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Abstract. — Let X be a smooth projective toric variety with k ample line bundles. Let Z be the

zero locus of k generic sections. It is well-known that the ambient quantum D-module of Z is cyclic

i.e., is defined by an ideal of differential operators. In this paper, we give an explicit construction of

this ideal as a quotient ideal of a GKZ system associated to the toric data of X and the line bundles.

This description can be seen as a “left cancellation procedure”. We consider some examples where

this description enables us to compute generators of this ideal, and thus to give a presentation of

the ambient quantum D-module.
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1. Introduction

Mirror symmetry has many different formulations in mathematics: equivalence of derived
categories (known as Homological Mirror Symmetry by Kontsevich [Kon95]), isomorphism of
Frobenius manifolds (see [Bar00]), comparison of Hodge numbers for Calabi-Yau varieties (see
for example [Bat94]), isomorphism of Givental’s conesb (see [Giv98]), isomorphism of pure
polarized TERP structures (see [Her06]) or variation of non-commutative Hodge structures
(see [KKP08]).

Inspired by the works of Givental (see for examples [Giv96] and [Giv98]), many authors have
considered quantum cohomology with a differential module approach : see Kim [Kim99] and
Rietsch (with Marsh and Pech-Williams) [Rie12] [MR13] [PRW16] for homogeneous spaces,
see Coates-Corti-Lee-Tseng [CLCT09] and Guest-Sakai [GS14] for weighted projective spaces,
see also the works of Iritani [Iri06], [Iri07], [Iri08] and [Iri09], the book of Cox-Katz [CK99]
and the one of Guest [Gue10].
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From the small quantum product on a smooth projective variety Z, one can define a trivial
vector bundle over D×C where D is an open subset ofH2(Z,C) whose fibers areH2∗(Z,C). This
holomorphic bundle is endowed with a flat meromorphic connection and a non-degenerate pair-
ing. These data collectively define the quantum D-module of Z, which is denoted by QDM(Z).
When Z is a smooth toric Fano variety, Givental (see also Iritani [Iri09] for toric weak Fano
orbifolds) gives an explicit presentation of thisD-module using GKZ systems (Gelfand-Kapranov-
Zelevinsky) in other words QDM(Z) is isomorphic to D/GZ where GZ is the GKZ ideal associated
to the toric data of Z. When Z is Fano, restricting this isomorphism to D × {0} gives an iso-
morphism between the quantum cohomology ring of Z and a commutative algebra constructed
by Batyrev in [Bat93].

In this paper, we investigate the non toric case where Z is a nef complete intersection subvariety
in a smooth toric variety X. To be more precise, let L1, . . . ,Lk be ample line bundles on X.
Let Z be the zero locus of a generic section of E := ⊕ki=1Li. Denote by ι : Z →֒ X the closed
embedding. By Lefschetz theorem, we have H∗(Z,C) = Im ι∗⊕ker ι∗. The sub-vector space Im ι∗

is called the ambient part of the cohomology of Z, denoted by H∗
amb(Z). As H∗

amb(Z) is stable
by the small quantum product of Z, we can define a sub D-module, denoted by QDMamb(Z),
whose fibers are H∗

amb(Z). A natural question is to find an explicit presentation of QDMamb(Z).
It is well known that the GKZ ideal associated to E , denoted by G(X,E), is part of the equations.
Cox and Katz addressed in the book [CK99, p.94-95 and p.101] the following question: what
differential equations shall we add to G(X,E) to get an isomorphism with QDMamb(Z)?

Before giving an answer to this question in Theorem 1.1, we need to introduce some notations.
Denote by ctop(E) the top Chern class of E and by ĉtop ∈ D its associated operator (see Notation
4.3). Denote by (G(X,E) : ĉtop) the left quotient ideal that is the left ideal of D defined by

(G(X,E) : ĉtop) := 〈P ∈ D | ĉtopP ∈ G(X,E)〉.
Theorem 1.1 (See Theorem 5.9). — Let L1, . . . ,Lk be ample line bundles on X, and assume
that dimCX ≥ k+3. Let Z be the zero of a generic section of E := ⊕ki=1Li. Denote by ι : Z →֒ X
the closed embedding. The ambient D-module QDMamb(Z) is isomorphic to D/(G(X,E) : ĉtop).

The quotient ideal (G(X,E) : ĉtop) can be seen as a precise statement for the “left cancellation
procedure” that appears in the works of Golyshev [Gol07, §2.9 and 2.10] and Guest-Sakai [GS14,
p.287].

Reichelt-Sevenheck used this presentation of QDMamb(Z) to prove a mirror theorem for non
affine Landau-Ginzburg model (see [RS12, Theorem 6.11]).

To prove our main theorem, we proceed in several steps.

1. In the first section, we review some standard facts on twisted quantum D-module
QDM(X, E) which is of rank dimCH

∗(X) and is defined via the Gromov-Witten invariants
twisted by E . We have a surjective morphism ϕ : QDM(X, E) → QDMamb(Z) and we
construct an explicit quotient of QDM(X, E) which gives an isomorphism with QDMamb(Z)
(see Proposition 2.19).

2. Then we prove that we have an isomorphism of D-modules ϕ : D/G(X,E) → QDM(X, E). To
show this statement, we first define a surjective morphism. Then we prove that D/G(X,E)
is locally free of rank dimCH

∗(X). The freeness is proved in Section 4. To compute the
rank, we restrict D/G(X,E) to D× {0} and we get a commutative algebra. This algebra is
a twisted version of the standard Batyrev algebras in [Bat93]. In Section 3, we prove that
the spectrum of this algebra is locally free of rank H∗(X) over some explicit open subset
of D (see Theorem 3.18).

3. Using the isomorphism ϕ constructed above, we define a morphism ϕ : D/(G(X,E) : ĉtop)→
QDMamb(Z) which is surjective. To prove that ϕ is an isomorphism, we prove that
D/(G(X,E) : ĉtop) is locally free of rank dimCH

∗
amb(Z). The freeness is proved in Section

4. To compute the rank, we restrict D/(G(X,E) : ĉtop) to D×{0} and we get a commutative
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algebra. In Section 3, we prove that the spectrum of this algebra is locally free of rank
H∗

amb(Z) over some explicit open subset of D (see Theorem 3.18).

The plan of this article is the following.
Section 2 contains a brief discussion of the twisted quantum D-module QDM(X, E).
In Section 3, we define and study twisted Batyrev algebras for a quasi-projective toric va-

riety. The main result of this section is Theorem 3.18. Notice that this section can be read
independently of the rest of the paper.

In Section 4, we prove that the GKZ modules of E∨ and its residual are locally free sheaves.
Using Section 3, we compute their ranks. The main result of this section is Theorem 4.15.

In Section 5, we state and prove Theorem 1.1 in Subsection 5.2.
In Section 6, we give two explicit computations of the generators of the quotient ideal for Pn

with the line bundle O(a) with a ∈ {1, . . . , n+1} and the blow-up of Pn at a point with the line
bundle O(aH + bE) with b ∈ {−1, . . . , 1− n} and a + b ∈ {1, 2}.

For the sake of completeness, lacking references in the literature, we review the axioms for
twisted Gromov–Witten theory in Appendix A.

Acknowledgements: We thank Thomas Reichelt, Claude Sabbah and Christian Sevenheck
for useful discussions. The seminar in Paris organised by Serguei Barannikov and Claude Sabbah
on the non-commutative Hodge structures was the starting point of this paper. We also thank
Antoine Douai for helping in the organisation of the workshop in Luminy on the work of Iritani.
We are also grateful to Hiroshi Iritani that pointed out the reference [Mav03] (see Remark 2.14)
and to Claire Voisin of the reference [dCM02]. The first author is supported by the ANR New
symmetries in Gromov-Witten theories number ANR- 09-JCJC-0104-01 and both authors are
member of the ANR Mirror symmetry and irregular singularities coming from physics ANR-13-
IS01-0001-01.

Notation 1.2. — We use calligraphic letters for the sheaves such as D,G,M,Mres. We use
bold letters for modules or ideals on non commutative rings such as D,G,M,Mres.

2. Twisted and reduced quantum D-modules with geometric interpretation

Let X be a smooth projective complex variety of dimension n and L1, . . . ,Lk be globally
generated line bundles. Denote by E the sum E := L1 ⊕ · · · ⊕ Lk.

Notation 2.1. — For 0 ≤ i ≤ 2n, denote by H i(X) := H i(X,C) the complex cohomology
group of classes of degree i. Also denote by H∗(X) the complex cohomology ring ⊕2n

i=0H
i(X) ;

the even part of this ring will be written H2∗(X). Put s = dimCH
2∗(X) and r = dimCH

2(X).
We fix, once and for all, a homogeneous basis (T0, . . . , Ts−1) of H2∗(X) such that T0 = 1 is

the unit for the cup product and that the classes T1, . . . , Tr form a basis of H2(X,Z) modulo
torsion. Also denote by (T 0, . . . , T s−1) the Poincaré dual in H2∗(X) of (T0, . . . , Ts−1).

As a convention, we will write H2(X,Z) for the degree 2 integer homology modulo torsion.
Denote by (B1, . . . , Br) the dual basis of (T1, . . . , Tr) in H2(X,Z). The associated coordinates
will be denoted by (d1, . . . , dr).

We denote by TX the tangent bundle of X and by ωX its canonical sheaf.

As a convention, we will make no notational distinction between vector bundles and locally
free sheaves, writing –for example– E for both.

