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Abstract. — Let X be a smooth projective toric variety with £ ample line bundles. Let Z be the
zero locus of k generic sections. It is well-known that the ambient quantum D-module of Z is cyclic
i.e., is defined by an ideal of differential operators. In this paper, we give an explicit construction of
this ideal as a quotient ideal of a GKZ system associated to the toric data of X and the line bundles.
This description can be seen as a “left cancellation procedure”. We consider some examples where
this description enables us to compute generators of this ideal, and thus to give a presentation of
the ambient quantum D-module.
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1. Introduction

Mirror symmetry has many different formulations in mathematics: equivalence of derived
categories (known as Homological Mirror Symmetry by Kontsevich [Kon95|), isomorphism of
Frobenius manifolds (see [Bar00]), comparison of Hodge numbers for Calabi-Yau varieties (see
for example [Bat94|), isomorphism of Givental’s conesb (see |Giv98]), isomorphism of pure
polarized TERP structures (see [Her06|) or variation of non-commutative Hodge structures
(see [KKPOS]).

Inspired by the works of Givental (see for examples [Giv96| and [Giv98]), many authors have
considered quantum cohomology with a differential module approach : see Kim [Kim99| and
Rietsch (with Marsh and Pech-Williams) [Riel2| [MR13] [PRW16] for homogeneous spaces,
see Coates-Corti-Lee-Tseng [CLCTO09| and Guest-Sakai [GS14]| for weighted projective spaces,
see also the works of Iritani [Iri06], [Iri07], [Iri08| and [Iri09], the book of Cox-Katz [CK99|
and the one of Guest [Guel0].
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From the small quantum product on a smooth projective variety Z, one can define a trivial
vector bundle over D X C where D is an open subset of H?(Z, C) whose fibers are H**(Z,C). This
holomorphic bundle is endowed with a flat meromorphic connection and a non-degenerate pair-
ing. These data collectively define the quantum D-module of Z, which is denoted by QDM(Z).
When Z is a smooth toric Fano variety, Givental (see also Iritani [Iri09] for toric weak Fano
orbifolds) gives an explicit presentation of this D-module using GKZ systems (Gelfand-Kapranov-
Zelevinsky) in other words QDM(Z) is isomorphic to D/Gz where G is the GKZ ideal associated
to the toric data of Z. When Z is Fano, restricting this isomorphism to D x {0} gives an iso-
morphism between the quantum cohomology ring of Z and a commutative algebra constructed
by Batyrev in [Bat93].

In this paper, we investigate the non toric case where Z is a nef complete intersection subvariety
in a smooth toric variety X. To be more precise, let Lq,...,L; be ample line bundles on X.
Let Z be the zero locus of a generic section of £ := ®¥_ £;. Denote by ¢ : Z < X the closed
embedding. By Lefschetz theorem, we have H*(Z, C) = Im ¢*@ker ¢,. The sub-vector space Im ¢*
is called the ambient part of the cohomology of Z, denoted by H} (7). As H . (Z) is stable
by the small quantum product of Z, we can define a sub D-module, denoted by QDM, ,(Z2),
whose fibers are H; , (Z). A natural question is to find an explicit presentation of QDM,, (7).
It is well known that the GKZ ideal associated to £, denoted by G(x ¢), is part of the equations.
Cox and Katz addressed in the book [CK99, p.94-95 and p.101] the following question: what
differential equations shall we add to Gix ) to get an isomorphism with QDM,, ,(Z)?

Before giving an answer to this question in Theorem 1.1, we need to introduce some notations.
Denote by ¢top(€) the top Chern class of € and by ¢, € D its associated operator (see Notation
4.3). Denote by (Gx,e) : Crop) the left quotient ideal that is the left ideal of D defined by

(g(X,E) :/C\top> = <P €D ‘ /C\topP S g(X,E))-

Theorem 1.1 (See Theorem 5.9). — Let Ly, ..., Ly be ample line bundles on X, and assume
that dime X > k+3. Let Z be the zero of a generic section of £ := ®¥_,L;. Denote by : Z — X
the closed embedding. The ambient D-module QDM,,,,(Z) is isomorphic to D/(G(x.) : Ciop)-

The quotient ideal (G(x,e) : Ciop) can be seen as a precise statement for the “left cancellation
procedure” that appears in the works of Golyshev [Gol07, §2.9 and 2.10] and Guest-Sakai [GS14,
p.287].

Reichelt-Sevenheck used this presentation of QDM,, (Z) to prove a mirror theorem for non
affine Landau-Ginzburg model (see [RS12, Theorem 6.11]).

To prove our main theorem, we proceed in several steps.

1. In the first section, we review some standard facts on twisted quantum D-module
QDM(X, £) which is of rank dim¢ H*(X) and is defined via the Gromov-Witten invariants
twisted by £. We have a surjective morphism ¢ : QDM(X,€&) — QDM,,,(Z) and we
construct an explicit quotient of QDM(X, £) which gives an isomorphism with QDM, , (Z)
(see Proposition 2.19).

2. Then we prove that we have an isomorphism of D-modules ¢ : D/G(x ¢y — QDM(X, &). To
show this statement, we first define a surjective morphism. Then we prove that D/Gx ¢
is locally free of rank dim¢ H*(X). The freeness is proved in Section 4. To compute the
rank, we restrict D/G(x ¢y to D x {0} and we get a commutative algebra. This algebra is
a twisted version of the standard Batyrev algebras in [Bat93|. In Section 3, we prove that
the spectrum of this algebra is locally free of rank H*(X) over some explicit open subset
of D (see Theorem 3.18).

3. Using the isomorphism ¢ constructed above, we define a morphism @ : D/(G(x.¢) : Cop) —*
QDM,,.,(Z) which is surjective. To prove that @ is an isomorphism, we prove that
D/(Gxe) : Cop) is locally free of rank dim¢ Hy (7). The freeness is proved in Section
4. To compute the rank, we restrict D/(Gx,¢) : Crop) to D x {0} and we get a commutative



algebra. In Section 3, we prove that the spectrum of this algebra is locally free of rank
H: (Z) over some explicit open subset of D (see Theorem 3.18).

amb

The plan of this article is the following.

Section 2 contains a brief discussion of the twisted quantum D-module QDM(X, E).

In Section 3, we define and study twisted Batyrev algebras for a quasi-projective toric va-
riety. The main result of this section is Theorem 3.18. Notice that this section can be read
independently of the rest of the paper.

In Section 4, we prove that the GKZ modules of £¥ and its residual are locally free sheaves.
Using Section 3, we compute their ranks. The main result of this section is Theorem 4.15.

In Section 5, we state and prove Theorem 1.1 in Subsection 5.2.

In Section 6, we give two explicit computations of the generators of the quotient ideal for P"
with the line bundle O(a) with a € {1,...,n+ 1} and the blow-up of P™ at a point with the line
bundle O(aH + bE) with b € {—1,...,1—n} and a + b € {1, 2}.

For the sake of completeness, lacking references in the literature, we review the axioms for
twisted Gromov—Witten theory in Appendix A.
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Notation 1.2. — We use calligraphic letters for the sheaves such as D, G, M, M*. We use
bold letters for modules or ideals on non commutative rings such as D, G, Ml, M**.

2. Twisted and reduced quantum D-modules with geometric interpretation

Let X be a smooth projective complex variety of dimension n and Ly,...,L; be globally
generated line bundles. Denote by £ the sum £ := L1 ® --- ® L.

Notation 2.1. — For 0 < i < 2n, denote by H'(X) := H'(X,C) the complex cohomology
group of classes of degree i. Also denote by H*(X) the complex cohomology ring &2 H'(X) ;
the even part of this ring will be written H*(X). Put s = dimc H**(X) and r = dim¢ H?*(X).

We fix, once and for all, a homogeneous basis (T, ..., Ts 1) of H*(X) such that Ty = 1 is
the unit for the cup product and that the classes Ti,..., T, form a basis of H*(X,Z) modulo
torsion. Also denote by (7°,...,T77!) the Poincaré¢ dual in H*(X) of (Tp,...,Ts 1).

As a convention, we will write Hy(X,Z) for the degree 2 integer homology modulo torsion.
Denote by (B, ..., B,) the dual basis of (11,...,7,) in Hy(X,Z). The associated coordinates
will be denoted by (dy,...,d,).

We denote by Tx the tangent bundle of X and by wx its canonical sheaf.

As a convention, we will make no notational distinction between vector bundles and locally
free sheaves, writing —for example- £ for both.

2.1. Twisted quantum D-module. —



2.1.a. Twisted Gromov-Witten invariants. — Let ¢ be in N and d be in Hy(X,Z). Denote by
Xo,q the moduli space of stable maps of degree d from rational curves with ¢ marked points to
X. The universal curve over X4 is Xo 41,4

€041
Xopp1a—— X

lﬂ
XO,Z,d

where 7 is the map that forgets the (¢ + 1)-th point and stabilises, and e, ; is the evaluation at
the (¢ + 1)-th marked point. By Lemma 10 in [FP97]) the sheaf &4 := R'm. ¢}, € is locally
free of rank [, ¢(€) + k.

For j in {1,...,/(}, we define the surjective morphism &y ¢4 — €; & by evaluating the section
at the j-th marked point. We define & 4(j) to be the kernel of this map ; that is, we have the
following exact sequence

(2.2) 0— & a(j) — Eopa—— €€ ——0

For any j € {1,...,¢} the bundle & ,4(j) has rank [,¢;(€). For i € {1,...,(}, denote by v; the
first Chern class of the line bundle on Xy 4 whose fiber at a point (C,zy,...,xs, f: C — X)
is the cotangent space T*C,,.

Definition 2.3. — Let ¢ be in N, v;,...,7, be classes in H**(X), d be in Hy(X,Z) and
(my,...,mg) be in N°. For j in {1,...,¢}, the (j-th) twisted Gromov-Witten invariant with
descendants is defined by

—_—

¢

<Tm1(’71),---,ij(%)a---ﬁmz(%)> 1:/ Ciop(E00a(d)) [T w7 € i
O,Z,d [XO,Z,d}VH i=1

where ¢; 1 Xorq — X (1 < i < () is the evaluation morphism to the i-th marked point and

[Xo.0.4]"™ is the virtual class of Xg,4 (see |[BF97]).

2.1.b. Twisted quantum product. —

Notation 2.4. — Denote by NE(X) C Hy (X, Z) the Mori cone of X | generated as a semi-group
by numerical classes of irreducible curves in X

NE(X) = Z nc[Cl, ne € N, [C] numeric class of C

C' irreducible curve,
finite sum

The semigroup algebras of NE(X) and Hy(X,Z) will be respectively denoted by A and IT :
A =CNEX)] =C[Q%d e NE(X)], II=C[Hy(X,Z)]=C[Q%de HyX,Z)],

where Q¢ are indeterminates satisfying relations : Q%.Q% = Q%% . Associated schemes to A and
IT are :
S := SpecA, T := SpecIl.

The scheme S is an irreducible, possibly singular, affine variety of dimension r. Points of S are
characters of NE(X). If ¢ is such a character, denote by ¢? its evaluation on d in NE(X). Since
X is projective, the Mori cone is strictly convex and there exists a unique character sending any
d in NE(X) \ {0} to 0 ; it corresponds to the maximal ideal (Q? d € NE(X) \ {0}). We will
denote this point by 0.

The scheme T ~ (C*)" is an algebraic torus of rank r. In [CK99|, the point 0 € S\ T is
called the large radius limit of T.



The small twisted quantum product can now be defined. Let ¢ be in S and 1, ¥ be in H*(X).
The twisted small quantum product is defined by

(2.5) e —Z > q <71,72, >73,dT“

a=0 deH>(X,Z)

whenever this sum is convergent. Notice that this twisted quantum product is the non-
equivariant limit of * in [Irill, p.5]. Remark 2.2 in [Irill] implies that the twisted quantum
product o is associative, commutative, with unity 7} := 1.

Assumption 2.6. — We assume that (wxy @ £ ® --- ® L) is nef.

Iritani proves in [Iri07], that under this assumption, there exists an open subset D of S
containing 0 such that :

Vg € D,Vy1,% € H*(X), 1 o;W v is convergent.
Notation 2.7. — We denote by D the complex nonsingular variety D := DN T.

2.1.c. Twisted quantum D-module. — Let (B, ..., B,) be the basis of Hy(X,Z) fixed in Nota-
tion 2.1. For a € {1,...,7r}, put ¢, = QP*. We have:

Ifd=>"_,d,B, we get Q4 =T[._, ¢%. Viewing the g,’s as coordinates of T we get, for any

¢€T, ¢ =]l a
Let z be another variable ; we write C for Spec C[z]. We define r + 1 differential operators on

T x C by :
0o := a0y, a € {1,...,r}, and 0, := 20,.

