(c+¢') = deg(c) +deg(c’). Because of the
first point this shows that {am41,...,amte} C Gen(Xx), since their degree is minimal.
Now assume that ¢ € Gen(Xx). Because Xz is a regular fan, there exists a cone o’ € Xz
such that ¢ = 3, ., K;ja; with r; € N. Since ¢ € Gen(Xx), we conclude that ¢ = a;,
for some ig € {m+1,...,m+e}.
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We get the following statement from deg(a;) =1fori=m+1,...,m+e.
Corollary 7.6. The orbifold cohomology H*,,(X) is H? ,-generated.
Consider the sequence
(7.7) 0—L-—2Z""*—N-—0.
Since Z is smooth, we get the exact sequence

0 — N* — (Z™+*)* ~ PL(X,) — L* ~ Pic(Z) — 0
when we apply Hom(—,Z) to sequence (7.7).

We get the following commutative diagram with exact rows:

0—— N*—— PL(Xx) —> Pic(X) ——0

0—— N*—— PL(¥z) — Pic(Z) ——0

The image of the Kahler cone Kx under the embedding Pic(X) ® Q N Pic*(X) ® Q ~
Pic(Z) ® Q is a face of the Kéhler cone Kz by [OP91, Theorem 2.5]. We need the following
lemma

Lemma 7.8. The images of Dj € (Z™¢)* ~ PL(Xz) for j € {m+1,...,m+ e} do not lie in
Kz.

Proof. The element D; seen as a piece-wise linear function on the fan ¥z satisfies D;(a;) = ;.

For We have
> niai

a;€o(aj)
where o(a;) is the minimal cone in ¥ x containing a;. Therefore 1 = D;(a;) = Dj(Zaiea(aj) Kia;) >
Zai@(aj) kiDj(a;) = 0 which shows that D; ¢ CPL(Xz) for i = m+1,...,m +e. Since we
have N* C CPL(Xyz) we see that [D;] € Kz. O

The lemma above shows that we get two r + e dimensional cones in Pic(Z) ® Q, namely Kz and
K5 which intersect along the face Kx. Now consider the lattice Pic®(X) inside Pic(Z) @ Q. We
will choose two different Z-bases for Pic®(X). The first one is p1,...,pr. with the property
that p1,...,p, is a Z-basis of the image of 0 and [Dy,4;] = pry; for i = 1,...,e. The second
basis q1, ..., @r+e is chosen such that

(1) pi=g fori=1,...,r,

(2) ¢; liesin Kz fori=1,...,r+e.
Denote the cones generated by p1,...,Prte T€SP. q1,-..,Gr+e by Cx resp. Cz. Let ¥4 be the
fan (with respect to the lattice Pic®(X)) generated by the cones Cx and Cz together with its
faces. The global Kdhler moduli space M is the smooth toric variety corresponding to the fan
Y am. This space is covered by two charts My ~ C"¢ resp. Mz ~ C"¢ corresponding to the
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cones C'x resp. Cy.

If we apply the results of Section 4 to the toric orbifold X resp. toric manifold Z we get the
following isomorphisms of variations of (pure and polarized) T'E RP-structures from Proposition
6.4 and Theorem 7.3:

log,Z . * 78S
(0QMA? ) icox(wo\Dy) — (ide. X T2)"GFic. x(wy\Dy) -
log,X . *
(0OMZ" ) ic.x(wa\Dx) — (ide. X Ta) G¥c. x (Wa\ D)
where W; C M%" resp. Wy C M%' are analytic neighborhoods of pz resp. px.

Remark 7.9. Notice that there is a small caveat here. We have choosen the basis ¢1,...,¢r+e
as a Z-basis of Pic®(X) C Pic(Z). In order to apply the results of Section 4 and 5 in the case
X = Z we should choose a basis of Pic(Z) instead of a basis which only generates a sublattice
(of finite index). Notice that this requirement is actually not needed and was only inserted for
the ease of exposition.

Theorem 7.10. There exists a variation of TERP-structures ¢ QM 4 on the global Kdhler moduli
space M and analytic neighborhoods Wz, Wx C M of the large volume limits pz,px such that

(0QMua)ic.x(Ws\Dy) = (idc. X 72)"GFlc. x(wy\Dy) »
(0QMa) . x(Wa\Dx) = (idc. X Tx)"GXic. x (Wa\ D) -
Proof. The proof follows from the fact that o QM% = QM since the sequences (7.7) are equal
for the fan ¥ and the extended stacky fan ¥%. g
8. THE CREPANT RESOLUTION Fj — P(1,1,2)

Consider the following fans

o o o oS

Fan Y x of P(1,1,2) Fan ¥z of Fy

The generators of the fan ¥ x are given by a; := (1,0), a2 := (0,1), a3 := (=1, —2), the generator
of the extended ray is a4 := (0,—1). The short exact sequence (2.6) is given by

1 0

0 1

-1 -2 101 -2

0 —1 010 1
_—

@, ZD; ——— > L ~ 72— 0
where we have chosen [D;],[Ds] as a basis for L*. The image of © : PL(Sx) — @._, ZD; is
given by ©(PL(Xx)) = {aDy +bDs+cD3+dD, | d = 2a+ Sc}. The lattice PL(X°) is given by
{aD1 +bDs + ¢D3 + dDy € EB?ZI ZD; | 2a+ c € Z} and Pic®(X) is generated by 2[D1], [Ds]
or equivalently by [Ds], [D4].