2.1. Twisted quantum D-module. —
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2.1.a. Twisted Gromov-Witten invariants. — Let ℓ be in N and d be in H2(X,Z). Denote by
X0,ℓ,d the moduli space of stable maps of degree d from rational curves with ℓ marked points to
X. The universal curve over X0,ℓ,d is X0,ℓ+1,d

X0,ℓ+1,d

π

eℓ+1
X

X0,ℓ,d

where π is the map that forgets the (ℓ+ 1)-th point and stabilises, and eℓ+1 is the evaluation at
the (ℓ + 1)-th marked point. By Lemma 10 in [FP97]) the sheaf E0,ℓ,d := R0π∗ e

∗
ℓ+1 E is locally

free of rank
∫
d
c1(E) + k.

For j in {1, . . . , ℓ}, we define the surjective morphism E0,ℓ,d → e∗j E by evaluating the section
at the j-th marked point. We define E0,ℓ,d(j) to be the kernel of this map ; that is, we have the
following exact sequence

0 E0,ℓ,d(j) E0,ℓ,d e∗j E 0(2.2)

For any j ∈ {1, . . . , ℓ} the bundle E0,ℓ,d(j) has rank
∫
d
c1(E). For i ∈ {1, . . . , ℓ}, denote by ψi the

first Chern class of the line bundle on X0,ℓ,d whose fiber at a point (C, x1, . . . , xℓ, f : C → X)
is the cotangent space T ∗Cxi.

Definition 2.3. — Let ℓ be in N, γ1, . . . , γℓ be classes in H2∗(X), d be in H2(X,Z) and
(m1, . . . , mℓ) be in Nℓ. For j in {1, . . . , ℓ}, the (j-th) twisted Gromov-Witten invariant with
descendants is defined by

〈
τm1(γ1), . . . ,

˜τmj
(γj), . . . , τmℓ

(γℓ)
〉
0,ℓ,d

:=

∫

[X0,ℓ,d]vir
ctop(E0,ℓ,d(j))

ℓ∏

i=1

ψmi

i e∗i γi

where ei : X0,ℓ,d → X (1 ≤ i ≤ ℓ) is the evaluation morphism to the i-th marked point and
[X0,ℓ,d]

vir is the virtual class of X0,ℓ,d (see [BF97]).

2.1.b. Twisted quantum product. —

Notation 2.4. — Denote by NE(X) ⊂ H2(X,Z) the Mori cone of X, generated as a semi-group
by numerical classes of irreducible curves in X

NE(X) =





∑

C irreducible curve,
finite sum

nC [C], nC ∈ N, [C] numeric class of C




.

The semigroup algebras of NE(X) and H2(X,Z) will be respectively denoted by Λ and Π :

Λ = C[NE(X)] = C[Qd, d ∈ NE(X)], Π = C[H2(X,Z)] = C[Qd, d ∈ H2(X,Z)],

where Qd are indeterminates satisfying relations : Qd.Qd′ = Qd+d′ . Associated schemes to Λ and
Π are :

S := Spec Λ, T := SpecΠ.

The scheme S is an irreducible, possibly singular, affine variety of dimension r. Points of S are
characters of NE(X). If q is such a character, denote by qd its evaluation on d in NE(X). Since
X is projective, the Mori cone is strictly convex and there exists a unique character sending any
d in NE(X) \ {0} to 0 ; it corresponds to the maximal ideal 〈Qd, d ∈ NE(X) \ {0}〉. We will
denote this point by 0.

The scheme T ≃ (C∗)r is an algebraic torus of rank r. In [CK99], the point 0 ∈ S \ T is
called the large radius limit of T.
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The small twisted quantum product can now be defined. Let q be in S and γ1, γ2 be in H2∗(X).
The twisted small quantum product is defined by

γ1 •twq γ2 :=

s−1∑

a=0

∑

d∈H2(X,Z)

qd
〈
γ1, γ2, T̃a

〉
0,3,d

T a(2.5)

whenever this sum is convergent. Notice that this twisted quantum product is the non-
equivariant limit of •eλτ in [Iri11, p.5]. Remark 2.2 in [Iri11] implies that the twisted quantum
product •twq is associative, commutative, with unity T0 := 1.

Assumption 2.6. — We assume that (ωX ⊗ L1 ⊗ · · · ⊗ Lk)∨ is nef.

Iritani proves in [Iri07], that under this assumption, there exists an open subset D of S

containing 0 such that :

∀q ∈ D, ∀γ1, γ2 ∈ H2∗(X), γ1 •twq γ2 is convergent.

Notation 2.7. — We denote by D the complex nonsingular variety D := D ∩T.

2.1.c. Twisted quantum D-module. — Let (B1, . . . , Br) be the basis of H2(X,Z) fixed in Nota-
tion 2.1. For a ∈ {1, . . . , r}, put qa = QBa . We have:

Π = C[H2(X,Z)]
∼−→ C[q±1 , . . . , q

±
r ];

If d =
∑r

a=1 daBa we get Qd =
∏r

a=1 q
da
a . Viewing the qa’s as coordinates of T we get, for any

q ∈ T, qd =
∏r

a=1 q
da
a .

Let z be another variable ; we write C for SpecC[z]. We define r+ 1 differential operators on
T× C by :

δa := qa∂qa , a ∈ {1, . . . , r}, and δz := z∂z .

We denote by F the trivial holomorphic vector bundle of fiber H2∗(X) over D × C together
with the following meromorphic connection:

∇δa := δa +
1

z
Ta•twq , ∇δz := δz −

1

z
E •twq +µ(2.8)

where µ is the diagonal morphism defined by µ(Ta) := 1
2
(deg(Ta)− (dimCX − rk E))Ta and

E := c1(TX)− c1(E). The couple (F,∇) is called the twisted Quantum D-module of (X, E) and
denoted by QDM(X, E).

We define a multi-valued meromorphic section Ltw of Hom(F, F ) by :

Ltw(q, z)γ = q−T/zγ −
s−1∑

a=0

∑

H2(X,Z)

d6=0

qd
〈
q−T/zγ

z + ψ
, T̃a

〉

0,2,d

T a(2.9)

where 1
z+ψ

:=
∑

k∈N(−1)kψkz−k−1 and q−T/z := q−T1/z . . . q−Tr/z := e−z
−1

∑r
a=1 Ta log(qa) and log(qa)

is the multi-valued function, or any determination of the logarithm on a simply connected open
subset of D.

Define a pairing by: (γ1, γ2)
tw :=

∫
X
γ1∪γ2∪ctop(E). This pairing is degenerated and its kernel

is kermctop where mctop : H
2∗(X)→ H2∗(X) sends α to ctop(E) ∪ α.

Proposition 2.10. — 1. The connection ∇ is flat.
2. For a in {1, . . . , r} and γ ∈ H2∗(X) we have

∇δaL
tw(q, z)γ = 0, ∇δzL

tw(q, z)γ = Ltw(q, z)

(
µ− c1(TX)− c1(E)

z

)
γ

3. For any endomorphism u of H2∗(X), we put zu := exp(u log z). The multi-valued cohomo-
logical function Ltw(q, z)z−µzc1(TX)−c1(E) is a fundamental solution of ∇.
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4. For any γ1, γ2 ∈ H2∗(X), we have

(Ltw(q,−z)γ1, Ltw(q, z)γ2)
tw = (γ1, γ2)

tw.

Proof. — This proof is completely parallel to the one of Proposition 2.4 in [Iri09], using the
twisted axioms (see Appendix A).

2.2. Quantum D-module for complete intersection subvarieties. —

Assumption 2.11. — In this section, we assume that dimCX ≥ k+3 and that the line bundles
L1, . . . ,Lk are ample. This makes it possible to use Hyperplane and Hard Lefschetz Theorems.

Notation 2.12. — Fix a generic section of E , and denote by Z the projective subvariety defined
by this section. By Bertini’s theorem, Z is a smooth complete intersection subvariety of X.
Denote by ι : Z →֒ X the corresponding closed embedding.

By Lefschetz theorem we have

H2∗(Z) = Im ι∗ ⊕ ker ι∗(2.13)

and ker ι∗ ⊂ HdimC Z(Z). We put H2∗
amb(Z) := Im ι∗, this is the part of the cohomology of Z

coming from the ambient space X. We have an isomorphism H2(X) ≃ H2(Z).

Remark 2.14. — It should be possible to improve Assumption 2.11, at least for toric varieties.
For example, if X is a toric projective variety of dimension at least 3, k = 1 and L1 is a nef (not
necessary ample) line bundle on X, then Theorem 5.1 of [Mav03] ensures that Z is a smooth
connected hypersurface satisfying : H2∗(Z) = Im ι∗ ⊕ ker ι∗.

Proposition 2.15 (See Corollary 2.3 in [Iri11]). — Using Notation 2.12, and under As-
sumption 2.11, for any γ1, γ2 ∈ H2∗(X)

ι∗(γ1 •twq γ2) = ι∗(γ1) •Zq ι∗(γ2),

where •Z is the quantum product on Z.

We define the trivial vector bundle, denoted by FZ
amb, of fiberH2∗

amb(X) over DZ×C where DZ is
the subset ofH2(Z,C)/Pic(Z) where the quantum product on Z is convergent(1). The connection
∇Z is defined via the same formula as ∇ with the quantum product of Z and E := c1(TZ) and

µZ(ψa) =
1

2
(deg(ψa)− dimC Z)ψa.

where (ψa) is a basis of H2∗(Z). Proposition 2.15 implies that this bundle is stable by ∇Z . We
denote by QDMamb(Z) = (FZ

amb,∇Z).