We denote by F' the trivial holomorphic vector bundle of fiber H*(X) over D x C together
with the following meromorphic connection:

1 1
(2.8) Vio = 0u + T}, Vi = 0. — _Co¥ 4p

where 4 is the diagonal morphism defined by p(T,) := 3 (deg(T,) — (dime X — 1k €&)) T, and
¢ :=1(Tx) — c1(€). The couple (F, V) is called the twisted Quantum D-module of (X,€) and
denoted by QDM(X, &).

We define a multi-valued meromorphic section L™ of Hom(F, F') by

(2.9) L™(q.2)y=q "*y - Z 2. 1 <zi/w7 f> 2,dTa

a=0 Hy(X,Z)
d;éO

where —1— = 3", ((=D)fyFzFand ¢ T/ o= o TVE LT E = e~ Zam1Talogaa) and log(qq)
is the multl valued function, or any determination of the logarithm on a simply connected open
subset of D.

Define a pairing by: (71,72)™ := [ 71 U2 Uctop(E). This pairing is degenerated and its kernel
is ker m,,, where m,,, : H** (X) — H**(X) sends a to ¢ip(€) U a.

Proposition 2.10. — 1. The connection V is flat.
2. Fora in{1,...,r} and v € H*(X) we have
a(Tx) —al€
Vil =0 Vel =g (u- 20,

3. For any endomorphism u of H*(X), we put z* := exp(ulog 2). The multi-valued cohomo-
logical function L™(q,z)z"210x)=¢1€) js ¢ fundamental solution of V.



4. For any y1,72 € H*(X), we have
(LtW(Q7 _2)717 LtW(Q7 Z)VZ)tW - (717 72)tw.

Proof. — This proof is completely parallel to the one of Proposition 2.4 in [Iri09], using the
twisted axioms (see Appendix A). O

2.2. Quantum D-module for complete intersection subvarieties. —

Assumption 2.11. — In this section, we assume that dim¢ X > k43 and that the line bundles
Ly, ..., L, are ample. This makes it possible to use Hyperplane and Hard Lefschetz Theorems.

Notation 2.12. — Fix a generic section of £, and denote by Z the projective subvariety defined
by this section. By Bertini’s theorem, Z is a smooth complete intersection subvariety of X.
Denote by ¢ : Z < X the corresponding closed embedding.

By Lefschetz theorem we have
(2.13) H*(Z) =Im(* @ ker ¢,

and kert, C HY1mcZ(Z). We put H2*,(Z) := Im.*, this is the part of the cohomology of Z

coming from the ambient space X. We have an isomorphism H?(X) ~ H?*(Z).

Remark 2.14. — It should be possible to improve Assumption 2.11, at least for toric varieties.
For example, if X is a toric projective variety of dimension at least 3, £ = 1 and £, is a nef (not
necessary ample) line bundle on X, then Theorem 5.1 of [Mav03| ensures that Z is a smooth
connected hypersurface satisfying : H**(Z) = Im* & ker .

Proposition 2.15 (See Corollary 2.3 in [Irill]). — Using Notation 2.12, and under As-
sumption 2.11, for any v1,v2 € H**(X)

v o) y2) = V() @F 1 (72),

Z

where “ 1s the quantum product on Z. O

We define the trivial vector bundle, denoted by FZ , | of fiber H2*, (X) over Dz xC where Dy is
the subset of H?(Z, C)/ Pic(Z) where the quantum product on Z is convergent(!). The connection

V7 is defined via the same formula as V with the quantum product of Z and € := ¢;(77) and

(1) = 5 (deg(th) — dime 2) .

where (1),) is a basis of H*(Z). Proposition 2.15 implies that this bundle is stable by VZ. We
denote by QDM,.,(Z) = (FZ ., V7).

Corollary 2.16. — Using Notation 2.12, and under Assumption 2.11. The morphism * in-
duces a surjective morphism * : QDM(X, &) — QDM . (Z).

Proof. — 1t is clearly a surjective morphism of vector bundles. Proposition 2.15 implies that
*(Vs,v) = VZu*y. The adjunction formula gives : ¢(Tz) = t*(c1(Tx) — e1(€)). Since the
dimension of Z is the dimension of X minus the rank of £, we deduce that pu?(1*y) = t*(u(v)).
This implies t*(Vs,7) = VZ1*y. O

(D'We use the same parameter ¢ because of the isomorphism ¢* : H*(X) ~ H?(Z)



2.3. Reduced quantum D-module. — Consider the quotient H*(X) := H*(X)/kerm,,,,
and call it the reduced cohomology ring of (X, £). In this section, we define a "reduced" quantum
product on H?*(X), which enables us to define a "reduced" quantum D-module.

This reduced quantum D-module turns out to be isomorphic to the ambient part of the
quantum D-module of the subvariety Z defined in Subsection 2.2.

Since me,,, is a graded morphism, the reduced cohomology ring H*(X) = H**(X)/ker m,,,,
is naturally graded. For v € H?*(X), we denote by 7 its class in H2*(X). Denote by F the
trivial bundle with fiber H%(X) over D x C. For any 7,72 € H*(X), define the reduced pairing
(-, ) which is a bilinear form on H2*(X) by

(2.17) (V1 72)" = (71, 72)™

The reduced pairing is a well defined and a non degenerate bilinear form. Put s’ = dim¢ H?*(X).
Let (¢, ..., ¢y_1) be a homogeneous basis of H2*(X) and denote (¢°,...,¢* ') its dual basis
with respect to (-, ). Let 71,...,7 be classes in H*(X). Let d be in Hy(X,Z). Using
Definition 2.3, we define the reduced Gromouv-Witten invariant by

—_— ¢

- 77£>{)egd = (1, Cop(E) Vo0 = / Ctop (E0,n,d) H € Vi
[Xo,¢,a]Vi i=1
By the twisted Sy-symmetric axiom (c¢f. Axiom A.1), the reduced Gromov-Witten invariants are
well defined on the class in H?*(X). Notice that the reduced Gromov-Witten invariants are
symmetric with respect to the ¢ entries.
The reduced quantum product is

s'—1
— _re — red a
T ® qd Z Z 717727¢a>0,3,d¢ :
a=0 deH>(X,Z)

red

The convergence domain of e;*® contains D. We will restrict ourselves to D.

Define the following connectlon on the trivial bundle F :
_ 1_
Va e {l,...,r}, Vs, :=0,+ ;Taoged
_ 1— _
A

where 7z is the diagonal morphism defined by 7i(¢,) = 1 (deg(¢,) — (dime X —1k€)) ¢, and
¢ .= Cl(Tx) - 01(5).

Definition 2.18. — The couple (F,V) is called the reduced quantum D-module of (X,&) and
denoted by QDM(X, E).

Proposition 2.19. — 1. The connection V is flat.
2. Under assumption 2.11, let Z be the subvariety defined by a generic section of £. There
exists an isomorphism of D-modules f : QDM(X, £) — QDM, ,,(Z) making the following
diagram commutative:

QDM(X, €)

/\

QDM(X, €) QDM,(2)

where p is the natural projection on the quotient.



Proof. — For any 71,72 € H**(X) and any a € {0,...,s — 1} we have :
N =7 07, and  u(T,) = u(T,).

It follows that, for any v € H**(X),

(2.20) Vv =V7.

and V is flat since V is.
As for the second point, consider the following diagram, where we make use of notations of §.
2.2.

mctop

(2.21) H2(X) H>(X)
H>(X)
' y L
HZ(Z)

The morphism f is well defined by f : 7% + ¢*y. By the decomposition (2.13), f is an isomor-
phism.

This diagram and Corollary 2.16 gives the required isomorphism between vector bundles ;
Formula (2.20) ensures that the connections are compatible. O

Remark 2.22. — The reduced quantum D-module does exist even if the assumption 2.11 is
not satisfied ; that is if the subvariety Z is not well defined. It is used in [RS15].

We now come to the reduced fundamental solutions.
Lemma 2.23. — For any (¢, z) in D x C, we have : L™ (q,z)(kerm,,, ) = kermc,,, .

Proof. — Let v be in ker m,,,, and o € H*(X). Since L"(q, z) is an automorphism of H*(X)
and kerm,,,, is the kernel of the twisted pairing (-, )™ we find, using Proposition 2.10:

(0 L™(a,2)7)™ = (L™(g, —2) e, 7)™ = 0.
Then L™ (g, z)y belongs to kerm,,,. O

This lemma implies that we can define a reduced L function : for any (¢,z) € D x C put

(2.24) L(q, 2)7 = L™(q, 2)

The following corollary follows from Proposition 2.10.

Corollary 2.25. — We have the following properties.

1. A fundamental solution of ¥ is given by L(q, z)z Fzc1(Tx)=e1(€),
2. For any v1,7 € H*(X), we have

(L(q, —2)31, L(q, Z>§2>red = (31, gz)red

3. Batyrev algebras for toric varieties with a split vector bundle

From now on, the smooth projective variety X is a toric variety. In [Bat93|, Batyrev constructs
an algebra from the fan of a smooth toric projective variety. If the variety is Fano, this algebra
is its quantum cohomology ring. In this section, we define and study similar objects for toric
varieties endowed with a split vector bundle.



3.1. Fan for the total space of a split vector bundle. — Denote by N a n-dimensional
lattice and by M its dual lattice. Consider a fan 3 of Ng = N ® R and denote by X(I) the set
of [-dimensional cones of ¥.. The set of rays is (1) = {6;,...,0,,}, and for any 6 € 3(1) we
denote by wy the generator of 6 N N.

Let X be the variety defined by . We assume that X is smooth and projective.

Let £,..., L be k globally generated line bundles on X. Put & = ®%_,L;. Let Ly,..., Ly be
k toric divisors of X, such that £; ~ O(L;). To any ray 6 € (1), there is an associated toric
Weil divisor denoted by Dy ; we write, in a unique way:

Li= Y Dy, (el i=1,.. k
fex(1)

Consider the n + k dimensional lattice N’ := N @ Z*. Let (1, ..., ) be the canonical basis
of Z*. Denote by :

¢ :N'=NxZF— N
the natural projection. Define a fan A in N§ := N’ ® R in the following way :
— The rays of A are indexed by (1) U{1,...,k}:
For 6 € ¥(1), put vy = (wg, 0) + S5, £5(0, ),
Forie {1,...,k}, puto :=(0,¢).

Then,
A1) :={pg =Ry, 0 € X(1)} U{p; :=Rw;, i€ {1,... k}}.
— a strongly convex polyhedral cone o is in A if and only if ¢(0) € X.

Notation 3.1. — In the following, for any p € A(1), we denote by v, € N the generator of p.
It will be convenient to make the distinction between rays py coming from the base variety X,
and rays p; coming from the split vector bundle £. We put :

ALY = {pg, 0 € S(1)}, ALV = {p1,...,p} so that A(1) = ALY L ALY,

Let Y be the toric variety associated to the fan A. As X is smooth, Y is also smooth.
The scheme morphism induced by the projection ¢ : N’ — N is denoted by the same letter
oY — X.

Proposition 3.2 (|CLS11]|, Proposition 7.3.1 and Exercise 7.3.3)
The toric variety Y is the total space of the vector bundle £, dual of £ = ®F_,L;. The natural
projection is the toric morphism ¢ Y — X. O

We will make use of the following easy result about cohomology classes:
Proposition 3.3. — The projection ¢ : Y — X induces an isomorphism:
¢*  H*(X) — H*(Y).
Forie{l,...,k}, let D,, be the toric divisor of Y corresponding to the ray p;, then
¢*[L;) = [-D,,] in H*(Y).

To any toric Weil divisor D = " agDy of X, there is an associated piecewise linear function
¥p, defined on the support |X| = Ng of ¥ and linear on each cone, such that p(wy) = —ay.
Since the line bundles £; are globally generated, the functions 17, are concave. This gives :

Lemma 3.4. — The support |A| = Useac of the fan A in N is convex.



Proof. — First assume for simplicity that £ = 1 i.e., N' = N X Z and L = 2962(1) loDy. Let
1y, the concave piecewise linear function such that ¢ (wy) = —fy. Notice that vy = (wg, ls) =

(wea _wL(we))
Let o be a cone of A of the form o = 2967(1) po + p1, where 7 is the cone of ¥ obtained by

projection of o : 7 = ¢(¢). A points p of o can be written in Ng X R as :

p= Z to (wo, =1, (wp)) + t1(0ng, 1), tg,t; € RT
fer(1)

= Z towgy, —r, Z wy | +t1 (by linearity of ¢, on 7)

oer(1) fer(1)

so that
o={(pn,p1) € Nk xR | py € (), p1 > —0r(pNn)}-

By definition, the support of A is the union of such cones o. Since |3| = N, one get :

Al ={(pn,p1) € Ng X R | p1 > —r(pn)}-

Now, consider p = (pn,p1) € N,q = (qn,q1) two points in |A| and ¢ € [0, 1]. Since 9, is concave,
we have : tp; + (1 —t)q1 > —¢p(tpy + (1 — t)gn), and (tp + (1 —t)q) € |A] as required.
In case k > 2, we get

‘A| = {(pN7p17 .. 7pk) S NR X Rk ‘pl Z _wlq(pN)w -y Pk Z _Q/JL,CQ?N)}

and |A| is also convex. O

Ezample 3.5. — Consider the fan of P! given by (N = Z,w; = 1,ws = —1), L = O(2) and
L = 2Dy,. The fan A is given by the rays vy, = (1,2),vg, = (—1,0) an v, = (0,1) (cf. Figure
1).