0—— N*~72
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® 0 O) 0 ® o ®
L*

[D4] [Da]

° - L IS o Pict(X)
\b:[m], Du] Extended Kihler cone of P(1,1,2)
® . ® . ®

Kahler cone of Fy

O] . © . O] . O]

For a basis of Pic®(X) we choose p; = [Ds] and py = [D4] inside the extended Kéhler cone of
P(1,1,2) . Therefore we have

1 1 1 1

[D1] = 5P~ 5p2 [D2] = p1 = §ZX13X1 - §ZX23X2 Dy = 2x10y, ,
1 1 1 1

[Ds] = 5P~ 5P2 [Dy4] = p2 D3 = §ZX13X1 - §ZX23X2 Dy = 20y, .

From Proposition 4.4 we get the following operators defining QM=% where y; and y2 are coor-
dinates with respect to the basis p1, po:
E=2%0, + 22x10y, ,
ng,l,o,l) = X1 — Z294 = X1 — 2X10y, 20y, ,

1
|:’€(17,0,1,72) = ‘@42 - DD = (28X2)2 - 1 (ZX16X1 - 2X28X2)2 )

1
|:]g,l,l,fl) = X194 — D1P2D3 = x1(20y,) — z(zXlam - ZXQaXz)2ZX18X1 .

We now compute the operators for QM%. For a basis of Pic®(X) C Pic(Z) inside the Kihler
cone of Fy we choose: ¢1 = [Ds] and ¢o = 2[D1] and get

1 1
[Di] =56 [Dd=a D1 =520y, D2 =zm0y,,
1 1
[Ds] = 542 [Da]=q1 — @2 D3 = 527728772 Dy = zm0Op, — 2120y, .

We get the following operators where 7; and 72 are coordinates corresponding to the basis q1, go:

E=2%0, + 22110, ,

0% .1.01) = M — D2Da = m — (2mdy, ) (2m0y, — 2120y,) ,
1

Of.01._2) = %5 Da(Ds — 2) = D1D3 = 03 (2m1 8y, — 2020y, (21110y, — 2120y, — 2) — 1(27723772)2,

1
Ofi 11,1 = mm3Da = DiDyDs = (21, — madys) — 7 (2 ) (zmdy)

We want to solve the Birkhoff problem in a family (cf. [Sab07, Chapter V1.2]) for QM% and
OM?% and compare the solutions. First consider the following basis of QM :

1, (2X18X1)» Zaxw (ZX16X1)2 .
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The connection is then given by

00 x1 0 000 x1x2
gl [100 2axe da  [000 0 |da
z 000)(1(4—)(%) X1 000 O X1
010 0 000 0
N 00 0 0
1100 0 xi
lio 0 o |[Petloo e, 0 |
1
00 52z 0 00 0 0
0 0 —2x; 0 000 —2x1x2
L2000 —4x1X2 d {010 0 dz
00 0 -2y(4—x3) |22 001 0 z
0 -2 0 0 000 2

Notice that this basis does not solve the Birkhoff problem in family since the basis is not flat
with respect to the residue connection at z = oo . Consider now the basis

1 7
(81) 1, (ZX18X1)7 5 4 - X%(zaxz)a (ZX18X1)2 — X1X2-

With respect to this basis the connection is given by

0 X1 —X1X2 0
0 x1x2 3x1v4 —x3 0 2ViA=xa
sl 0 e fda LE 900
-+ A — __@X1X2 2
o 0 QXMS?XE I I &
0 07 O
0 —2x1x2 —X1vV4— X3 0 0000
20 0 “2v1xe dz {0100 |d
o 00 aayiw |z oo
0 9 0 0 0002

and therefore solves the Birkhoff problem in a family. Notice that one can read of a differential
equation for the mirror map from the connection matrices above. It is given by

Mir=(x1, x2) = (x1, 5(x2))

v 47X§. That is

: Ok __
with 87)(2 = 3

x2v/4 — X3

k(x2) = S + arcsin(%) .

A similar computation shows that the basis

(8.2) 1, (zm0y,), (1—/1—4n3) - (zm8y,) + /1 — 403 - (2m20y,), (2m10p,)> —m

provides a solution for the Birkhoff problem in a family for Q./\/lﬁ.

The gluing of the Kédhler cones given in the figure above encodes the following change of coordi-
nates

X1 =M, X2 =1
Computing carefully the change of coordinates and the change of basis from (8.1) to (8.2) shows
that the two solutions of the Birkhoff problem are the same which means that the extensions at
infinity are the same. One should mention that in [CIT09], Corti-Iritani-Tseng prove a similar
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statement but as we are working on a global D-module, which is defined globally on the B-side,
we do not need an analytic continuation argument.
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