Corollary 2.16. — Using Notation 2.12, and under Assumption 2.11. The morphism ι∗ in-
duces a surjective morphism ι∗ : QDM(X, E) ։ QDMamb(Z).

Proof. — It is clearly a surjective morphism of vector bundles. Proposition 2.15 implies that
ι∗(∇δaγ) = ∇Z

δa
ι∗γ. The adjunction formula gives : c1(TZ) = ι∗(c1(TX) − c1(E)). Since the

dimension of Z is the dimension of X minus the rank of E , we deduce that µZ(ι∗γ) = ι∗(µ(γ)).
This implies ι∗(∇δzγ) = ∇Z

δz
ι∗γ.

(1)We use the same parameter q because of the isomorphism ι∗ : H2(X) ≃ H2(Z)
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2.3. Reduced quantum D-module. — Consider the quotient H2∗(X) := H2∗(X)/ kermctop

and call it the reduced cohomology ring of (X, E). In this section, we define a "reduced" quantum

product on H2∗(X), which enables us to define a "reduced" quantum D-module.
This reduced quantum D-module turns out to be isomorphic to the ambient part of the

quantum D-module of the subvariety Z defined in Subsection 2.2.

Since mctop is a graded morphism, the reduced cohomology ring H2∗(X) = H2∗(X)/ kermctop

is naturally graded. For γ ∈ H2∗(X), we denote by γ its class in H2∗(X). Denote by F the

trivial bundle with fiber H2∗(X) over D×C. For any γ1, γ2 ∈ H2∗(X), define the reduced pairing

(·, ·)red which is a bilinear form on H2∗(X) by

(γ1, γ2)
red := (γ1, γ2)

tw.(2.17)

The reduced pairing is a well defined and a non degenerate bilinear form. Put s′ = dimCH2∗(X).

Let (φ0, . . . , φs′−1) be a homogeneous basis of H2∗(X) and denote (φ0, . . . , φs
′−1) its dual basis

with respect to (·, ·)red. Let γ1, . . . , γℓ be classes in H2∗(X). Let d be in H2(X,Z). Using
Definition 2.3, we define the reduced Gromov-Witten invariant by

〈γ1, . . . , γℓ〉red0,ℓ,d := 〈γ1, . . . , ˜ctop(E)γℓ〉0,ℓ,d =
∫

[X0,ℓ,d]vir
ctop(E0,n,d)

ℓ∏

i=1

e∗i γi

By the twisted Sℓ-symmetric axiom (cf. Axiom A.1), the reduced Gromov-Witten invariants are

well defined on the class in H2∗(X). Notice that the reduced Gromov-Witten invariants are
symmetric with respect to the ℓ entries.

The reduced quantum product is

γ1 •redq γ2 :=

s′−1∑

a=0

∑

d∈H2(X,Z)

qd 〈γ1, γ2, φa〉red0,3,d φ
a.

The convergence domain of •redq contains D. We will restrict ourselves to D.

Define the following connection on the trivial bundle F :

∀a ∈ {1, . . . , r}, ∇δa := δa +
1

z
T a•redq

∇δz := δz −
1

z
E •redq +µ

where µ is the diagonal morphism defined by µ(φa) := 1
2
(deg(φa)− (dimCX − rk E))φa and

E := c1(TX)− c1(E).

Definition 2.18. — The couple (F ,∇) is called the reduced quantum D-module of (X, E) and
denoted by QDM(X, E).

Proposition 2.19. — 1. The connection ∇ is flat.
2. Under assumption 2.11, let Z be the subvariety defined by a generic section of E . There

exists an isomorphism of D-modules f : QDM(X, E) ∼−→ QDMamb(Z) making the following
diagram commutative:

QDM(X, E)
ι∗p

QDM(X, E) ∼

f
QDMamb(Z)

where p is the natural projection on the quotient.
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Proof. — For any γ1, γ2 ∈ H2∗(X) and any a ∈ {0, . . . , s− 1} we have :

γ1 •twq γ2 = γ1 •redq γ2 and µ(Ta) = µ(Ta).

It follows that, for any γ ∈ H2∗(X),

∇γ = ∇γ.(2.20)

and ∇ is flat since ∇ is.
As for the second point, consider the following diagram, where we make use of notations of §.

2.2.

H2∗(X)
mctop

p

ι∗

H2∗(X)
p

H2∗(X)

f

H2∗
amb(Z)

ι∗

(2.21)

The morphism f is well defined by f : γ 7→ ι∗γ. By the decomposition (2.13), f is an isomor-
phism.

This diagram and Corollary 2.16 gives the required isomorphism between vector bundles ;
Formula (2.20) ensures that the connections are compatible.

Remark 2.22. — The reduced quantum D-module does exist even if the assumption 2.11 is
not satisfied ; that is if the subvariety Z is not well defined. It is used in [RS15].

We now come to the reduced fundamental solutions.

Lemma 2.23. — For any (q, z) in D× C, we have : Ltw(q, z)(kermctop) = kermctop.

Proof. — Let γ be in kermctop and α ∈ H2∗(X). Since Ltw(q, z) is an automorphism of H2∗(X)
and kermctop is the kernel of the twisted pairing (·, ·)tw we find, using Proposition 2.10:

(
α, Ltw(q, z)γ

)tw
=
(
Ltw(q,−z)−1α, γ

)tw
= 0.

Then Ltw(q, z)γ belongs to kermctop.

This lemma implies that we can define a reduced L function : for any (q, z) ∈ D× C put

L(q, z)γ = Ltw(q, z)γ(2.24)

The following corollary follows from Proposition 2.10.

Corollary 2.25. — We have the following properties.

1. A fundamental solution of ∇ is given by L(q, z)z−µzc1(TX)−c1(E).
2. For any γ1, γ2 ∈ H2∗(X), we have

(L(q,−z)s1, L(q, z)s2)red = (s1, s2)
red

3. Batyrev algebras for toric varieties with a split vector bundle

From now on, the smooth projective varietyX is a toric variety. In [Bat93], Batyrev constructs
an algebra from the fan of a smooth toric projective variety. If the variety is Fano, this algebra
is its quantum cohomology ring. In this section, we define and study similar objects for toric
varieties endowed with a split vector bundle.
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3.1. Fan for the total space of a split vector bundle. — Denote by N a n-dimensional
lattice and by M its dual lattice. Consider a fan Σ of NR = N ⊗ R and denote by Σ(l) the set
of l-dimensional cones of Σ. The set of rays is Σ(1) = {θ1, . . . , θm}, and for any θ ∈ Σ(1) we
denote by wθ the generator of θ ∩N .

Let X be the variety defined by Σ. We assume that X is smooth and projective.
Let L1, . . . ,Lk be k globally generated line bundles on X. Put E = ⊕ki=1Li. Let L1, . . . , Lk be

k toric divisors of X, such that Li ≃ O(Li). To any ray θ ∈ Σ(1), there is an associated toric
Weil divisor denoted by Dθ ; we write, in a unique way:

Li =
∑

θ∈Σ(1)

ℓiθDθ, ℓiθ ∈ Z, i = 1, . . . , k

Consider the n + k dimensional lattice N ′ := N ⊕ Zk. Let (ǫ1, . . . , ǫk) be the canonical basis
of Zk. Denote by :

φ : N ′ = N × Zk −→ N

the natural projection. Define a fan ∆ in N ′
R := N ′ ⊗ R in the following way :

– The rays of ∆ are indexed by Σ(1) ∪ {1, . . . , k} :
{

For θ ∈ Σ(1), put vθ := (wθ, 0) +
∑k

i=1 ℓ
i
θ(0, ǫi),

For i ∈ {1, . . . , k}, put vi := (0, ǫi).

Then,

∆(1) := {ρθ := R+vθ, θ ∈ Σ(1)} ∪ {ρi := R+vi, i ∈ {1, . . . , k}}.
– a strongly convex polyhedral cone σ is in ∆ if and only if φ(σ) ∈ Σ.

Notation 3.1. — In the following, for any ρ ∈ ∆(1), we denote by vρ ∈ N the generator of ρ.
It will be convenient to make the distinction between rays ρθ coming from the base variety X,
and rays ρi coming from the split vector bundle E . We put :

∆(1)base = {ρθ, θ ∈ Σ(1)}, ∆(1)bund = {ρ1, . . . , ρk} so that ∆(1) = ∆(1)base ⊔∆(1)bund .

Let Y be the toric variety associated to the fan ∆. As X is smooth, Y is also smooth.
The scheme morphism induced by the projection φ : N ′ −→ N is denoted by the same letter
φ : Y −→ X.

Proposition 3.2 ([CLS11], Proposition 7.3.1 and Exercise 7.3.3)
The toric variety Y is the total space of the vector bundle E∨, dual of E = ⊕ki=1Li. The natural

projection is the toric morphism φ : Y → X.

We will make use of the following easy result about cohomology classes:

Proposition 3.3. — The projection φ : Y −→ X induces an isomorphism:

φ∗ : H∗(X)
∼−→ H∗(Y ).

For i ∈ {1, . . . , k}, let Dρi be the toric divisor of Y corresponding to the ray ρi, then

φ∗[Li] = [−Dρi ] in H2(Y ).