PL o6,
Uﬁel
Fan A in Ng, Vor § Y, total space
N'= N x Z. po,  Urs, o of Op:1(2)"
o |o
Fan ¥ in MV,
]\?n: Zm & 02 Wo, We, th
: < T > “ny X = P!

FIGURE 1. Fans ¥ and A associated to X = P!, L = 2Dy,

3.2. Definition and properties of Batyrev algebras associated to (X,&).—
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3.2.a. Mori cone. — Let X,Y and £ be as in section 3.1. Using Proposition 3.3, we will identify
H?(X) and H*(Y), as well as the Mori cones of X and Y.

Notation 3.6. — For any class d of Hy(Y,Z) and ray p of A(1) corresponding to the weil divisor
D,, we put

d,:=D,.d= /D,, cZ.
d
There is an exact sequence :
(3.7) 0 — Hy(Y,Z) — 22V — N — 0,

Where N’ = N @ Z* is the lattice defined in section 3.1 and where the image of d € Ho(Y,Z) is
(dy)penqy € Z2W. We identify H(Y,Z) and its image in Z2W,

For any real number a, we put a¥ = max(a,0),a” = max(—a,0). Also put, for any d €
Hy(Y,Z), d* = (d})enq) and d™ = (d;)peaq)- With the identification above, we have :
d=d"—d .

If a is an element of Hy(Y,Z) C ZAW | we say that a is supported by a cone if the set {p € A(1) |
a, # 0} is contained in a cone of A.

We will use the following facts :

Lemma 3.8. — Let d be in Hy(Y,Z).

1. If d* is supported by a cone, then —d € NE(Y).
2. Ifd € NE(Y) \ {0}, then d* is not supported by a cone.

Proof. — 1. We have to show that, for any nef toric divisor 7', T.(—d) > 0. Let T be such a
divisor and let ¥ be the piecewise linear concave function associated to T :

T.d= Z U(v,)df — Z—w(v,,)d;

Z vder + Z d,¥(v,) (d* supported by o)

Z d+vp )+ Z d+vp =0 (1 concave and Zd;'vp = Zd;vp).
p p

2. If dt is supported by a cone, then —d € NE(Y) and d € —NE(Y) N NE(Y') = 0.
U

3.2.b. Twisted Batyrev algebra of (X,E). — Let A be the semi-group algebra of NE(X), as
defined in Notation 2.4. Since the Mori cones of X and Y are identified, we have :

(3.9) A = C[NE(Y)] = C[Q%,d € NE(Y)].
Fix a set of indeterminates (,),ea). We put :
Ala,) = Aoy, p € AQL)
For any d € Hy(Y,Z) denote by Ry the polynomial :
Ry = e Qlz? = H :L‘ - H xd_
pEA(L) peA(1)
Let M’ be the dual lattice of N’ = N @®ZF. For any u € M’ denote by Z, the linear polynomial :

Zy = Z (u,vp)x,.

pEA(1)
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Definition 3.10. — Consider the ring A[z,| defined above. The quantum Stanley-Reisner ideal
of Alz,] is the ideal QSR generated by the polynomials R, :

(3.11) QSR := <Rd =% QU de NE(Y)>

The linear ideal of Alx,), is the ideal Lin generated by the polynomials Z,, :

(3.12) Lin := <Zu = Z (u,vp)x,, u € M’>

PEA(L)
The twisted Batytrev algebra of (X, &) is the A-algebra :
B := Alz,]/(QSR + Lin).

Remark 3.13. — 1. Up to isomorphism, B is well defined since it does not depend on the
specific choice of the fan A (i.e., choices of the fan ¥ and toric divisors L;).

2. For any fan defining a smooth quasi-projective variety Y, we can define, as in Definition
3.10, the (untwisted) Batyrev algebra of Y. However, for Proposition 3.20 and first point
of Theorem 3.18 to be true, the support of the fan must be convex (in our case, this is
equivalent to each L; being nef) of maximal dimension, and the anticanonical divisor — Ky
must be nef.

The quantum Stanley-Reisner ideal QSR defined above is a deformation, parametrized by
Spec(A), of the following ideal :

(3.14) SR = (2", d € NE(Y)) ;

SR is the Stanley-Reisner ideal associated to the simplicial complex defined by A (see [BH93]).
We have :

Proposition 3.15. — There is a natural isomorphism
Clz,]/(SR+ Lin) — H*(Y,C) = H*(X,C)
x, — [D,)]

where [D,] € H*(Y) is the class of the toric divisor D,.

Proof. — Since A is convex (Lemma 3.4) and Y is quasi-projective, the proof of [Ful93| in
the complete case can be adapted to our case, which shows that there is a well defined isomor-
phism Z[z,]/(SR+ Lin) — H**(Y,Z) sending x, to [D,]. O

3.2.c. Residual Batyrev algebra of (X,E). — From Proposition 3.3 there exists an isomorphism
H?(X) ~ H?(Y) ; via this isomorphism, we have, for any toric divisor L; and its corresponding
ray pr., [Li] = [=Dp, ]

Notation 3.16. — Put :

Ctop = H[LZ] = H [-D,| € H%(X)

peA(l)b“"d

Ttop = H (—z,) € Alz,].

peA(l)b“"d

Then ¢p, is the top Chern class of the fiber bundle £ = EB§:1£1'7 and x,, is sent to ciop via the
morphism defined in Proposition 3.15.

12



Definition 3.17. — Consider the algebra Afz,] and the ideals QSR and Lin defined in 3.10.
Put G = (QSR + Lin).
The quotient ideal of G by ., is :

(G : Tyop) ={P € A[z,], z4opP € G}.
The residual Batyrev algebra of (X, E) is the A-algebra :
B = Alz,] /(G : Tiop),

3.2.d. Main Theorem for Batyrev algebras. — The main properties of twisted and residual
Batyrev algebras of (X, £) are summed up in the following result :

Theorem 3.18. — Let X be a toric smooth projective variety endowed with a split vector bundle
E= EBLEZ-. Assume that each line bundle L; is nef, as well as wx @ L1 Q@ -+ ® L".
Put A = C[Q%,d € NE(X)], S := SpecA and denote by O the maximal ideal (Q?, d # 0). Let
Ciop e the top chern class of £ and let my,,, be the morphism of multiplication by ciqp in H**(X).
There exists a Zariski neighbourhood V of 0 € S such that :
1. Over V, the twisted Batyrev algebra B of (X, E) is a locally free A-module of rank
dim H**(X).
2. Over V, if the line bundles L; are ample, then the residual Batyrev algebra B™ of (X, &)
is a locally free A-module of rank (dim H*(X) — dimker m,,,, ).

Remark 3.19. — A convenient neighbourhood V will be defined in Lemma 3.35 and could be
explicitly computed by elimination algorithm (see 6.2). If Y is Fano, V is the whole scheme S.

The proof of Theorem 3.18 will be given in section 3.4. We will actually rephrase its first part
and show that the scheme morphism Spec B — S is finite, flat, of degree dim H*(X) over V.
Let us first study the quotient by the ideal QSR defined in 3.11.

3.3. Quotient by the Quantum Stanley Reisner ideal. — In this section, we show :

Proposition 3.20. — Put Q := Spec(A[z,]/ QSR). Under assumptions of Theorem 3.18, the
morphism Q — S is flat of relative dimension dim X + k = dimY. The schemes Q and S are
Cohen-Macaulay.

We will prove this proposition by performing a Grébner degeneration of the Quantum Stanley-
Reisner ideal. For that, we first need to consider a graded version of this ideal and define a
weight function on the monomials of the graded algebra. We then compute the initial ideal

corresponding to this weight function in term of primitive classes introduced by Batyrev in
[Bat93].

3.3.a. Graded QSR ideal. — Consider a new variable h and define the graded A-algebra A[z,, ]
with the grading given by deg(h) =1 and deg(z,) = 1.
Let P be a polynomial in A[z,]. The homogenisation of P in A[xz,, h] is :

ph .= plesPp (%) € Afz,, h.

Recall that the toric divisor Ky = — ) pea(y Dp 1s a canonical divisor of Y. For any d €
H,(Y,7), we have deg(z?") — deg(z?) = >, Dpd = —Ky.d. It follows that, for any d in
Hy(Y,Z),

Rh = 2@ p*" — QhF 2, where k = Ky .d.
Definition 3.21. — The graded quantum Stanley-Reisner ideal of Alz,, h] is the homogeneous
ideal QSR" generated by the polynomials R,

13



Remark 3.22. — 1. If —Ky is nef, we get :
QSR" := < Rh =2 — QIpKvdyd e NE(Y)>

2. The graded ideal QSR" could be different from the ideal generated by the whole set of
homogeneous polynomials {P", P € QSR}. Under our assumptions, we conjecture that
they are actually equal.

3.83.b. Weight function and monomial order. — Fix, once and for all, a strictly concave
piecewise-linear function ¢ of |A[, rational on N’. Since A is quasi-projective, such a function
exists, corresponding to an ample Q-divisor A, = ZpeA(l) —p(v,)D,.

Define a weight function w on the monomials of A[z,, h] by setting, for any monomial z*h" :=
HpeA(l) 2 hE

w(z®h*) = Z —a,p(v,).
pEA(L)
In particular, w(h*) = 0 for any integer k. For convenience, we extend this function to any
polynomial P by setting :
w(P) = max{w(x*h*), zh* monomial of P}.
The initial form of a polynomial P =Y, auz®h* is
in,(P) = Z oz hFi
iw(x% hFi)=w(P)

This is not a term in general. The initial ideal in,(7) of an ideal I is the ideal generated by

initial forms of elements of 1.
Also define a new monomial order < on the variable z,, h by setting :

w(x®h*F) < w(z®h¥)
°hF < 2 h = {or
w(z®h*) = w(zA*) and z°h* D 2@ ¥
Where < is any fixed monomial order on the variables {z,,h}. The leading monomial of a
polynomial P for the order < will be denoted by Lm(P).

Lemma 3.23. — For any d in the Mori cone of Y, Lm(R") = in,(R!) = 29"
Proof. — We compute :
w(z®) —w(h gy = Z —dyo(v,) — Z —d, p(v,) = Z —d,p(v,) = Ay.d > 0.
PEA(L) PEA(L) PEA(L)
0

3.3.c. Primitive collections and classes. — Primitive classes are specific elements in Hy(Y,Z)
that generate the Mori cone of Y. They were introduced in ([Bat93] and [CvR09]).

Definition 3.24. — A subset {p1,...,p;} of A(1l) is called a primitive collection for A if
{p1,-..,m} is not contained in a single cone of A but every proper subset is.

Let C = {p1,...,pm} be a primitive collection, and vq,...,v; be the generating vectors of
pr NN ....pp N N'. Let o be the minimal cone of A containing v = Ei‘:l v;.  Denote by
Py ..., p. therays of o and vy, ..., v, the primitive vectors of the p!. Since o is the minimal cone
of A containing v, the vector v is in the relative interior of ¢ and there exists ay,...,as, real
positive numbers, such that : v = ajv] + -+ + asv;. Moreover, since v is in N and the v} are
part of a basis of N’ (Y is non singular), the a;’s are uniquely defined in Ns,.
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Remark 3.25. — With the above notations : {vy,..., v }N{v},...,v.} = @. (|CvR09|, propo-
sition 1.9).

l

Let C' = {p1,...,p} be a primitive collection and v =) ._, v; = a1v] +- - - + a4V, be as above.
Since S0, v; — > ;-1 a;v; = 0, the exact sequence (3.7) shows that there exists a well defined
element d° € Hy(Y,Z) such that :

1 ifped,
dg: —a; if p=R%j, je{l,..., s},
0  otherwise.
Notation 3.26. — A primitive class is a class d° € Hy(Y,Z) corresponding to a primitive

collection as above. We denote by :
P := {d° € Hy(Y,Z),C primitive collection}
the set of primitive classes.

Proposition 3.27 (|[CvR09|, Propositions 1.9. and 1.10). — FEach primitive class is con-
tained in the Mori cone NE(Y). The Mori cone is generated by primitive classes.

3.3.d. Initial ideal of the graded QSR ideal. —

Lemma 3.28. — Assume that the anticanonical divisor of Y s nef. Let F be the fraction
field of A. The set {R",c € P} is a Grébner basis, for the order <, of the ideal generated by
{Rh d € NE(Y)} in Flz,, h)].

Proof. — First prove that, for any d € Hy(Y,7Z), there exists a set of homogeneous polynomials
{B. € Flz,,h],c € P} such that :

(3.29) Ry=> B.R! and VceP, Lm(B.R}) < Lm(R}).
ceP

Let E be the set of polynomials R? which can not be expressed as in (3.29). Assume that E is not
empty and consider R? € F, whose leading monomial is minimal. Write R = 2R — Qi pET
where £ = Ky .d. Two cases may occur :

a) Lm(R") = % h*¥". If d* is supported by a cone, then —d € NE(Y) by Lemma 3.8. By
Lemma (3.23), Lm(R_g4) = 209" = 24 ; and 2% < 2" which does not satisfy the assumption.

Then d* is not supported by a cone and there exists a primitive collection C' contained in
the support of d*. Denote by ¢ the class of C and put a = d* — ¢t € N2®_ Notice that
min(d ,a+c¢ )+ (d—c¢)" =d"—ct+c¢  =a+c¢ and min(d",a+c¢")+ (d —¢)” = d~, which
gives :

Rh — xahk+R? — QCpF pmindate) ph
where £’ is the integer ensuring homogeneity. We also have :
Lm(xmin(d*,aJrc*)Rg_C) _ maX<xd+fc++c*’xd7)
But ¢ < 2¢" by Lemma (3.23) and 2% < 2¢" by assumption. It follows that :
Lm(zmn@ et Rh Y < Tm(RY)

and Lm(R" ) < Lm(R"). By the minimality assumption, R _ admit a standard expression
with zero remainder (3.29). This gives in return such an expression for R which contradicts
R, e E.

b) Lm(R") = 24 h*". Since R"; = —Q R" and Lm(R" ;) = Lm(R") one may replace d by
—d and apply the first case.
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By (3.29), {R" ¢ € P} is a set of generators of the ideal and we can apply the Buchberger’s
criterion : Let ¢q, ¢y be two primitive classes. We have :

S(Rh Rh ) — Lm(ngl) h Lm(RQQ) h
arse ged (Lm(R’gl), Lm(Rg)) < ged (Lm(R’gl), Lm(R’;Q)) “
:xcffmin(cir,c;r)Rc2 . xcgfmin(cir,c;r)RCI — xmin(c;,c;)Qq R?chl )

But (3.29) gives a normal expression with a zero remainder for R., ., and then for S(R,,, R.,).

O
Proposition 3.30. — The initial ideal of QSR" for the weight function w is :
in, (QSR") = (in,(R"),c € P) = (z¢", ¢ € P) = ( 2%, a is not supported by a cone).
Proof. — Let a be in N not supported by a cone. There exists a primitive class ¢ € P such

that the support of ¢* is contained in the support of a. Then a—ct € N2 and the leading form
of zo—<" R" € QSR" is . This, and Lemma 3.23, proves the two equalities on the right, and the
inclusion (in,(R"), c € P) C in,(QSR"). It remains to show that in,,(QSR") C (in,(R"),c € P).
Let P be in QSR". Using Lemma 3.28, we can write :
P = Z QCR?
ceP

where, for any ¢ € P, Q. € Flz,,h] (F = Frac(A)) and Lm(Q.R") < Lm(P) ; this implies
w(Q.R") < w(P). The initial form of P is :

in,(P) = > in,(Q.R") = > ing, (Qe)zt .
c€P,w(QcRM)=w(P) c€P,w(QcRM)=w(P)
it follows that in,,(P) is in Alz,, h] N (3 ,cp Flz,, hlz") which is equal to 3", Alz,, h]z¢" since
the z¢" are monomials. O

The initial form of R" are unitary terms. This gives :

Corollary 3.31. — Let p be any closed point of Spec A and xk ~ C be its residual field. Let
QSRh be the images of QSR" in K[z,, h|. The initial ideal of QSRh for the weight function w is :

inw(QSRh) = (2", ceP) = (z% a is not supported by a cone).

Forgetting the variable h, we can restrict the weight function w to A[z,] ; we still denote it by
w. Proposition 3.30 above, and specialization to h = 1 gives :

Corollary 3.32. — The initial ideal of QSR for the weight function w is :
in, (QSR) = (in,(R.),c € P) = (z°,c € P) = ( x° a is not supported by a cone).

3.8.e. Proof of Proposition 3.20. — We first show that Q — S is flat, then show, by Groebner
degeneration, that each fiber is Cohen-Macaulay.

Flatness. Let us prove that A[z,]/ QSR is a free A-module : for any P in Az,], denote by P its
image in Afz,]/ QSR. Let A be the set of monomials of A[z,] not contained in in,(QSR). By
Corollary 3.32 A = {2% a € N*(W) | q is supported by a cone}. We claim that A = {29, 2 € A}
is a base of Alz,]/ QSR.

Let 2, ..., 2" be in A and ay,...,q; be in A. If >, ;2% = 0, then ) oya® € QSR and
in, (3, a;z*) € in,(QSR). Since every q; is supported by a cone, a; = 0 for any i, and A is free
over A.

Suppose now that A does not generate Alz,]/ QSR as a A-module. Let z* be the smallest
monomial for < such that @ ¢ A.A. Then a is not supported by a cone. There exists a
primitive class d, and b € N*®) such that a = b+ d™ and 2* = 2°R; + Q% . We deduce
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that 7@ = Q9b+4" . Since 2"t? < 2%, the class 25+9~ belongs to A.A, hence 2@ € A. A ; this is a
contradiction.

Cohen-Macaulayness and relative dimension. Consider the graded ring A[z,, h] and the ideal
QSR” defined in 3.34. Put n’ = n+ k = dimY. We first prove that A[z,, h]/ QSR" is Cohen-
Macaulay of relative dimension n’ + 1 over A.

Since S is a toric affine variety, it is a Cohen-Macaulay scheme. By [BH93|, Theorem 2.1.7,
it is sufficient to show that over every closed point p of S, the fiber Q, of Q — S is a Cohen-
Macaulay scheme of dimension n' + 1.

Let p be a closed point of S, k ~ C its residual field, and denote by QSRh the image of QSR"
in k[x,, h]. By Proposition 3.30, the initial ideal of QSRh is the Stanley-Reisner ideal SR =

(%, a € NAW not supported by a cone) defined in 3.14. Since QSRh is a graded ring, we can
perform Grobner degeneration, i.e., construct a flat and proper family over A; = Spec C[t] whose

fibre over 0 is Proj(C[z,, h]/ SR) and whose fibre over any other point is Proj(Clz,, h]/QSRh).
From [BH93|, Theorem 5.1.4, and Corollary 5.4.6, we know that C[z,]/ SR is a Cohen-Macaulay

ring of dimension n’. Then Clxz,, h]/ SR and Clz,, h] /mh both are Cohen-Macaulay rings of
dimension n’ + 1.

Since QSR" is homogeneous, the polynomial & — 1 is not a zero divisor of Alz,, b/ QSR".
Then Alz,]/ QSR = A[z,, h]/(QSR", h — 1) is a Cohen-Macaulay ring. O

3.4. Proof of Theorem 3.18. — Put B = Spec B and consider the scheme morphism f :
B — S. We first study the fiber of f over 0. We then define a convenient neighbourhood V of
0 with help of a graded version of the Batyrev algebra and show that B — S is finite, flat, of
degree dim H**(X) over V ; this prove the Theorem for the twisted Batyrev algebra. We finally
prove the Theorem for the residual Batyrev algebra.

3.4.a. Fibre of B — S over 0.— Recall the definition of the Stanley-Reisner ideal of A (¢f. 3.14).
By Proposition 3.15 we have :
(3.33) B ® (A/0) = Clx,])/(SR+ Lin) — H*(Y,C) = H*(X,C)

z, — [D,)]
3.4.b. Definition of a neighbourhood of 0. — First define a graded version of the Batyrev algebra
of Y :

Definition 3.34. — Assume that the canonical divisor — Ky is nef, and consider the graded
A-algebra A[z,, h] and the graded quantum Stanley-Reisner ideal QSR" defined in 3.21.

The linear ideal of A[z,, h], is the homogeneous ideal Lin generated by the polynomials Z, =
ZpeA(1)<u, Vp)T,, w € M'. The graded Batyrev algebra of A is the A-algebra :

B" := A[z,, h]/(QSR" + Lin).

Put :

— Q == Spec(Afz,]/ QSR).

— P := Proj(A[z,, h]) and 7 : P — S, the natural projective morphism.
— H C P, the relative hyperplane at infinity, defined by h = 0.

— B" := Proj(Afz,, h]/(QSR" + Lin)).

By definition, B =B"N (P \ H).

Lemma 3.35. — Set :
V =S\ 7(B"nH).
then V is an open Zariski neighbourhood of 0.
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Proof. — Since 7 is projective, V is an open subset of S. Let us show that 0 € V. The
intersection (B" N H) N (7~1(0)) is defined by the homogeneous ideal (h) + SR + Lin in C[z,, h].
By Proposition 3.15, C[x,, h]/({h) + SR + Lin) — C[z,]/(SR + Lin) is isomorphic to H**(Y, C).
Then the ideal (h) + SR+ Lin defines a zero dimensional scheme supported by the origin of
Spec Cz,, h] ; its radical is the irrelevant ideal of the graded ring Clx,,h], and (B" N H) N
(7=1(0)) = 0. O
8.4.c. Local freeness and rank of the twisted Batyrev algebra of (X,€).— Let B be the pull-
back of B by the open inclusion V < S ; we make use of the same notation for any other
scheme defined over S.

By Definition of V, B2 does not meet the relative hyperplane Hy, hence By = B. Moreover,
as a closed subscheme of the projective bundle P+, which do not meet a relative hyperplane, By,
has relative dimension zero. Thus, By — V is a finite and proper morphism.

By Proposition 3.20. Q,, — V is a flat morphism of relative dimension n’ = dimY" between
Cohen-Macaulay schemes. One get the following diagram :

By—— Qv

J/rel. dim. n/ =dimY
rel.
vV

dim. 0

Let (e1,...,eu) be a basis of M’ = Hom(N @ Z*,7Z). Let p be a closed point of V and denote
by Z; the image of Z; := Z,, in the quotient of Alz,] by the maximal ideal defining p. In the
Cohen-Macaulay fiber Q,, over p, the scheme B, has codimension n’ and is defined by a sequence
of the same length n' (namely (Z1, ..., Z,/)). Then, by [BH93], theorem 2.1.2, (Z,,..., Z,/) is
a regular sequence.

Since Qv — V is flat, and (Z1,...,Z,/) is a regular sequence over any point of V, the
morphism By — V is flat ([Mat86] Theorem 22.5 and Corollary). The degree of this finite
morphism can be computed as the length of the fibre B2 over 0. From isomorphism 3.33, it is
equal to dim H?*(Y). O

3.4.d. Local freeness and rank of the residual Batyrev algebra of (X,E).— Denote by Ty, the
image of xyop in B = Alz,|/(QSR + Lin), and by mz,,, : B — B the morphism of multiplication
by Ty, in B. This multiplication induces an isomorphism :

B™ = Alz,) /(G : Ziop) — TyopB = Im(my,,,),
which gives an exact sequence :
(3.36) 0 — B*® — B — B/Ty,, B — 0

Let d be a class of NE(Y), and p; be the ray of A(1)"** corresponding to a line bundle L;.
Since £; is ample and the Chern class of £; is [=D,,], we have d,, = D,,.d < 0. Then, we have :

i

(337) Ry = xd+ - detopxdi_ga

where € = (€,),ca), €, = 1if p € A1), €, = 0 if p € A(1)™.
As a consequence, the image of Ry in B/ZipB = Alz,]/(QSR 4 Lin 4(x,p)), is 24" and we
have :

B/TopB — Alz,)/ (" ,d € NE(Y)) + (Zy,u € M"Y + (210p))
SA® (C[xp]/(SR+ Lin +(xt0p>))

Using Proposition 3.15, we get :
Alz,]/(QSR + Lin +{(Zop)) — A ® (HQ*(X, C)/ (ct0p>).
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Thus, B/TpB is a free A-module of rank dime H**(Y') / ¢iop H**(Y') = dimge ker m.,,.
Restricting the exact sequence (3.36) to V, and using Theorem 3.18, we find that (B™®)|y is
a locally free A-module of rank (dim H*(Y) — dimkerm,,,,) over V. O

4. GKZ modules for toric varieties with a split vector bundle

GKZ systems were defined and studied by Gelfand-Kapranov-Zelevinskii in the end of the
eighties (c¢f. [GGZ87|, [GZKS88|, |GZKS89| and [GKZ90]). Our approach is closer to the one
of [Giv95], [Giv98|, [CK99, §5.5.3 and §11.2] or [Iri09].