To any toric Weil divisor D =
∑
aθDθ of X, there is an associated piecewise linear function

ψD, defined on the support |Σ| = NR of Σ and linear on each cone, such that ψD(wθ) = −aθ.
Since the line bundles Li are globally generated, the functions ψLi

are concave. This gives :

Lemma 3.4. — The support |∆| = ∪σ∈∆σ of the fan ∆ in N ′
R is convex.
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Proof. — First assume for simplicity that k = 1 i.e., N ′ = N × Z and L =
∑

θ∈Σ(1) ℓθDθ. Let

ψL the concave piecewise linear function such that ψL(wθ) = −ℓθ. Notice that vθ = (wθ, ℓθ) =
(wθ,−ψL(wθ)).

Let σ be a cone of ∆ of the form σ =
∑

θ∈τ(1) ρθ + ρ1, where τ is the cone of Σ obtained by

projection of σ : τ = φ(σ). A points p of σ can be written in NR × R as :

p =
∑

θ∈τ(1)

tθ (wθ,−ψL(wθ)) + t1(0NR
, 1), tθ, t1 ∈ R+

=


∑

θ∈τ(1)

tθwθ,−ψL


∑

θ∈τ(1)

wθ


+ t1


 (by linearity of ψL on τ)

so that

σ = {(pN , p1) ∈ NR × R | pN ∈ φ(σ), p1 ≥ −ψL(pN)}.
By definition, the support of ∆ is the union of such cones σ. Since |Σ| = NR, one get :

|∆| = {(pN , p1) ∈ NR × R | p1 ≥ −ψL(pN)}.

Now, consider p = (pN , p1) ∈ N, q = (qN , q1) two points in |∆| and t ∈ [0, 1]. Since ψL is concave,
we have : tp1 + (1− t)q1 ≥ −ψL(tpN + (1− t)qN), and (tp+ (1− t)q) ∈ |∆| as required.

In case k ≥ 2, we get

|∆| = {(pN , p1, . . . , pk) ∈ NR × Rk | p1 ≥ −ψL1(pN ), . . . , pk ≥ −ψLk
(pN)}.

and |∆| is also convex.

Example 3.5. — Consider the fan of P1 given by (N = Z, w1 = 1, w2 = −1), L = O(2) and
L = 2Dθ1. The fan ∆ is given by the rays vθ1 = (1, 2), vθ2 = (−1, 0) an vL = (0, 1) (cf. Figure
1).

vρθ1

ρθ1

vρθ2ρθ2

vρL

ρL

•

Fan ∆ in N ′
R,

N ′ = N × Z.

φ

wθ1 θ1wθ2θ2 •
Fan Σ in NR,
N = Z.

!

!

Y , total space
of OP1(2)∨

φ

X = P1

Figure 1. Fans Σ and ∆ associated to X = P1, L = 2Dθ1

3.2. Definition and properties of Batyrev algebras associated to (X, E).—
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3.2.a. Mori cone. — Let X, Y and E be as in section 3.1. Using Proposition 3.3, we will identify
H2(X) and H2(Y ), as well as the Mori cones of X and Y .

Notation 3.6. — For any class d ofH2(Y,Z) and ray ρ of ∆(1) corresponding to the weil divisor
Dρ, we put

dρ := Dρ.d =

∫

d

Dρ ∈ Z.

There is an exact sequence :

(3.7) 0 −→ H2(Y,Z) −→ Z∆(1) −→ N ′ −→ 0,

Where N ′ = N ⊕ Zk is the lattice defined in section 3.1 and where the image of d ∈ H2(Y,Z) is
(dρ)ρ∈∆(1) ∈ Z∆(1). We identify H2(Y,Z) and its image in Z∆(1).

For any real number a, we put a+ = max(a, 0), a− = max(−a, 0). Also put, for any d ∈
H2(Y,Z), d+ = (d+ρ )ρ∈∆(1) and d− = (d−ρ )ρ∈∆(1). With the identification above, we have :

d = d+ − d−.
If a is an element of H2(Y,Z) ⊂ Z∆(1), we say that a is supported by a cone if the set {ρ ∈ ∆(1) |
aρ 6= 0} is contained in a cone of ∆.

We will use the following facts :

Lemma 3.8. — Let d be in H2(Y,Z).

1. If d+ is supported by a cone, then −d ∈ NE(Y ).
2. If d ∈ NE(Y ) \ {0}, then d+ is not supported by a cone.

Proof. — 1. We have to show that, for any nef toric divisor T , T.(−d) ≥ 0. Let T be such a
divisor and let ψ be the piecewise linear concave function associated to T :

T.d =
∑

ρ

−ψ(vρ)d+ρ −
∑

ρ

−ψ(vρ)d−ρ

= −ψ(
∑

ρ

vρd
+
ρ ) +

∑

ρ

d−ρ ψ(vρ) (d+ supported by σ)

≤ −ψ(
∑

ρ

d+ρ vρ) + ψ(
∑

ρ

d+ρ vρ) = 0 (ψ concave and
∑

ρ

d+ρ vρ =
∑

ρ

d−ρ vρ).

2. If d+ is supported by a cone, then −d ∈ NE(Y ) and d ∈ −NE(Y ) ∩ NE(Y ) = 0.

3.2.b. Twisted Batyrev algebra of (X, E). — Let Λ be the semi-group algebra of NE(X), as
defined in Notation 2.4. Since the Mori cones of X and Y are identified, we have :

Λ = C[NE(Y )] = C[Qd, d ∈ NE(Y )].(3.9)

Fix a set of indeterminates (xρ)ρ∈∆(1). We put :

Λ[xρ] := Λ[xρ, ρ ∈ ∆(1)].

For any d ∈ H2(Y,Z) denote by Rd the polynomial :

Rd := xd
+ −Qdxd

−

=
∏

ρ∈∆(1)

xd
+
ρ
ρ −Qd

∏

ρ∈∆(1)

xd
−
ρ
ρ .

Let M ′ be the dual lattice of N ′ = N ⊕Zk. For any u ∈ M ′ denote by Zu the linear polynomial :

Zu :=
∑

ρ∈∆(1)

〈u, vρ〉xρ.
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Definition 3.10. — Consider the ring Λ[xρ] defined above. The quantum Stanley-Reisner ideal
of Λ[xρ] is the ideal QSR generated by the polynomials Rd :

QSR :=
〈
Rd = xd

+ −Qdxd
−

, d ∈ NE(Y )
〉

(3.11)

The linear ideal of Λ[xρ], is the ideal Lin generated by the polynomials Zu :

Lin :=

〈
Zu =

∑

ρ∈∆(1)

〈u, vρ〉xρ, u ∈ M ′

〉
(3.12)

The twisted Batytrev algebra of (X, E) is the Λ-algebra :

B := Λ[xρ]/(QSR+Lin).

Remark 3.13. — 1. Up to isomorphism, B is well defined since it does not depend on the
specific choice of the fan ∆ (i.e., choices of the fan Σ and toric divisors Li).

2. For any fan defining a smooth quasi-projective variety Y , we can define, as in Definition
3.10, the (untwisted) Batyrev algebra of Y . However, for Proposition 3.20 and first point
of Theorem 3.18 to be true, the support of the fan must be convex (in our case, this is
equivalent to each Li being nef) of maximal dimension, and the anticanonical divisor −KY

must be nef.

The quantum Stanley-Reisner ideal QSR defined above is a deformation, parametrized by
Spec(Λ), of the following ideal :

SR =
〈
xd

+

, d ∈ NE(Y )
〉

;(3.14)

SR is the Stanley-Reisner ideal associated to the simplicial complex defined by ∆ (see [BH93]).
We have :

Proposition 3.15. — There is a natural isomorphism

C[xρ]/(SR+Lin)
∼−→ H2∗(Y,C) = H2∗(X,C)

xρ 7−→ [Dρ]

where [Dρ] ∈ H2(Y ) is the class of the toric divisor Dρ.

Proof. — Since ∆ is convex (Lemma 3.4) and Y is quasi-projective, the proof of [Ful93] in
the complete case can be adapted to our case, which shows that there is a well defined isomor-
phism Z[xρ]/(SR+Lin)

∼−→ H2∗(Y,Z) sending xρ to [Dρ].

3.2.c. Residual Batyrev algebra of (X, E). — From Proposition 3.3 there exists an isomorphism
H2(X) ≃ H2(Y ) ; via this isomorphism, we have, for any toric divisor Li and its corresponding
ray ρLi

, [Li] = [−DρLi
].

Notation 3.16. — Put :

ctop :=
k∏

i=1

[Li] =
∏

ρ∈∆(1)bund

[−Dρ] ∈ H2k(X)

xtop :=
∏

ρ∈∆(1)bund

(−xρ) ∈ Λ[xρ].

Then ctop is the top Chern class of the fiber bundle E = ⊕ki=1Li, and xtop is sent to ctop via the
morphism defined in Proposition 3.15.
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Definition 3.17. — Consider the algebra Λ[xρ] and the ideals QSR and Lin defined in 3.10.
Put G = (QSR+Lin).

The quotient ideal of G by xtop is :

(G : xtop) := {P ∈ Λ[xρ], xtopP ∈ G}.
The residual Batyrev algebra of (X, E) is the Λ-algebra :

Bres := Λ[xρ]/(G : xtop),

3.2.d. Main Theorem for Batyrev algebras. — The main properties of twisted and residual
Batyrev algebras of (X, E) are summed up in the following result :

Theorem 3.18. — Let X be a toric smooth projective variety endowed with a split vector bundle
E = ⊕ki=1Li. Assume that each line bundle Li is nef, as well as ωX ⊗L1

∨ ⊗ · · · ⊗ Lk∨.
Put Λ = C[Qd, d ∈ NE(X)], S := SpecΛ and denote by 0 the maximal ideal 〈Qd, d 6= 0〉. Let

ctop be the top chern class of E and let mctop be the morphism of multiplication by ctop in H2∗(X).
There exists a Zariski neighbourhood V of 0 ∈ S such that :

1. Over V, the twisted Batyrev algebra B of (X, E) is a locally free Λ-module of rank
dimH2∗(X).

2. Over V, if the line bundles Li are ample, then the residual Batyrev algebra Bres of (X, E)
is a locally free Λ-module of rank (dimH2∗(X)− dimkermctop).