4.1. Definition and main Theorem for GKZ-modules. — For Batyrev algebras, the
natural base ring is A = C[NE(X)] = C[NE(Y)] as defined in Notation 2.4 or 3.9. When dealing
with differential operators, we need to work over a smooth subvariety of S = Spec A.

Put, as in 3.10, A = C[Q% d € NE(Y)]. Consider the ring C[Q% d € Hy(Y,Z)], which is
the localization of A where the Q¢ are made invertible. Let (Bi,..., B,) be the fixed base of
Hy(X,Z) and (T4, ...,T,) be its dual base in H*(X,Z) (cf. 2.1). Put ¢; = Q.

Notation 4.1. — Set :
Clg] =Clai™,...q;'] = C[Q", d € Ha(Y,Z)],
T := Spec ClgF] Uu=vnT

where V is the neighbourhood of 0 defined in Lemma 3.35 ; V is the locus over which the Batyrev
algebra is ensured to be locally free, and U will play the same role for differential modules. We

have :
0 ¢ V C S

U U and 0 ¢ T.
U c T

For any d =) _, d,B, € Hy(X,Z) we write :
¢* =[] et € Clg.
a=1

Let z be another variable ; we write C, for Spec C[z], or C when no confusion can occur.
Consider the non-commutative ring :

(4.2) D :=Clg", ..., ¢ " 2)(264,, - - -5 204, 20.) = ClgT, 2](26,, 26.),
where the non commutative relations are (24,,)q = ¢;(20,,) + 2q; and (28,)z = 2(z0,) + 2°.

Notation 4.3. — 1. Quantisation: To any class 7 = Y. _ t,T, € H*(X) we associate the
operator

,
T = Ztazéqa eD
a=1

~

If £ is a line bundle or a divisor on X we also write £ := CT(\,C) Finally put :
k: A~
Cop = | [ Li €D
i=1

2. Pochhammer symbol with a variable z: For any element a of a Z|z|-algebra, and any k € N
define :

(4.4) lalo =1, laly :=ala—2)---(a—(k—1)z) ifk>0.

This is a variant of the traditional Pochhammer symbol.
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Definition 4.5. — For any d € Hy(X,Z) put :

o= TI[E =] T1 [B] - T1[E+=a] . TI [B] -

i=1 i gexn(1) 0 i=1 ' hex(1) 0

where d; = L;.d, dy = Dg.d. Also define the Euler field :

1. The GKZ-ideal G of D associated to (X, Ly,..., L) is the left ideal generated by the
operators [1; and ¢
G := (¢,0y,d € Hy(X,7Z))
2. The quotient ideal (G : ¢,p) of G with respect to Cyop, is the left ideal of D generated by :
{P eD|g,P cG}.
(G : Cop) = (P €D | P €G).
Remark 4.6. — 1. The set {P € D | ¢,,P € G} contains the ideal G ; however, unlike the
commutative case, it is not an ideal of D in general, but only a C[z]-module (as an example, in
Clq] (04), fix I = (4,) ; then ¢ € (I: §,) but é,q ¢ I).
2. If p € A1) corresponds to a divisor L;, we have [—D,] = [L;]. This enables us to write :

— D + ) d o - )
Ha = H [_DP +2d, ] af H [Dp] a1 H [_DP +2d, } d; H [Dp] dy
peA(l)b“"d P peA(l)base P peA(l)b“"d P peA(l)base P

Note that, in this writing, the sign in front of l/)\p differs for rays coming from the base X or
from the line bundles £;. We follow here the conventions of [CK99|, taking account of their
"Erratum to Proposition 5.5.4".

Definition 4.7. — Let D = C[qZ, 2](20,, 20,) be the non commutative ring defined above. Let
D be the corresponding sheaf of O c-algebras.

1. The twisted GKZ module associated to (X, Ly, ..., L) is the left D-module
M :=D/G,

the corresponding sheaf of D-modules is denoted by M.
2. The residual GKZ module M*® is the left D-module

M :=D/(G : Cop),
the corresponding sheaf of D-modules is denoted by M.

Remark 4.8. — Up to isomorphism, M and M"* does not depend on the specific choices of the
fan > and toric divisors L;.
Indeed, the GKZ system is defined from the following exact sequence

0 Hy(X,Z) —— 7#20 2 N gk g

where [(eg) = wy. If one use an other fan, than we have an isomorphic exact sequence which
gives an isomorphic GKZ system. Notice that this exact sequence just depends on the rays of
A and not on the higher dimensional cone of A.

Remark 4.9. — We will need alternative definitions of the GKZ modules :
(1) Removing 26, : Put IV := ClqgF, 2](24,) and G' = (04, d € Hy(X,Z)) C V. The Euler

operator € of the ideal G enables us to remove 26, in the quotient, which gives two isomorphisms
of Clg%, z]-module :

(4.10) M > D/G M™ 5 I/ /(G : Ciop)
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(2) Differential operators indexed by rays of A : For any p € A(1) write, in a unique way :

(4.11) [D,] = Z DT, € H*(Y,Z).

Consider a set of indeterminates A,, p € A(1). Put D" := Clg;, 2](20,, p € A(1)), where the
non commutative relations are : 20),.gs = Ga-20x, + D§zq,. For any d € Hy(X,Z), put :

(412) Op= [ (=20, +2d/1 ] e —a* T =208, +2d0. T1 2050

peA(l)b'zmd peA(l)base pEA(l)bund pEA(l)base
(4.13) Z! .= Z (u,v,)z0,,,u € M.
PEA(L)

Put G” := (0, Z!). Then there is an isomorphism of C[¢F, z]-modules :
(4.14) f:D"/G"—D/G =M

s
a
20y, — Z D7 z4,,
a=1

The previous isomorphism f induces an isomorphism f** between the residual’s modules, that
is

D' /G" ! D/G ~M

l .

D"/ (6" Tyeaupms =05, ) "= D/(G : uap) = M

The main property of GKZ sheaves of D-modules is given by :

Theorem 4.15. — Let X be a toric smooth projective variety endowed with a split vector bundle
E =k L, Assume that wx @ L1¥ ® ---® Ly" and each line bundle L; is nef. Let cyp be the
top chern class of € and let my,,, be the morphism of multiplication by ciop in H**(X).

Let M and M be the twisted and residual GKZ sheaf of D-modules associated to (X, E), as
defined in 4.7. Let U be the open subset of T defined in 4.1. We have :

1. Over U x C, M is a locally free Oyxc-modules of rank dim H**(X).

2. Over U x C, M™ is a locally free Oyxc-modules of rank (dim H**(X) — dimker m,,, ).

Proof. — This theorem follows from Proposition 4.16 (Mjyxc and Mf[ejqx(c are coherent), Propo-
sition 4.18 (M|uxc is locally free of the expected rank) and Proposition 4.23 below. In this last
proposition we only prove that M]\%ch is locally free over U x C* (that is on z # 0) and iso-
morphic to the residual Batyrev algebra on z = 0. By Nakayama’s Lemma, this only gives an
inequality on the dimension of Mflejsxc*.

We are left to show that M, c. has the expected rank over z # 0. This point follows from

Mirror symmetry and will be proved in section 5 (c¢f. Remark 5.22). U

4.2. Coherence of GKZ sheaves associated to (X,€&). —

res

Proposition 4.16. — Under assumptions of Theorem 4.15, Mjyxc and M\ch are coherent
sheaves of Oyxc-modules.

Proof. — If M is coherent then the surjective morphism M — M implies that M™ is finitely
generated. Hence, it is sufficient to show that M is coherent over U x C.

A usual proof of coherence for a differential module, consists in finding a good filtration and
proving that the characteristic variety is supported by the zero section of the cotangent bundle
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(¢f. [IRS15, §3] and [Sab05, Proposition 1.2.8]). In our case, M is not a C[g+, 2](9,, 0.)-module
but only a C[gZ, 2](2d,)-module ; we must adapt the classical proof (cf. for instance [HT'T08,
Proposition 2.2.5]) :

We make use of notations of Remark 4.9.(1) and put M’ := I/ /G’. Let us define the following
increasing filtration of I

FkD’::{PeD’|Pq,zz5 ZP q,z }

aeN"
o<k

where (20,)® = (204)* -+ (20,)% . Let gr)’ be the graduated ring of D' defined by this
filtration. Denote by y, the class of 24,, in gr, then gr’ is isomorphic to Cl¢E, 2][y1, - . ., yr].
We define the symbol of an element P =3 . Pa(q, 2)(204)* of D' by :

o(P)= > Pulg,2)y"
aeN"
|a|=deg P

We also define an increasing filtration on M’ by
M := F,D'/G), where =D NG

One can check that (FpM');>o satisfies the properties of a good filtration ; in particular, for
any k in N, FyM' is a coherent C[g%, z]-module. We have grM’ = gr)’/gr G/, which shows
that the annihilator ideal of gr M in griD’ is gr G’. Recall that the characteristic variety of M’
is the subscheme of SpecgrD)’ defined by the radical of the annihilator of gr M'. Put A%, . =
Specgr ' = Spec ClqT, 2][y;] ; denote by C C AL, . the characteristic variety of M’ defined by
the ideal «/Ann gr M. Let U be the open subset of T defined in Notations 4.1 and Cyxc C Agyyc
be the pull-back of C by the open immersion U x C — T x C.

Lemma 4.17. — The characteristic variety Cyxc s the image of the zero section of the trivial
bundle Ay — U x C. It is defined by the ideal (y1,...,Yr).

Proof. — By definition of the symbol, the characteristic variety is contained in the closed sub-
scheme of A%, . defined by the ideal

J = (0(0a),d € Hy(X,Z)) C Clgr, 2)[y1s- - - Y-
Consider the Batyrev A-algebra B defined in 3.34. After localisation of A and tensorization by
Clz], one get a ClqT, z]-graded algebra. There is a natural surjective morphism :
a: Clgy, 2wy, ] — grD' = Clg, ][y, - -, vi]
h—0

T, —> E:zzl Dzya if p e A1)
where the integers D¢ are defined by : [D,] = >0, D¢T, (cf. 4.11). One check that, taking the

quotients, the morphism « gives an isomorphism :

Clag . ][z, 1]/ (QSR" + Lin +(h)) =~ Claz, 2|y, - -, wi] /.

Let p be a closed point of U, and k ~ C its residual field. Let QSRh be the image of QSR in
K[z,, h], and J be the image of J in k[z][y1, ..., y,]. By definition of V (Lemma 3.35), the radical

of (QSRh + Lin + (h)) is the "irrelevant” ideal (h,z,, p € A(1)). This shows that the radical of
J is equal to (a(z,),p € A1) = (Y1,.. ., yr). O
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Denote by D' and G’ the sheaves associated to D' and G’. Consider the sheaf of ideals 7
in gr D', generated by {y1,...,y.}. By Lemma 4.17 above, there exists my € N such that

Iﬁ}oxc C gr Q(UX(C (one may take my =my + - - -+ m, where y;"* € gr Q(UX(C). We have :

/ _ / /
FmoJrkM\Ux(C - Fm0D|U><(C ) FkM|U><(C

which shows that the increasing filtration FkMTUx(C is stationary after my. But we know that
Fp, M is a coherent Oy c-module. O

4.3. Local freeness and rank of the twisted GKZ sheaf associated to (X,&). —

Proposition 4.18. — Under assumptions of Theorem 4.15, the Oyxc-module Myxc is locally
free of rank dim H**(X).

Proof. — The following proof is inspired from Theorem 2.14 of [RS15]|, with modifications taking
into account the twisting by £ and the use of g, variables instead of (\,),ca()-
Step 1. M/zM is locally free of rank H**(X).

Let B be the Batyrev algebra Alz,]/ (QSR + Lin) defined in 3.10. Localizing A by inverting
Q? (d # 0) gives C[gE]. There is an isomorphism of Clg]-algebra :

(4.19) B ® Cl¢F] ~ ClqTF, z,)/(QSR + Lin) — M/zM =D'/((z) + G')

> w1 Di20g, if p € A(1)e
Lo {— S _ D%z, if p € A1)
a=1 p~74a

By Theorem 3.18, B is locally free of rank dim H?*(X) over V ; then M /zM is locally free of
rank dim H?*(X) over U=V NT.
Step 2. M is locally free over U x C*.

By Proposition 4.16, M|uxc is a coherent Oyxc-modules. If z is invertible, Theorem 1.4.10
of [HTTO08| shows that the coherent sheaf M is actually locally free.

Step 3. Up to a pull-back, M is a GKZ-module studied in Adolphson’s article |Ado94)].

Let {),, p € A(1)}, be a set of indeterminates. Put D' = C[A7](dy,), with the usual relations
O, Ay = N0y, + 1. For any d € Hy(X,Z), put O} = 9" — 0¢ . Consider the vector § =
(On,—1,...,—1) € N x Z* and for any v € M’ put Z! = > (U vp) A, 05, — (u, B). Then the
D!'-module D' /(O}, Z1) is studied in [Ado94].

Let ¢ be the injective morphism :

(4.20) ¢ : ClgF] — C[M]
a D¢
(4.21) w— [ 0% I M
pEN(1prnd pEA(1 e

where the D¢ are defined in Remark 4.9.(2). viewing C[A*] as a C|g; |-algebra, we claim that
there exist an isomorphism :

(4.22) M @y CN;1 — DY/(0g, 2,) ®c Cle¥]

To construct this isomorphism, put D* = C[AF, 2](20,,), with the relations 20y,.A, = A,.20\, +

z. For any d € Hy(X,7Z), put 02 = (20,)%" — (20,)% . Consider as above the vector f =
(On,—1,...,—1) € N x ZF and for any u € M’ put Z2 = > (U p)Ap20s, — (u, B)2. Sending A,
to 2A,, 20y, to Oy, and z to z, one get an isomorphism :

D*/(0, 2i) — D' /{0, 2,,) ®c C[=7].
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Then consider as in remark 4.9.(2) the module D" /{04, Z"), isomorphic to M. Put, in D?
=] caqpuma Ap- There is an injective morphism of non commutative C[z*]-algebras :

D" — D?
Ap-20y, if p € A(1)e
Ap-20\, + 2z if p e A1)

w— I 0% I A

pEA(l bund pGA(l base

Zéxp — E*I(Ap.zﬁ,\p)é = {

which gives :
M Qcpe CIAT] = D" /(03, 23) ®cpz CAG] — D?/{T5, 22).

Step 4. The rank of M over U x C* is dim H**(X,C).

The morphism ¢ defined in 4.20 is injective ; this gives a surjective morphism h : Spec C[A\7] —

= SpecClgE], and O = h~}(U) is a dense open subset of the irreducible smooth variety
Spec C[AS].

The isomorphism 4.22 ensures that, over O, the differential module D'/(00%, Z!) is locally free
of rank equals to the generic rank of M. Moreover, by Corollary 5.11 of [Ado94]| the rank of
D'/(O, 2L is (n+k)!Vol(I'a) where T'a is the convex hull of the points {0, v,, p € A(1)} in Nf.

Since all the L; are nef, the fan A is convex, and 0 is not in the interior of this convex hull.
Since the divisor —Kx — Zle L; is nef, the vectors (vy,...,vy) € N x Z* defined by the toric
divisors L; all are either vertices or contained in faces of I'a which do not contain 0. Hence, I'a
is a "disjoint" (except for faces) union of the simplexes I'a(7) := (v1, ..., vk, (v, )oer) Where T is
any simplex defined by 0 € Nk and generating vectors of rays of ¥ (we make use of notations of
Section 3.1). Let I'y be the convex hull of the points {0, wy, 6 € (1)} in Ng. We have :

k(M) = (n+k)Vol(Ta) = > (n+k)Vol(Ta(r))
7, simplex of ¥
= > ldet(uie v (o) = D [ det((we)oer)|
T, simplex of ¥ T, simplex of ¥
= ) nalVol(I'g(r)) = n!Vol(I'y) = dim H*(X).

T, simplex of ¥

4.4. Local freeness and rank of the residual GKZ sheaf associated to (X,&). —

Proposition 4.23. — Under assumptions of Theorem 4.15.
1. On z = 0, the Oy-module (M**/2M*)|y is locally free of rank dimec H**(X) =
dime H**(X) — dimg ker(m.,,,).
2. On z # 0, the Oyxc--module M* |yxc+ 1s locally free of rank less than dime H?*(X).

Proof. — On z # 0, M"|yy«c+ is locally free by Theorem 1.4.10 of [HTTO08], as as in Step 2 of
the proof of Proposition 4.18. By Nakayama’s lemma, it is enough to prove the first statement.

Consider the residual Batyrev A-algebra B™ = A[z,]/(G : xyp) defined in Subsection 3.2.c.
By Proposition 3.18.2, B is a locally free module of rank dim¢ H**(X) — dimc ker(m,,,,) over
the open subscheme V C S defined in Lemma 3.35. Proposition 4.23 follows from the Lemma
below. O

Lemma 4.24. — Consider the alternative definition of M given in Remark 4.9.(2) : M =
D"/G", where D" = Clqy, 2)(205,) and G" 1= (Qy, Z}). Put Ciop = [ cpqypuna(—203,) € D".
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Then M ~ D" /(G" : €p) and the following application is a well defined isomorphism of
commutative ClqE]-algebras :
(4.25) M /M — B™ @, ClqF]
z—0

; c 1 base
-z, if pe A1)

Proof. — The first isomorphism M ~ D" /(G" : ¢,,) is immediate. We make use of the same
notation, iy, in D or in D”.
Consider the morphism of C[gF]-algebras :

h: Clgf, 2)(20y,) — ClgZ][z,)

20
f 1 base
N
—x, if pe A1),
well defined since z is sent to 0. For any d € NE(Y') and u € M’ we have :
h(O)) = Ry, h(Z!) = Z,.

To prove that 4.25 is a well defined isomorphism, we must show that each polynomial P &€
(G : Top) in ClgT][z,] possesses an antecedent for b in (G : Cyp).

Let us choose a section of h as a morphism of Clg=]-module. First consider the following
isomorphism of C-algebras :

" Clz,) — Cl26,,]
205, if p e A1),

T, — T, =
P P {_25)\9 lfp c A(l)bund’

and extend it Clg]-linearly to = : Cl¢;|[z,] — Clgr, z](20,,). For any P € C[gf][z,], one check
that h(P) = P.

Let P be in (G : ztop). Recall that the ideal QSR is generated by polynomials Ry, d € P,
where P is the set of primitive classes. Let (u;,i € I = {1,...,k}) be a base of the dual lattice
of NN = N@®ZF. Put Z; := ZpeA(l)(ui,vpﬂp. The ideal Lin is generated by polynomials
{Z;,i € I'}. Then we can write :

(4.26) TopP =Y AqRa+> BiZi, A4 Bi€Clgi][z,).
deP iel

We need to find P € (G : &) such that h(]g) = P. For that, we may assume that x,, does not
divide any monomial of Ay or B;. If not we have, for any d € P or i € I a unique decomposition :

Ay = Ag1 + TeopAa2, Bi = Big1 + TyopBia.

where i, does not divide any monomial of Ay, or B;1. Put Py = > AgoRa+ > Bi2Z; and
P, = Z@Dg + ZE\QZZ” Since P, is in G”, it is also in (G” : ¢,p) ; moreover, h(IDVQ) = P.
If we find P, € (G" : ¢,p) such that h(Pl) = P — Z4op D, then P = P, + P, is an antecedent of
P in (G" : ¢p).

Assume now that ., does not divide any monomial of A, or B;.

Since each primitive class is in the Mori cone, and each line bundle £; is ample, zy,, =

Hpe Ay Tp divides ¢ for any d € P and we can write :

dt d d~—e¢
Rd =T - Q LtopL >
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where € = (€,)pea), €, = 1 if p € A1), ¢, = 0 if p € A(1)™*. In the same way, for any i € I,
we write

/
Zi - Zz + Qi Ttop,

where a; € C, and w4, does not divide any term of Z/. Since degxiop, = k, a; = 0 if £ > 1, and
a; = (Ui, Vpy,) if k=1
Finally, for any d € P, i € I, we write :

Ai=Y ¢"Asa, Bi=) ¢"Bia, where Agq, Bia € Clz,)
acZ” aEZ"
In the quotient ring ClgF][x,]/(z10p) We obtain from (4.26), for any a € Z" :
(4.27) > Agar™ +>  BiaZ] = 0.
deP icl
For any a € Z", put
— Z Ad,aqd H [—205, + zd, — z]d;—l H [zé,\p]d; + Z B; s,
deP pGA(l)b“”d peA(l)base el

where we make use of the Pochammer symbol defined in Notation 4.3. Set :

P = Z qo‘ﬁa.

aEZ”

Then h(ﬁa) == 4ep Agaqizid + > icr Biati, and (4.27) gives :

Tiop(P — h Z q® (Z Ad@der + Z BZ-,OJZZ(> =

a€Z" deP el

Which proves that P = h(P).
We claim that P € (G" : ¢,,). By definition of the quotient ideal (G” : ¢,)), it is sufficient to

show that, for any « € Z", /C\topﬁoz e G.
Recall that, for any p € A(1), 20),.Gs = qa-205, + D§2q, (Remark 4.9.(2)). Then we have, for
d € NE(Y) :

T

(4.28) Ciopq” = [] (—265,) ana I (=20, — 2> _(Tad)D2) = ¢* T] (—26, + =d;)

peA(l)bund peA(l bund a=1 peA(l)b“"d

since d, = d; for any d € NE(Y) and p € A(1)".
Applying morphism 7 to equality (4.27), which does not contain any variable g,, we have :

— =
E Ad,axd + E Bi,aZi =0.
deP el

Moreover, since d is a primitive class, coefficients of d* = (d;—>p€A(1) are either equal to
0or 1, and df = 0if p 6 A(‘l)b“"d. Thus 24" = l—[peA(l)(zé)\p)dﬂ+ = [leanpuma—265, +
zd;r]dg HpeAu)base [25>\p]d;, which gives :

(4.29) S e I oo, 4241 T [203)e + 3 BiaZi=0.

deP pEA(LYund pEA(1)pase i€l
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Finally, equalities (4.29) and (4.28) gives :

/C\top/PE; = - Z/C\top;l\d,aqd H [_25)\,) + dp_ - 1]d;_1 H 25)\,) + Z Cto;o i,aQ5

dePpP peA(l)b“"d peA(l)lmse el
S A Y Bz e o
deP icl
O
5. Isomorphisms between quantum D-modules and GKZ modules
5.1. The mirror Theorem of Givental and Lian-Liu-Yau. — The mirror theorem was

proved by Givental (cf. [Giv98, Theorem 0.1] and [CGO7, Corrolary 5|) and by Lian-Liu-Yau
[LLY99|. Our technics are closed to the work of Givental that we recall now. As before, X is a
smooth toric projective variety endowed with k globally generated line bundles Ly, ..., £ such
that (wx ® L1 @ -+ ® L) is nef. We put & = ®F_,L;.

Denote by t, the coordinate on H°(X) associated to Ty = 1. In the definition below, we
denote by &£y1.4(1) the vector bundle on Xy ; 4 defined in Subsection 2.1.a.

Definition 5.1. — We define the cohomological multi-valued function J™ by :

Ctop (& 1 :
JY (to, q,2) = e/ qT/* [ 14 271 Z qer, <M N [Xo,l,d]m)
deHy(X,Z) < 1/}
d#0
where ¢ is in the domain of convergence of the quantum product D C T, z is in C and
qT/z — HT ) qz:a/z _12221 Ta log(qa).

The proposition below is the twisted version of Lemma 10.3.3 of [CK99].

Proposition 5.2. — Let L™ be the multivalued section of Hom(F, F) defined in (2.9). In
H*(X), we have

Crop(E)J™ (t0, 4, 2) = cop(E) (€™ "/*L™ (g, 2)) "1
In the reduced cohomology ring H**(X)/kerm,,,, we have
T (ty,q,2) = (/% L(q, 2)) 1.
Remark 5.3. — Notice that ¢, (E)J™ (to, ¢, 2) is exactly Jy, of [CK99, p.358].

Proof of Proposition 5.2. — The first equalities is obtained by repeating the proof of Lemma
10.3.3 in [CK99] where one changes the standard Gromov-Witten axioms by the twisted axioms

(see Appendix A). This first equality implies that J®(to,q,2) = €"/*(L"(q, z))~11 which is
(L(q, z))~'1 by definition of L (cf. Formula (2.24)). O

Recall notations from section 3.1 and 3.2 : to a ray # € (1), we associate a toric divisor
denoted by Dy. For any class d € Hy(X,Z) and any i € {1,...,k} we put

ng:/Dg and di::/Li
d d

We define a cohomological multi-valued function by

(5.4) I(q,2):=q"" > dH oo (L] + m2) I1 [1e oo ([Do] +m2)

d
deHy(X,Z) i=1 m—foo<[ ] + mz) 6ex(1) Hme:—oo([DG] + mz)

where ¢7/7 1= ¢#' Za=1Talog(aa)
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We develop the I-function in power series in z~* and a direct computation gives :

(5.5) I(g,2) = F(¢)1 + 2 'G(q) + O(z7?)

where F' is an invertible univariate scalar function and G takes value in H=?(X).
There exists a natural map « : H*(X,C) — T defined by :

a: H*(X,C) — T = Spec C[Hy(X, Z)]

T q:= {d»ﬁqd:exp<2i7r/7)},
d

so that a(320_; taTa) = (€™ )ac(1,...r}-

Definition 5.6. — The mirror map of (X, &) is the composite map
(5.7) Mir: T — H%(X) x T
G(q)

q+— (Id x ) (W)

where o : H*(X,C) — T is defined above, and F,G are the functions appearing in (5.4). One
can check that the mirror map is univariate.