Remark 3.19. — A convenient neighbourhood V will be defined in Lemma 3.35 and could be
explicitly computed by elimination algorithm (see 6.2). If Y is Fano, V is the whole scheme S.

The proof of Theorem 3.18 will be given in section 3.4. We will actually rephrase its first part
and show that the scheme morphism SpecB → S is finite, flat, of degree dimH2∗(X) over V.

Let us first study the quotient by the ideal QSR defined in 3.11.

3.3. Quotient by the Quantum Stanley Reisner ideal. — In this section, we show :

Proposition 3.20. — Put Q := Spec(Λ[xρ]/QSR). Under assumptions of Theorem 3.18, the
morphism Q → S is flat of relative dimension dimX + k = dimY . The schemes Q and S are
Cohen-Macaulay.

We will prove this proposition by performing a Gröbner degeneration of the Quantum Stanley-
Reisner ideal. For that, we first need to consider a graded version of this ideal and define a
weight function on the monomials of the graded algebra. We then compute the initial ideal
corresponding to this weight function in term of primitive classes introduced by Batyrev in
[Bat93].

3.3.a. Graded QSR ideal. — Consider a new variable h and define the graded Λ-algebra Λ[xρ, h]
with the grading given by deg(h) = 1 and deg(xρ) = 1.

Let P be a polynomial in Λ[xρ]. The homogenisation of P in Λ[xρ, h] is :

P h := hdeg PP
(xρ
h

)
∈ Λ[xρ, h].

Recall that the toric divisor KY = −∑ρ∈∆(1)Dρ is a canonical divisor of Y . For any d ∈
H2(Y,Z), we have deg(xd

+
) − deg(xd

−

) =
∑

ρDρ.d = −KY .d. It follows that, for any d in

H2(Y,Z),

Rh
d = xd

+

hk
+ −Qdhk

−

xd
−

, where k = KY .d.

Definition 3.21. — The graded quantum Stanley-Reisner ideal of Λ[xρ, h] is the homogeneous

ideal QSRh generated by the polynomials Rh
d .
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Remark 3.22. — 1. If −KY is nef, we get :

QSRh :=
〈
Rh
d = xd

+ −Qdh−KY .dxd
−

, d ∈ NE(Y )
〉

2. The graded ideal QSRh could be different from the ideal generated by the whole set of
homogeneous polynomials {P h, P ∈ QSR}. Under our assumptions, we conjecture that
they are actually equal.

3.3.b. Weight function and monomial order. — Fix, once and for all, a strictly concave
piecewise-linear function ϕ of |∆|, rational on N ′. Since ∆ is quasi-projective, such a function
exists, corresponding to an ample Q-divisor Aϕ =

∑
ρ∈∆(1)−ϕ(vρ)Dρ.

Define a weight function ω on the monomials of Λ[xρ, h] by setting, for any monomial xahk :=∏
ρ∈∆(1) x

aρ
ρ hk :

ω(xahk) =
∑

ρ∈∆(1)

−aρϕ(vρ).

In particular, ω(hk) = 0 for any integer k. For convenience, we extend this function to any
polynomial P by setting :

ω(P ) = max{ω(xahk), xahk monomial of P}.
The initial form of a polynomial P =

∑
i αix

aihki is

inω(P ) =
∑

i:ω(xaihki)=ω(P )

αix
aihki .

This is not a term in general. The initial ideal inω(I) of an ideal I is the ideal generated by
initial forms of elements of I.

Also define a new monomial order � on the variable xρ, h by setting :

xahk � xa
′

hk
′ ⇐⇒





ω(xahk) < ω(xa
′

hk
′

)

or

ω(xahk) = ω(xa
′

hk
′

) and xahk E xa
′

hk
′

Where E is any fixed monomial order on the variables {xρ, h}. The leading monomial of a
polynomial P for the order � will be denoted by Lm(P ).

Lemma 3.23. — For any d in the Mori cone of Y , Lm(Rh
d) = inω(R

h
d) = xd

+
.

Proof. — We compute :

ω(xd
+

)− ω(h−KY .dxd
−

) =
∑

ρ∈∆(1)

−d+ρ ϕ(vρ)−
∑

ρ∈∆(1)

−d−ρ ϕ(vρ) =
∑

ρ∈∆(1)

−dρϕ(vρ) = Aϕ.d > 0.

3.3.c. Primitive collections and classes. — Primitive classes are specific elements in H2(Y,Z)
that generate the Mori cone of Y . They were introduced in ([Bat93] and [CvR09]).

Definition 3.24. — A subset {ρ1, . . . , ρl} of ∆(1) is called a primitive collection for ∆ if
{ρ1, . . . , ρl} is not contained in a single cone of ∆ but every proper subset is.

Let C = {ρ1, . . . , ρl} be a primitive collection, and v1, . . . , vl be the generating vectors of

ρ1 ∩ N ′, . . . , ρl ∩ N ′. Let σ be the minimal cone of ∆ containing v =
∑l

i=1 vi. Denote by
ρ′1, . . . , ρ

′
s the rays of σ and v′1, . . . , v

′
s the primitive vectors of the ρ′i. Since σ is the minimal cone

of ∆ containing v, the vector v is in the relative interior of σ and there exists a1, . . . , as, real
positive numbers, such that : v = a1v

′
1 + · · · + asv

′
s. Moreover, since v is in N ′ and the v′j are

part of a basis of N ′ (Y is non singular), the aj ’s are uniquely defined in N>0.
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Remark 3.25. — With the above notations : {v1, . . . , vl}∩{v′1, . . . , v′s} = ∅. ([CvR09], propo-
sition 1.9).

Let C = {ρ1, . . . , ρl} be a primitive collection and v =
∑l

i=1 vi = a1v
′
1+ · · ·+asv′s be as above.

Since
∑l

i=1 vi −
∑s

j=1 ajv
′
j = 0, the exact sequence (3.7) shows that there exists a well defined

element dC ∈ H2(Y,Z) such that :

dCρ =





1 if ρ ∈ C,
−aj if ρ = R+v′j , j ∈ {1, . . . , s},
0 otherwise.

Notation 3.26. — A primitive class is a class dC ∈ H2(Y,Z) corresponding to a primitive
collection as above. We denote by :

P := {dC ∈ H2(Y,Z), C primitive collection}
the set of primitive classes.

Proposition 3.27 ([CvR09], Propositions 1.9. and 1.10). — Each primitive class is con-
tained in the Mori cone NE(Y ). The Mori cone is generated by primitive classes.

3.3.d. Initial ideal of the graded QSR ideal.—

Lemma 3.28. — Assume that the anticanonical divisor of Y is nef. Let F be the fraction
field of Λ. The set {Rh

c , c ∈ P} is a Gröbner basis, for the order �, of the ideal generated by
{Rh

d , d ∈ NE(Y )} in F [xρ, h].

Proof. — First prove that, for any d ∈ H2(Y,Z), there exists a set of homogeneous polynomials
{Bc ∈ F [xρ, h], c ∈ P} such that :

Rh
d =

∑

c∈P

BcR
h
c , and ∀c ∈ P, Lm(BcR

h
c ) � Lm(Rh

d).(3.29)

Let E be the set of polynomials Rh
d which can not be expressed as in (3.29). Assume that E is not

empty and consider Rh
d ∈ E, whose leading monomial is minimal. Write Rh

d = xd
+
hk

+−Qdxd
−

hk
−

where k = KY .d. Two cases may occur :
a) Lm(Rh

d) = xd
+
hk

+
. If d+ is supported by a cone, then −d ∈ NE(Y ) by Lemma 3.8. By

Lemma (3.23), Lm(R−d) = x(−d)
+
= xd

−

; and xd
− ≺ xd

+
which does not satisfy the assumption.

Then d+ is not supported by a cone and there exists a primitive collection C contained in
the support of d+. Denote by c the class of C and put a = d+ − c+ ∈ N∆(1). Notice that
min(d−, a+ c−) + (d− c)+ = d+− c+ + c− = a+ c− and min(d−, a+ c−) + (d− c)− = d−, which
gives :

Rh
d − xahk

+

Rh
c = Qchk

′

xmin(d−,a+c−)Rh
d−c

where k′ is the integer ensuring homogeneity. We also have :

Lm(xmin(d−,a+c−)Rh
d−c) = max(xd

+−c++c−, xd−)

But xc
− ≺ xc

+
by Lemma (3.23) and xd

− ≺ xd
+

by assumption. It follows that :

Lm(xmin(d−,a+c−)Rh
d−c) ≺ Lm(Rh

d)

and Lm(Rh
d−c) ≺ Lm(Rh

d). By the minimality assumption, Rh
d−c admit a standard expression

with zero remainder (3.29). This gives in return such an expression for Rh
d which contradicts

Rd ∈ E.
b) Lm(Rh

d) = xd
−

hk
−

. Since Rh
−d = −Q−dRh

d and Lm(Rh
−d) = Lm(Rh

d) one may replace d by
−d and apply the first case.
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By (3.29), {Rh
c , c ∈ P} is a set of generators of the ideal and we can apply the Buchberger’s

criterion : Let c1, c2 be two primitive classes. We have :

S(Rh
c1, R

h
c2) :=

Lm(Rh
c1)

gcd
(
Lm(Rh

c1
),Lm(Rh

c2
)
)Rh

c2 −
Lm(Rh

c2)

gcd
(
Lm(Rh

c1
),Lm(Rh

c2
)
)Rh

c1

=xc
+
1 −min(c+1 ,c

+
2 )Rc2 − xc

+
2 −min(c+1 ,c

+
2 )Rc1 = xmin(c−1 ,c

−
2 )Qc1Rh

c2−c1
.