The mirror theorem of Givental (cf. [Giv98, Theorem 0.1] and [CGO07, Corrolary 5] ; see also
[CK99, Theorem 11.2.16] or Lian-Liu-Yau [LLY99]) tells us the following.

Theorem 5.8. — |CGO7, Corrolary 7| Let Mir be the mirror map defined in 5.6.
There exists an open subset

W = {(qa)aE{l ..... r}s |qG,| < 5, 0 c R>0}

of T such that

1. Mir(W) is contained in H°(X)xD where D C T is the convergence domain of the quantum
product (see Notation 2.7),

2. Mir(q) = (0,¢) + O(q),

3. J™(Mir(q), 2) = I(g,2)/F(q).

5.2. Quantum D-module of a toric complete intersection in terms of residual GKZ
system.— In order to relate the GKZ modules defined in section 4 and quantum D-modules
defined in section 2 we make use of the mirror map. As the target of this map is not D but
H°(X) x D (Theorem 5.8), we first need to extend the base space of the various quantum
D-modules defined over D. We will keep the same notations for these extended D-modules :
— The twisted quantum D-module QDM(X, £) is the trivial bundle F'*™ with fibre H**(X)
over HY(X) x D x C, endowed with the connection :

1 1 1
Vs. =90, — ;Qf qu +u, Vo, =0y + ;1 oflw and Vae{l,...,r},Vs, =d. + ;Taof]w,

where € = ¢(Tx) — ¢1(€) + tp1 and p is the unchanged endomorphism of H?*(X) defined
in 2.8. The fundamental solution L™ is also extended in :
L™ (tg,q,2) == e’to/thW(q, z)

— The reduced quantum D-module QDM(X, £) is extended over H(X) x D x C, by taking

the quotients of QDM(X, ). We do the same for the fundamental solution, which gives
Z(tm q, Z) = e—to/ZZ(q’ Z)
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— The ambient quantum D-module QDM,,,(Z,€) is the trivial bundle FZ,  with fiber
H? (X) over H'(X) x D x C, endowed with the connection :

amb
1 1 1
\%4 :52—262 o/ +1i7, vgto :at0+;1.qz and v@e{1,...,r},vg:5a+;Ta.qZ,

where €7 := ¢|(T;) + to1 and p?(h,) = 1,(deg(v,) — dime Z) /2.
We have :
Theorem 5.9. — Let X be a projective smooth toric wvariety endowed with k line bun-

dles Li,...,L, ; put & = @ L;. Assume that each L; is globally generated and that

(Wx ®@L1®...® L)Y is nef.
Consider the mirror map Mir and the open subset W of T defined in Theorem 5.8. For

e € Ry, put
W, ={(q1,---,q) E W |0 <|q|<e}
There exists € in Ryq such that

1. Let M be the GKZ sheaf and QDM(X, E) the twisted quantum D-module. Over W, x C,
the morphism

(5.10) M = (Mir x id)* QDM(X, &)
1 — L™(Mir(q), 2)I(q, 2)

is a well-defined isomorphism of D-modules.
2. Let L4, ..., Ly be k ample line bundles. Over W, x C, the morphism
(5.11) M |w.xc — (Mir x id)*QDM(X, £) ~ (Mir x id)*QDM,,;,(Z)
1 — L(Mir(q), 2)I(g, 2)
15 a well defined isomorphism of D-modules.

Remark 5.12. — 1. The first point of Theorem 5.9 should be known by specialists. However,
we did not find a precise reference in our settings.

2. The second point constitutes our main result. It answers to the question addressed in
the [CK99, p.94-95 and p.101]: “What differential equations shall we add to G to get an
isomorphism with QDM,_, (Z) 7.

This result should permit us to compute algorithmically a finite system of differential
equation defining QDM, (7). We present it in the Remark 6.2.

Lemma 5.13. — Under the assumption of Theorem 5.9.1, the morphism of D-modules
M = (Mir x id)* QDM(X, &)
1 — L™(Mir(q), 2)I(q, 2)
s well defined over W.
Proof of Lemma 5.13. — A direct computation shows that
L™(Mir(q), 2)1(q, ) = L™ (Mir(q), 2)J™ (Mir(q), z)/ F(q)

1s univariate.
We make use of notations of Definitions 4.7 and 4.5 ; we have M the sheaf associated to D/G,

where

D = Clgt, 2](20,,26,), G := <@ Og.d € Ho(X, Z)> .

It is sufficient to prove that, for any d € Hy(X,Z) :
Oa (z_cl(TX)_cl(g)z“I(q, z)) =
and € (zmT)=er@ i (g, 2))

)

0
0.
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Put

T (B me) 1 (D6 + m2)
Aglz) = T o m=—co .
== L e o)

For any a € H?*(X), we have [u, ] = o. This implies that

(5.14) PR
z

From this we deduce that 2"Ay(z) = 2~%x 1% 4,(1) where we set, as usual : dr, = [,¢1(7Tx)
and dg = [, ¢1(€). Using the definition (5.4) of the function I we find :

(5.15) Z_CI(TX)+61(5)2“I(q, z) = Z qT+dz_cl(TX)+”(5)_dTX+d5Ad(1).
deH2(X,2)
For any class o € H?(X), a direct computation shows that
(5.16) ag't = ¢z (a + dy),
(517) 20, (zmaTFa@drctdey — (¢ (Tx) 4 c1(E) — dry, + dg)z~ T Ter(E)=dr tde
We deduce that
25, (qT—l—dZ—cl(TX)—i—cl(S)—dTX+dg) _ (_Cl/(i) I Cl(g)) (qT+e e T+ E)—dry ey

which gives : & (zear(T)=al®z1(q, 2)) = 0.
Using Formula (5.16), the equality Cg(z=<(7x)+etE) 2] (¢, 2)) = 0 reduces to the following
relation :

k dj dJr 1
(5.18) Aca W TTTIEN + (d = d)i +v) T] H ([Dg] + (d — d')g — v)
i=1 v=1 9ex(1) v=0
kod dg —1
HH +d —|—I/ H H D,g +d9—V)
i=1v=1 0ex(1) v=0
This formula can be proved for any d,d € Hy(X,Z) by direct computation. O

Lemma 5.19. — Under the assumption of Theorem 5.9.1, the morphism of D-modules
M =5 (Mir x id)*QDM( X, £)
1 — L™(Mir(q), 2)I(q, 2)
1s well defined over W.
Proof of Lemma 5.19. — Let R(q, z,2d,,26,) € D be in the quotient ideal (G : ¢,,). We have
to show that the cohomological valued function R(q, 2, 2d,, 20, )z~ (7x)+e1(E) 21 (g, 2) belongs to
ker m,,,, where m,, is the endomorphism of H*(X) : a > ¢iop(E) U cv.

It is enough to prove it when R is a generator of the ideal (G : ¢p) i.e., GopR € G. From
Formulas (5.16) and (5.17), we deduce that

(520) R(q’ 2, qu’ 252)qT-i-dZ—cl(Tx)-i-m(S)—dTX+dg
= R(q,2 2T+ d), 2(—c1(Tx) + c1(E) — dry + di)) " Hzm 1 T rerE)mdry e

We decompose

R(q, z, 204, 20.) Z q Rd/(z 204, 205).

d'€Hqy(X,2)
finite
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From Equalities (5.15) and (5.20), we deduce that
R(q, z, 26, Z(;Z)Z_CI(TX)+CI(5)ZMI((], ) = Z qd—i-TZ—cl(Tx)-l-cl(S)—dTX+ngd(Z)
deHa(X,2)
where

By(z):= > Ra(z2(T+d),2(—c1(Tx) + c1(E) — dry + de)) Aa—ar(1).

d' € Ho(X,Z)
finite

To prove the lemma, it is enough to show that ¢, (E)Ba(z) = 0 for all d € Hy(X,Z). By
CiopR € G and Lemma 5.13, we have

CiopR(q, 2, 204, 26,) 2~ Tx)+e1@) 21 [ (g 2) =0

ZdeHg(X,Z) qd+Tzfc1(7—X)+c1(S)*dTXerg (Hle 2 ([Li] + dz)) By(z) = 0.
As ¢op(E)Bg : C — H*(X) is a polynomial function in z, it is enough to prove that it vanishes
on C*. Assume z € C*. As ¢ € (C*)", we deduce that ¢" and 2~ (7x)*e1() are invertible in

H*(X). Denote by I, :={i € {1,...,k} | d; =0} and I§ its complementary set. For i € I§, the
class [L;] + d; is invertible in H*(X). So we deduce that

(H[Q]) By(z) = 0.

i€ly
This implies that cop(E)Ba(z) = 0 as ¢yop(E) = Hle[Li].
U

Proof of Theorem 5.9. — Let us first prove that ¢ is an isomorphism. By Theorem 4.15, rk M =
rk F', so it is enough to prove that the morphism ¢ is surjective in a neighbourhood of 0. From
[CK99, Proof of Proposition 5.5.4 p.100] we deduce that the "d" term in the definition of the I
function (see (5.4)) vanishes when d ¢ NE(X), so that we have:

(5.21) I(q.2)=q"7 > q"Au(2).
dENE(X)
Then from (5.16) we have, for any o € H*(X) :
al(q,z) = ¢"*(a+ O(g)).
As H**(X) is generated by H?*(X), we deduce that for any a € {0,...,s — 1}, there exists an
operator P,(q, z, z0,) such that
Pu(a, 2, 204)1(q,2)F(q) ™" = ¢"*(Tu + O(q))

where F'(q) is defined in (5.5) ; notice that we do not need zd, in the operator P,. From the
definition of the function L™ (tg, ¢, z) (¢f. Equality (2.9)), we deduce that

L™(to,q, 2)y = e™*/*¢~"*(v + O(q))-
By the mirror Theorem 5.8 we have that
Mir(q) = ¢+ O(q).
Putting the last three arguments together, for any a € {0,...,s — 1} we have
©(Pu(q, 2, 20,)) = L™ (Mir(q), 2)¢"*(T, + O(q)) = T, + o(1).

This proves the surjectivity of ¢ near the point 0. As it is an open condition, it is true in a
neighbourhood of ¢ = 0.

Let us prove that ¢’ is an isomorphism. First, the surjectivity of ¢ implies the surjectivity
of mo . We deduce that ¢’ is also surjective. On z # 0, Proposition 4.23 implies that the

31



rank of M is less than rk F. Hence the surjectivity implies that its rank is rk F. This also
implies that M** is locally free on U x C of rank dim H?*(X). = rk . We deduce that ¢’ is
an isomorphism. O

Remark 5.22. — The last point of this proof is the missing argument to finish the proof of
Theorem 4.15.2.

6. Examples: hypersurface in P" and in Bl P"

In the following examples, we want to give explicit computations of the quotient ideal (G : Cyp).
The first example is P with the line bundle O(a) and the second one is the blow up of P" at
one point with an appropriate bundle (see below). In a forthcoming paper, we will prove the
following general statement

Theorem 6.1. — Let X be a smooth projective toric variety with Ly, ..., Ly nef line bundles
on X such that wx @ LY ®---®@ L) is nef. Put D' := ClqE, 2](26,) and G’ the left ideal generated
by Oy for d € Hy(X,7Z) (see Remark 4.9). Let P € G', we can write

P = ZBCDC’ deg(Bch) < deg(P)
ceP

where the degree means the degree as differential operators in ' and P is the set of primitive
classes (see Notation 3.26 and Definition 3.24 ).

Remark 6.2. — Let us explain how one could use this theorem to get an algorithm to compute
the residual ideal (G’ : ¢,,) in order to get, via the isomorphism of Theorem 5.9, a presentation
of QDM,,,(Z).

1. First, Theorem 6.1 implies that the generators of the ideal G’ can be indexed by the primitive
classes, i.e., G' = (0., ce€P).

2. As the line bundle £; are ample, for any d € NE(X), we see that the operator O, is of the
form Py — ¢,,q? P, where Py, Py are two operators in D' (see (3.37) for a similar statement
in the commutative case). Let ¢y, co be two primitive classes. Using the same ideas that
S-polynomials for Groebner basis (in the commutative case), we can find three operators
T,U,V € IV such that

UDcl - VDCQ = aopTcl,cg
This means that for each pair of primitive class ¢, co, we get an operator T,
residual ideal (G’ : Gp).