But (3.29) gives a normal expression with a zero remainder for Rc2−c1 and then for S(Rc1, Rc2).

Proposition 3.30. — The initial ideal of QSRh for the weight function ω is :

inω(QSRh) = 〈inω(Rh
c ), c ∈ P〉 = 〈xc

+

, c ∈ P〉 = 〈 xa, a is not supported by a cone〉.
Proof. — Let a be in N∆(1) not supported by a cone. There exists a primitive class c ∈ P such
that the support of c+ is contained in the support of a. Then a−c+ ∈ N∆(1) and the leading form
of xa−c

+
Rh
c ∈ QSRh is xa. This, and Lemma 3.23, proves the two equalities on the right, and the

inclusion 〈inω(Rh
c ), c ∈ P〉 ⊂ inω(QSRh). It remains to show that inω(QSRh) ⊂ 〈inω(Rh

c ), c ∈ P〉.
Let P be in QSRh. Using Lemma 3.28, we can write :

P =
∑

c∈P

QcR
h
c

where, for any c ∈ P, Qc ∈ F [xρ, h] (F = Frac(Λ)) and Lm(QcR
h
c ) � Lm(P ) ; this implies

ω(QcR
h
c ) ≤ ω(P ). The initial form of P is :

inω(P ) =
∑

c∈P,ω(QcRh
c )=ω(P )

inω(QcR
h
c ) =

∑

c∈P,ω(QcRh
c )=ω(P )

inω(Qc)x
c+.

it follows that inω(P ) is in Λ[xρ, h]∩ (
∑

c∈P F [xρ, h]x
c+) which is equal to

∑
c∈P Λ[xρ, h]x

c+ since

the xc
+

are monomials.

The initial form of Rh
c are unitary terms. This gives :

Corollary 3.31. — Let p be any closed point of Spec Λ and κ ≃ C be its residual field. Let

QSR
h

be the images of QSRh in κ[xρ, h]. The initial ideal of QSR
h

for the weight function ω is :

inω(QSR
h
) = 〈xc+ , c ∈ P〉 = 〈 xa, a is not supported by a cone〉.

Forgetting the variable h, we can restrict the weight function ω to Λ[xρ] ; we still denote it by
ω. Proposition 3.30 above, and specialization to h = 1 gives :

Corollary 3.32. — The initial ideal of QSR for the weight function ω is :

inω(QSR) = 〈inω(Rc), c ∈ P〉 = 〈xc
+

, c ∈ P〉 = 〈 xa, a is not supported by a cone〉.
3.3.e. Proof of Proposition 3.20. — We first show that Q→ S is flat, then show, by Groebner
degeneration, that each fiber is Cohen-Macaulay.
Flatness. Let us prove that Λ[xρ]/QSR is a free Λ-module : for any P in Λ[xρ], denote by P its
image in Λ[xρ]/QSR. Let A be the set of monomials of Λ[xρ] not contained in inω(QSR). By
Corollary 3.32 A = {xa, a ∈ N∆(1) | a is supported by a cone}. We claim that A = {xa, xa ∈ A}
is a base of Λ[xρ]/QSR.

Let xa1 , . . . , xal be in A and α1, . . . , αl be in Λ. If
∑

i αix
ai = 0, then

∑
i αix

ai ∈ QSR and

inω(
∑

i αix
ai) ∈ inω(QSR). Since every ai is supported by a cone, αi = 0 for any i, and A is free

over Λ.
Suppose now that A does not generate Λ[xρ]/QSR as a Λ-module. Let xa be the smallest

monomial for � such that xa /∈ Λ.A. Then a is not supported by a cone. There exists a
primitive class d, and b ∈ N∆(1) such that a = b + d+ and xa = xbRd + Qdxb+d

−

. We deduce
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that xa = Qdxb+d− . Since xb+d
− ≺ xa, the class xb+d− belongs to Λ.A, hence xa ∈ Λ.A ; this is a

contradiction.

Cohen-Macaulayness and relative dimension. Consider the graded ring Λ[xρ, h] and the ideal
QSRh defined in 3.34. Put n′ = n + k = dimY . We first prove that Λ[xρ, h]/QSRh is Cohen-
Macaulay of relative dimension n′ + 1 over Λ.

Since S is a toric affine variety, it is a Cohen-Macaulay scheme. By [BH93], Theorem 2.1.7,
it is sufficient to show that over every closed point p of S, the fiber Qp of Q → S is a Cohen-
Macaulay scheme of dimension n′ + 1.

Let p be a closed point of S, κ ≃ C its residual field, and denote by QSR
h

the image of QSRh

in κ[xρ, h]. By Proposition 3.30, the initial ideal of QSR
h

is the Stanley-Reisner ideal SR =

〈xa, a ∈ N∆(1), not supported by a cone〉 defined in 3.14. Since QSR
h

is a graded ring, we can
perform Gröbner degeneration, i.e., construct a flat and proper family over A1 = SpecC[t] whose

fibre over 0 is Proj(C[xρ, h]/ SR) and whose fibre over any other point is Proj(C[xρ, h]/QSR
h
).

From [BH93], Theorem 5.1.4, and Corollary 5.4.6, we know that C[xρ]/ SR is a Cohen-Macaulay

ring of dimension n′. Then C[xρ, h]/ SR and C[xρ, h]/QSR
h

both are Cohen-Macaulay rings of
dimension n′ + 1.

Since QSRh is homogeneous, the polynomial h − 1 is not a zero divisor of Λ[xρ, h]/QSRh.
Then Λ[xρ]/QSR = Λ[xρ, h]/(QSRh, h− 1) is a Cohen-Macaulay ring.

3.4. Proof of Theorem 3.18. — Put B = SpecB and consider the scheme morphism f :
B → S. We first study the fiber of f over 0. We then define a convenient neighbourhood V of
0 with help of a graded version of the Batyrev algebra and show that B → S is finite, flat, of
degree dimH2∗(X) over V ; this prove the Theorem for the twisted Batyrev algebra. We finally
prove the Theorem for the residual Batyrev algebra.

3.4.a. Fibre of B→ S over 0.— Recall the definition of the Stanley-Reisner ideal of ∆ (cf. 3.14).
By Proposition 3.15 we have :

B ⊗ (Λ/0)
∼−→ C[xρ]/(SR+Lin)

∼−→ H2∗(Y,C) = H2∗(X,C)(3.33)

xρ 7−→ [Dρ]

3.4.b. Definition of a neighbourhood of 0. — First define a graded version of the Batyrev algebra
of Y :

Definition 3.34. — Assume that the canonical divisor −KY is nef, and consider the graded
Λ-algebra Λ[xρ, h] and the graded quantum Stanley-Reisner ideal QSRh defined in 3.21.

The linear ideal of Λ[xρ, h], is the homogeneous ideal Lin generated by the polynomials Zu =∑
ρ∈∆(1)〈u, vρ〉xρ, u ∈M ′. The graded Batyrev algebra of ∆ is the Λ-algebra :

Bh := Λ[xρ, h]/(QSRh+Lin).

Put :

– Q := Spec(Λ[xρ]/QSR).
– P := Proj(Λ[xρ, h]) and π : P→ S, the natural projective morphism.
– H ⊂ P, the relative hyperplane at infinity, defined by h = 0.
– Bh := Proj(Λ[xρ, h]/(QSRh+Lin)).

By definition, B = Bh ∩ (P \H).

Lemma 3.35. — Set :

V := S \ π(Bh ∩H).

then V is an open Zariski neighbourhood of 0.
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Proof. — Since π is projective, V is an open subset of S. Let us show that 0 ∈ V. The
intersection (Bh ∩H)∩ (π−1(0)) is defined by the homogeneous ideal 〈h〉+SR+Lin in C[xρ, h].
By Proposition 3.15, C[xρ, h]/(〈h〉+SR+Lin)

∼−→ C[xρ]/(SR+Lin) is isomorphic to H2∗(Y,C).
Then the ideal 〈h〉 + SR+Lin defines a zero dimensional scheme supported by the origin of
SpecC[xρ, h] ; its radical is the irrelevant ideal of the graded ring C[xρ, h], and (Bh ∩ H) ∩
(π−1(0)) = ∅.
3.4.c. Local freeness and rank of the twisted Batyrev algebra of (X, E).— Let Bh

V
be the pull-

back of Bh by the open inclusion V →֒ S ; we make use of the same notation for any other
scheme defined over S.

By Definition of V, Bh
V

does not meet the relative hyperplane HV, hence BV = Bh
V
. Moreover,

as a closed subscheme of the projective bundle PV which do not meet a relative hyperplane, BV

has relative dimension zero. Thus, BV → V is a finite and proper morphism.
By Proposition 3.20. QV −→ V is a flat morphism of relative dimension n′ = dimY between

Cohen-Macaulay schemes. One get the following diagram :

BV

rel.
dim. 0

QV

rel. dim. n′ = dimY

V

Let (e1, . . . , en′) be a basis of M ′ = Hom(N ⊕Zk,Z). Let p be a closed point of V and denote
by Z i the image of Zi := Zei in the quotient of Λ[xρ] by the maximal ideal defining p. In the
Cohen-Macaulay fiber Qp over p, the scheme Bp has codimension n′ and is defined by a sequence

of the same length n′ (namely (Z1, . . . , Zn′)). Then, by [BH93], theorem 2.1.2, (Z1, . . . , Zn′) is
a regular sequence.

Since QV → V is flat, and (Z1, . . . , Zn′) is a regular sequence over any point of V, the
morphism BV → V is flat ([Mat86] Theorem 22.5 and Corollary). The degree of this finite
morphism can be computed as the length of the fibre Bh

0
over 0. From isomorphism 3.33, it is

equal to dimH2∗(Y ).

3.4.d. Local freeness and rank of the residual Batyrev algebra of (X, E).— Denote by xtop the
image of xtop in B = Λ[xρ]/(QSR+Lin), and by mxtop : B −→ B the morphism of multiplication
by xtop in B. This multiplication induces an isomorphism :

Bres = Λ[xρ]/(G : xtop)
∼−→ xtopB = Im(mxtop),

which gives an exact sequence :

(3.36) 0 −→ Bres −→ B −→ B/xtopB −→ 0

Let d be a class of NE(Y ), and ρi be the ray of ∆(1)bund corresponding to a line bundle Li.
Since Li is ample and the Chern class of Li is [−Dρi ], we have dρi = Dρi .d < 0. Then, we have :

Rd = xd
+ −Qdxtopx

d−−ǫ,(3.37)

where ǫ = (ǫρ)ρ∈∆(1), ǫρ = 1 if ρ ∈ ∆(1)bund , ǫρ = 0 if ρ ∈ ∆(1)base .

As a consequence, the image of Rd in B/xtopB = Λ[xρ]/(QSR+Lin+〈xtop〉), is xd
+

and we
have :

B/xtopB
∼−→ Λ[xρ]/(〈xd

+

, d ∈ NE(Y )〉+ 〈Zu, u ∈M ′〉+ 〈xtop〉)
∼−→ Λ⊗

(
C[xρ]/(SR+Lin+〈xtop〉)

)

Using Proposition 3.15, we get :

Λ[xρ]/(QSR+Lin+〈xtop〉) ∼−→ Λ⊗
(
H2∗(X,C)/ 〈ctop〉

)
.
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Thus, B/xtopB is a free Λ-module of rank dimCH
2∗(Y ) / ctopH

2∗(Y ) = dimC kermctop.
Restricting the exact sequence (3.36) to V, and using Theorem 3.18, we find that (Bres)|V is

a locally free Λ-module of rank (dimH2∗(Y )− dimkermctop) over V.

4. GKZ modules for toric varieties with a split vector bundle

GKZ systems were defined and studied by Gelfand-Kapranov-Zelevinskĭı in the end of the
eighties (cf. [GGZ87], [GZK88], [GZK89] and [GKZ90]). Our approach is closer to the one
of [Giv95], [Giv98], [CK99, §5.5.3 and §11.2] or [Iri09].

4.1. Definition and main Theorem for GKZ-modules. — For Batyrev algebras, the
natural base ring is Λ = C[NE(X)] = C[NE(Y )] as defined in Notation 2.4 or 3.9. When dealing
with differential operators, we need to work over a smooth subvariety of S = Spec Λ.

Put, as in 3.10, Λ = C[Qd, d ∈ NE(Y )]. Consider the ring C[Qd, d ∈ H2(Y,Z)], which is
the localization of Λ where the Qd are made invertible. Let (B1, . . . , Br) be the fixed base of
H2(X,Z) and (T1, . . . , Tr) be its dual base in H2(X,Z) (cf. 2.1). Put qi = QBi .

Notation 4.1. — Set :

C[q±a ] := C[q±1
1 , . . . , q±1

r ] = C[Qd, d ∈ H2(Y,Z)],

T := SpecC[q±a ] U := V ∩T

where V is the neighbourhood of 0 defined in Lemma 3.35 ; V is the locus over which the Batyrev
algebra is ensured to be locally free, and U will play the same role for differential modules. We
have :

0 ∈ V ⊂ S

∪ ∪
U ⊂ T.

and 0 /∈ T.

For any d =
∑r

a=1 daBa ∈ H2(X,Z) we write :

qd :=

r∏

a=1

qdaa ∈ C[q±a ].

Let z be another variable ; we write Cz for SpecC[z], or C when no confusion can occur.
Consider the non-commutative ring :

D := C[q±1
1 , . . . , q±1

r , z]〈zδq1 , . . . , zδqr , zδz〉 = C[q±a , z]〈zδq, zδz〉,(4.2)

where the non commutative relations are (zδqi)qi = qi(zδqi) + zqi and (zδz)z = z(zδz) + z2.

Notation 4.3. — 1. Quantisation: To any class τ =
∑r

a=1 taTa ∈ H2(X) we associate the
operator

τ̂ :=

r∑

a=1

tazδqa ∈ D

If L is a line bundle or a divisor on X we also write L̂ := ĉ1(L). Finally put :

ĉtop :=
k∏

i=1

L̂i ∈ D.

2. Pochhammer symbol with a variable z: For any element a of a Z[z]-algebra, and any k ∈ N
define :

[a]0 = 1, [a]k := a(a− z) · · · (a− (k − 1)z) if k > 0.(4.4)

This is a variant of the traditional Pochhammer symbol.
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Definition 4.5. — For any d ∈ H2(X,Z) put :

�d :=
k∏

i=1

[
L̂i + zd−i

]
d−i

∏

θ∈Σ(1)

[
D̂θ

]
d+
θ

− qd
k∏

i=1

[
L̂i + zd+i

]
d+i

∏

θ∈Σ(1)

[
D̂θ

]
d−
θ

.

where di = Li.d, dθ = Dθ.d. Also define the Euler field :

Ê := zδz + ĉ1(TX) + ĉ1(E∨).

1. The GKZ-ideal G of D associated to (Σ, L1, . . . , Lk) is the left ideal generated by the

operators �d and Ê :

G := 〈Ê,�d, d ∈ H2(X,Z)〉
2. The quotient ideal (G : ĉtop) of G with respect to ĉtop, is the left ideal of D generated by :
{P ∈ D | ĉtopP ∈ G}.

(G : ĉtop) := 〈P ∈ D | ĉtopP ∈ G〉.
Remark 4.6. — 1. The set {P ∈ D | ĉtopP ∈ G} contains the ideal G ; however, unlike the
commutative case, it is not an ideal of D in general, but only a C[z]-module (as an example, in
C[q] 〈δq〉, fix I = 〈δq〉 ; then q ∈ (I : δq) but δqq /∈ I).

2. If ρ ∈ ∆(1)bund corresponds to a divisor Li, we have [−Dρ] = [Li]. This enables us to write :

�d =
∏

ρ∈∆(1)bund

[
−D̂ρ + zd+ρ

]
d+ρ

∏

ρ∈∆(1)base

[
D̂ρ

]
d+ρ
− qd

∏

ρ∈∆(1)bund

[
−D̂ρ + zd−ρ

]
d−ρ

∏

ρ∈∆(1)base

[
D̂ρ

]
d−ρ

Note that, in this writing, the sign in front of D̂ρ differs for rays coming from the base X or
from the line bundles Li. We follow here the conventions of [CK99], taking account of their
"Erratum to Proposition 5.5.4".

Definition 4.7. — Let D = C[q±a , z]〈zδq, zδz〉 be the non commutative ring defined above. Let
D be the corresponding sheaf of OT×C-algebras.

1. The twisted GKZ module associated to (Σ, L1, . . . , Lk) is the left D-module

M := D/G,

the corresponding sheaf of D-modules is denoted byM.
2. The residual GKZ module Mres is the left D-module

Mres := D/(G : ĉtop),

the corresponding sheaf of D-modules is denoted byMres.

Remark 4.8. — Up to isomorphism, M and Mres does not depend on the specific choices of the
fan Σ and toric divisors Li.

Indeed, the GKZ system is defined from the following exact sequence

0 H2(X,Z) Z#∆(1) β
N × Zk 0

where β(eθ) = wθ. If one use an other fan, than we have an isomorphic exact sequence which
gives an isomorphic GKZ system. Notice that this exact sequence just depends on the rays of
∆ and not on the higher dimensional cone of ∆.