3. We think that the residual ideal is generated by the O, for ¢ € P and by T, ., for ¢;,co € P.
At this point, we do not have a complete proof of this statement. We hope that an induction,
like in Proposition 6.5, could work.

in the

1,C2

Ideas of proof of Theorem 6.1. — We only give some ideas for a proof because it is quite long
and technical.

Calabi-Yau case i.e., wx @ LY ® -+ ® L) = Ox:The theorem follows immediately from the
homogeneity of the operator [J; for any d € Hy(X,Z).

Non Calabi-Yau case: This case is more difficult. Let’s recall some notations of (4.14). We
use the following isomorphism

[ DL B S DG =M

20y, > > Doz,

a=1
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where D" := ClqE, 2](2\q,, p € A(1)) and
Op = [ =265, +2diles T Bonde —a* T =208, +2d,1 [T (2050

peA(l)b“"d peA(l)base peA(l)b“"d peA(l)base

AR Z(u,vp>25)\p,u e M.
p
Using a suitable monomial order, we can prove a first result. Let P € (O%) C D", we can write

P=> B0/, deg(BD) < deg(P).
ceP
Then, we have to incorporate the Z! operators into the picture. This is the tricky part. We
consider the ideals generated by the symbols which is a monomial ideals in a commutative ring.
We use the Taylor’s complex (see [Lyu88|) which plays the role of the Koszul resolution for
monomial ideals. Then we pass to the ideal (0, Z,) and use the isomorphism f to conclude. O

6.1. The projective space X = P" and the invertible sheaf £ = O(a).— We have
H?*(P", Z) 2 Z and H,o(P",Z) = Z. Denote by h the homology class of a line in P*, and by H
the Chern class of O(1). They both generates their respective group, and we have |, , H =1. The
nef cone in H*(X,Z) is N.H and its dual, the Mori cone in Hy(X,Z), is equal to N.h. The ring
A is C[Q?, d € NE(X)] ~ Clq] where we set ¢ := Q". The ring IT is Il = C[Q?,d € Ho(X,Z)] ~
Clg*] := Clg,q']. We put £ = O(a) for a € Z. The sheaf O(a) is ample if and only if a > 0.
The sheaf wy, ® O(a)” = O(n+1—a) is nef if and only if n4+1—a > 0. We have 0 <a <n+1.
The different cases are :

Calabi-Yau a=n-+1.

Fano 1 <a < n,where (wx ® £)¥ = O(n+ 1 — a) is ample.
We make use of the notations of Subsection 3.1. Let us choose a fan for P : Denote by N
the lattice Z" and by (ey,...,e,) its canonical basis. Put w; = ey,...w, = e,, Wy =
—e; — +++ — e,. These are the lattice generators of the rays 6;, where 6; = RTw; for any

ie{l,...,n+1}. Weset £(1) := {b,...,0,41}. The set of maximal cones is
Y (n) = {every (necessarily convex) cone generated by n vectors in 3(1)}.

Denote by D, the toric divisor associated to the ray 8 € 3(1). We have [Dy] = H in H**(X).
There is only one primitive collection (see §.3.3.c) P = {01,...,0,+1} = X(1). The primitive
class is P = {h}.

Let us compute the quotient ideal. We will use the alternative definition 4.9.1 of the GKZ
module, that is M = I//G’, with I/ = C[¢*](26,) and G' = (O,). We have ciop = ¢1(L) =
c1(0O(a)) = aH and ¢, = azd,.

Proposition 6.3. — We have:

Proof. — The operator Py = 1(26,)" — g(azd, + 2z)..... (azd, + az) is in (G’ : Gp) @ since
204.¢ = q(204 + 2), we have ¢,,.P = a0;,. We prove now, by induction on the degree, that any
operator P in (G : ¢p) is in (Fp). First notice that a.yo(Fy) = o(0), even in the Calabi-Yau
case where o is the symbol. Let P be in (G’ : ¢p).

If deg P = 0 (and P # 0). We have, azd,.P = Q.0p, where @ € D and deg(azd,.P) = 1,
deg Q.05 = deg @ + deg Oy, = deg Q + (n + 1) (recall that a < n+1). It follows that n = 0,
which is impossible.

Assume it is true for deg P = [. If deg P = [ + 1, we still have azd,.P = ().0;. Passing to the
symbol we get : ayo(P) = o(Q).0(0p) = ayo(Q).0(F). It follows that the polynomials P and
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QF, both are in Quot(¢i,p, G') and have the same symbol. Hence, P — QP is in Quot (¢, G)
and has degree strictly less than [. By induction, P — QP € (Fpy) and P € (Fp). O

6.2. The blown-up plane X = Bl,;P" and the sheaf £ = O(aH + bE).— Denote by
N = 7" the lattice and by (ey,...,e,) the canonical basis of N. The fan ¥ of X is given by the
rays

vo=—¢€n, YVie{l,....n}, v;=¢e; vy =(—1,...,-1).
The maximal cone in N ® R are
n+1 n—1
Vi e {17 St 1} \ {n}u 0i = ZRJrvju and On,i = R+UO + ZRJFUJ'
Ji o

We have H?(X,Z) = Z? and Hy(X,Z) = Z*. Let E be the exceptional divisor, and H the strict
transform by the blown-up of an hyperplane of P* which does not meet the blown-up point. We
also denote by F and H their Chern classes. Denote by e the homology class of £ and h the
homology class of H. We choose the following bases which are dual to each others :

— Base of H*(X,Z): (I, = H — E, Ty = H).

— Base of Hy(X,Z): (By =¢€,By =h—e).
Notice that ¢;(wx) = (n+ 1)H — (n — 1)E. We denote by Dy the toric divisor associated to
6 € 3(1) and [Dy] its class in H*(X,Z). We have fori € {1,...,n+1}\{n},[D;] = H—FE, [D,] =
H, [Do] = E. There are two primitive collections, P, = {6y,0,} and P> = {6;,i ¢ {0,n}}. The
primitive classes are P = {e, h —e}. The nef cone in H*(X,Z) is R"H +R*(H — E), an its dual,
the Mori cone in Hyo(X,Z) is equal to RTe + RT(h — e) (see Figure 2). Following the choice of

L e
ITQ =H de Rham duality h
h—e
Th=H-F
The nef cone in H*(Bl, P? Z). The Mori cone in Hy(Bly,P? Z).

FIGURE 2. Nef and Mori cone of Bl, P2,

our base, we put ¢ := Q°, ¢ := Q" ¢. The ring A is C[qy, q]. We want O(aH + bE) to be
ample and wyy pn ® O(aH +bE)Y = O((n+ 1 —a)H — (n — 1+ b)E) to be nef. This leads to
the following cases

{(a,b) €Z* | be{~1,...,1—n}, a+bec{l1,2}}
The Calabi-Yau case is (a,b) = (n+ 1,1 —n). We have
Cop = —bI1 + (a+ )Tz, Cop = —b(20y,) + (a + b)(20,,)

In the differential ring I’ := C[z, ¢, ¢5] (20,,, 204,) We consider the GKZ ideal G’ = (0., O, ),
where

(6.4) { Oc = (20,)" — (28, — 260) T12 (—b2dy, + (a+ b)26y, + v2), }
. the = (2’6@)(’25(]2 - zém) — 42 HZi?(_bz&h + (CL + b)25QQ + Vz)'
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The following proposition gives the generator of the quotient ideal.

Proposition 6.5. — The quotient ideal of the GKZ ideal by ¢ i5:
(G : Ciop) = (P, Oe, Ope)
where
Py = —a(26,)" " + (a+ b)(26,,)" 2(26,,)+

—b—-1

— abay (26, — 28,,) [ (=b(z8,) + (a +b)(28,,) + =)

v=1

a+b—1

—(a+5)%2(20,)" " ] (~b(260,) + (@ +b)(26,,) + v2)

v=1
Proof of Proposition 6.5. — First, we have ¢o, Py € G’ as
(6.6) abO, + (a + b)*(284,)" 20p_c = CiopPo

Let us prove by induction on the degree of the operator P € D' that if ¢, P € G’ then
P € (Fy,0.,04_,). From Theorem 6.1, we have

(67) aopP = R0, + Rp0;,_,

where the degree of the operators R0, and Ry0;_. are less or equal to deg(P) + 1.
Taking the symbol of 6.7 we get

0 (Cop)o(P) = S10(0;) + S20(0Op—)

where S; are either the symbol of R; or 0. Replacing o(O,) by Equality (6.6), we get the following
equality in Qg1 g2, Y1, ¥l

. . Sio(P, +b)? _
(6.8) 0 (Crop)o(P) = U(Ctop)M +0o(0p_) —uSly? 24 5,
ab ab
From (6.4), we have
a+b—1
(6.9) Op—e = (204,) (204, — 204,) — Crop@2 H (=b28q, + (a +b)2dg, + v2).
v=1

In Q[q1, 92, Y1, Y2] /0 (Crop), We get from (6.9)
_ /) S —
0 =" —71) (—( ab ) S1Y7 2—1—52)

As 7,(Ty — 7y) # 0, there exists @ € Q[q1¢2, 1, Y] such that

a+b)? _ 5
I $1172 4 8, = Qo)

By the degree conditions on R;0, and Ry0j,_., we have that deg ) = deg P — 2. Putting this
in (6.8), we get

(6.10) (G (P) = 0(Fu) (Slc;;m . 0<Dh6>@)

As deg S10(Fy) = deg o(0,_)Q = deg P, we have
o(P)=o (—%PO — QDh6>

a
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where @ is any operator having symbol ). The operator

B .
P .=P— (——1130 — %mh_e>

a

satisfies that ¢y, P’ € G’ and has degree strictly inferior to the degree of P. By induction, we
deduce that P' € (Fy, 0., 0;,_.) that is P is in (FPp, 0., Op_c). O

A

Twisted Axioms for Gromov-Witten invariants

In this Appendix, we will state (without proof) the twisted axioms for twisted Gromov-Witten
invariants. For the “untwisted” axioms, we refer to two papers of Behrend and Manin ([BM96]
and [Beh97]). As explained in §.2.1.b, the twisted axioms are the non-equivariant limit of the
equivariant twisted axioms.

Recall from Notation 2.1 and Ty, ..., T,_; be a basis of H**(X). We denote by T the Poincaré
dual of T, for a € {0,...,s—1}. Let d be in Hy(X,Z). Let y1,...,7 be in H>*(X), my,...,my
be in N, for any o € Sy and j be in {1,...,/¢}.

A.1l. (Twisted Sy-invariance)

—~—

<Tm1(01(5) Ur),--- ,Tme(’}/g)>

0,0,d

—_—

- <Tma<1> (Yo))s -3 Ty (1(E) Uo(i)s -+ T (%(Z))>oz d

A.2. (Twisted Fundamental class equation / string equation )

—~—

<Tm1 (’Yl)a <o Ty, (’Yk)a cee 77_7714(7@)7 1>0,€+1,d

= Z <7‘m1(71), o T (i) - Ty (Ve - - aTme(W)>

i\mi>0

0,0,d

A.3. (Consequence of the two above)

—_——

<Tm1 (’Yl)a <o Ty, (’Yk)a s 77_7714(7@)7 1>0,€+1,d

= Z <7‘m1(71), o T (i) - Ty (Ve - - aTme(W)>

i\mi>0

0,4,d

A 4. (Twisted Divisor axiom)

—_—

<Tm1(71)v - 'aka(Vk)v - '>Tmf('7£)>7>

0,6+1,d
- ( / 7) (s (1), 2 T () < o ().
d
+ Z <Tm1 (71)7 ey Tmi—l(’y U ’YZ)? ey Tmz(7€)>0£d
i:m; >0 T

A.5. (Twisted Dilaton equation)

<Tm1 (71)7 <o Tmy (7]')7 cee 7Tmz<7€)7 7-1(1>>0,€+1,d

—_—

= (_2 + n)<Tm1 (71)7 <o Tmy (7])7 s 77—me(7€)>0,€7d
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A.6. (Twisted TRR i.e., Topological Recursion Relation)

—_— —_—

(00 a2, 7)) = 3= (a0 s G T0) (i (0. ),

s—1

(1 0): s (32037 (5 ). = D ((ma2): s (00, 7)) ({7 G, T )),

using the notation

(Al) <<Tm1 (71) -5 Tmy (fyé Z Tml ,71) -5 Tmy (7@)7 Tyeoos T>0,g+n7d
Ha(X

A.7. (Twisted WDVV equations)

s—1

Y

<Tm1 (71), Tma (72) Ta>>0 <<TM3 (73), 7—;(\7/4)7 Ta>>0

= 3 {1, s (09, Ta)). (o (22), 7 00, T))

—_—

SZI (Tima (71)5 Tina (72), T <<Tm3 (Y), Tomg (72, Ta>>

0

= 5 (08 09, Ty ({12, e, ),

a=
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