Remark 4.9. — We will need alternative definitions of the GKZ modules :
(1) Removing zδz : Put D′ := C[q±a , z]〈zδq〉 and G′ = 〈�d, d ∈ H2(X,Z)〉 ⊂ D′. The Euler

operator Ê of the ideal G enables us to remove zδz in the quotient, which gives two isomorphisms
of C[q±a , z]-module :

M
∼−→ D′/G′ Mres ∼−→ D′/(G′ : ĉtop)(4.10)
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(2) Differential operators indexed by rays of ∆ : For any ρ ∈ ∆(1) write, in a unique way :

[Dρ] =
r∑

a=1

Da
ρTa ∈ H2(Y,Z).(4.11)

Consider a set of indeterminates λρ, ρ ∈ ∆(1). Put D′′ := C[q±a , z]〈zδλρ , ρ ∈ ∆(1)〉, where the
non commutative relations are : zδλρ .qa = qa.zδλρ +Da

ρzqa. For any d ∈ H2(X,Z), put :

✷
′′
d :=

∏

ρ∈∆(1)bund

[−zδλρ + zd+ρ ]d+ρ

∏

ρ∈∆(1)base

[zδλρ ]d+ρ − q
d
∏

ρ∈∆(1)bund

[−zδλρ + zd−ρ ]d−ρ

∏

ρ∈∆(1)base

[zδλρ ]d−ρ ,(4.12)

Z ′′
u :=

∑

ρ∈∆(1)

〈u, vρ〉zδλρ , u ∈M ′.(4.13)

Put G′′ := 〈✷′′
d,Z ′′

u〉. Then there is an isomorphism of C[q±a , z]-modules :

f : D′′/G′′ −→ D′/G′ ≃M(4.14)

zδλρ 7−→
r∑

a=1

Da
ρzδqa

The previous isomorphism f induces an isomorphism f res between the residual’s modules, that
is

D′′/G′′ f

∼ D′/G′ ≃M

D′′/
(
G′′ :

∏
ρ∈∆(1)bund −zδλρ

)
fres

∼ D′/(G′ : ĉtop) ≃Mres

The main property of GKZ sheaves of D-modules is given by :

Theorem 4.15. — Let X be a toric smooth projective variety endowed with a split vector bundle
E = ⊕ki=1Li. Assume that ωX ⊗ L1

∨ ⊗ · · · ⊗ Lk∨ and each line bundle Li is nef. Let ctop be the
top chern class of E and let mctop be the morphism of multiplication by ctop in H2∗(X).

LetM andMres be the twisted and residual GKZ sheaf of D-modules associated to (X, E), as
defined in 4.7. Let U be the open subset of T defined in 4.1. We have :

1. Over U× C, M is a locally free OU×C-modules of rank dimH2∗(X).
2. Over U× C, Mres is a locally free OU×C-modules of rank (dimH2∗(X)− dimkermctop).

Proof. — This theorem follows from Proposition 4.16 (M|U×C andMres
|U×C are coherent), Propo-

sition 4.18 (M|U×C is locally free of the expected rank) and Proposition 4.23 below. In this last
proposition we only prove that Mres

|U×C is locally free over U × C∗ (that is on z 6= 0) and iso-
morphic to the residual Batyrev algebra on z = 0. By Nakayama’s Lemma, this only gives an
inequality on the dimension ofMres

|U×C∗ .
We are left to show that Mres

|U×C∗ has the expected rank over z 6= 0. This point follows from

Mirror symmetry and will be proved in section 5 (cf. Remark 5.22).

4.2. Coherence of GKZ sheaves associated to (X, E). —

Proposition 4.16. — Under assumptions of Theorem 4.15, M|U×C and Mres
|U×C are coherent

sheaves of OU×C-modules.

Proof. — IfM is coherent then the surjective morphismM→Mres implies thatMres is finitely
generated. Hence, it is sufficient to show thatM is coherent over U× C.

A usual proof of coherence for a differential module, consists in finding a good filtration and
proving that the characteristic variety is supported by the zero section of the cotangent bundle
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(cf. [RS15, §3] and [Sab05, Proposition 1.2.8]). In our case, M is not a C[q±a , z]〈∂q, ∂z〉-module
but only a C[q±a , z]〈zδq〉-module ; we must adapt the classical proof (cf. for instance [HTT08,
Proposition 2.2.5]) :

We make use of notations of Remark 4.9.(1) and put M′ := D′/G′. Let us define the following
increasing filtration of D′:

FkD
′ :=

{
P ∈ D′ | P (q, z, zδq) =

∑

α∈Nr

|α|≤k

Pα(q, z)(zδq)
α

}

where (zδq)
α := (zδq1)

α1 · · · (zδqr)αr . Let grD′ be the graduated ring of D′ defined by this
filtration. Denote by ya the class of zδqa in grD′, then grD′ is isomorphic to C[q±a , z][y1, . . . , yr].
We define the symbol of an element P =

∑
α∈Nr Pα(q, z)(zδq)

α of D′ by :

σ(P ) =
∑

α∈Nr

|α|=degP

Pα(q, z)y
α.

We also define an increasing filtration on M′ by

FkM
′ := FkD

′/G′
k, where G′

k := FkD
′ ∩G′.

One can check that (FkM′)k≥0 satisfies the properties of a good filtration ; in particular, for
any k in N, FkM′ is a coherent C[q±a , z]-module. We have grM′ = grD′/ grG′, which shows
that the annihilator ideal of grM′ in grD′ is grG′. Recall that the characteristic variety of M′

is the subscheme of Spec grD′ defined by the radical of the annihilator of grM′. Put Ar
T×C =

Spec grD′ = SpecC[q±a , z][yi] ; denote by C ⊂ Ar
T×C the characteristic variety of M′ defined by

the ideal
√
Ann grM′. Let U be the open subset of T defined in Notations 4.1 and CU×C ⊂ Ar

U×C

be the pull-back of C by the open immersion U× C →֒ T× C.

Lemma 4.17. — The characteristic variety CU×C is the image of the zero section of the trivial
bundle Ar

U×C → U× C. It is defined by the ideal 〈y1, . . . , yr〉.

Proof. — By definition of the symbol, the characteristic variety is contained in the closed sub-
scheme of Ar

T×C defined by the ideal

J = 〈σ(�d), d ∈ H2(X,Z)〉 ⊂ C[q±a , z][y1, . . . , yr].

Consider the Batyrev Λ-algebra B defined in 3.34. After localisation of Λ and tensorization by
C[z], one get a C[q±a , z]-graded algebra. There is a natural surjective morphism :

α : C[q±a , z][xρ, h] −→ grD′ = C[q±a , z][y1, . . . , yr]

h 7−→ 0

xρ 7−→
{∑r

a=1D
a
ρya if ρ ∈ ∆(1)base

−(∑r
a=1D

a
ρya) if ρ ∈ ∆(1)bund

where the integers Da
ρ are defined by : [Dρ] =

∑r
a=1D

a
ρTa (cf. 4.11). One check that, taking the

quotients, the morphism α gives an isomorphism :

C[q±a , z][xρ, h]/(QSRh+Lin+〈h〉) ≃ C[q±a , z][y1, . . . , yr]/J.

Let p be a closed point of U, and κ ≃ C its residual field. Let QSR
h

be the image of QSR in
κ[xρ, h], and J be the image of J in κ[z][y1, . . . , yr]. By definition of V (Lemma 3.35), the radical

of (QSR
h
+ Lin + 〈h〉) is the ”irrelevant” ideal 〈h, xρ, ρ ∈ ∆(1)〉. This shows that the radical of

J is equal to 〈α(xρ), ρ ∈ ∆(1)〉 = 〈y1, . . . , yr〉.
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Denote by D′ and G ′ the sheaves associated to D′ and G′. Consider the sheaf of ideals I
in grD′, generated by {y1, . . . , yr}. By Lemma 4.17 above, there exists m0 ∈ N such that
Im0

|U×C ⊂ grG ′|U×C (one may take m0 = m1 + · · ·+mr where ymi

i ∈ grG ′|U×C). We have :

Fm0+kM′
|U×C = Fm0D′

|U×C · FkM′
|U×C

which shows that the increasing filtration FkM′
|U×C is stationary after m0. But we know that

FkM′ is a coherent OT×C-module.

4.3. Local freeness and rank of the twisted GKZ sheaf associated to (X, E). —

Proposition 4.18. — Under assumptions of Theorem 4.15, the OU×C-moduleM|U×C is locally
free of rank dimH2∗(X).

Proof. — The following proof is inspired from Theorem 2.14 of [RS15], with modifications taking
into account the twisting by E and the use of qa variables instead of (λρ)ρ∈∆(1).
Step 1. M/zM is locally free of rank H2∗(X).

Let B be the Batyrev algebra Λ[xρ]/ 〈QSR+Lin〉 defined in 3.10. Localizing Λ by inverting
Qd (d 6= 0) gives C[q±a ]. There is an isomorphism of C[q±a ]-algebra :

B ⊗ C[q±a ] ≃ C[q±a , xρ]/〈QSR+Lin〉 −→M/zM = D′/(〈z〉 +G′)(4.19)

xρ 7−→
{∑r

a=1D
a
ρzδqa if ρ ∈ ∆(1)base

−∑r
a=1D

a
ρzδqa if ρ ∈ ∆(1)bund

By Theorem 3.18, B is locally free of rank dimH2∗(X) over V ; then M/zM is locally free of
rank dimH2∗(X) over U = V ∩T.
Step 2. M is locally free over U× C∗.

By Proposition 4.16, M|U×C is a coherent OU×C-modules. If z is invertible, Theorem 1.4.10
of [HTT08] shows that the coherent sheaf M is actually locally free.
Step 3. Up to a pull-back, M is a GKZ-module studied in Adolphson’s article [Ado94].

Let {λρ, ρ ∈ ∆(1)}, be a set of indeterminates. Put D1 = C[λ±ρ ]〈∂λρ〉, with the usual relations

∂λρ .λρ = λρ.∂λρ + 1. For any d ∈ H2(X,Z), put �1
d = ∂d

+

λ − ∂d
−

λ . Consider the vector β =
(0N ,−1, . . . ,−1) ∈ N × Zk and for any u ∈ M ′ put Z1

u =
∑

ρ〈u, vρ〉λρ∂λρ − 〈u, β〉. Then the

D1-module D1/〈�1
d,Z1

u〉 is studied in [Ado94].
Let ϕ be the injective morphism :

ϕ : C[q±a ] −֒→ C[λ±](4.20)

qa 7−→
∏

ρ∈∆(1)bund

(−λρ)D
a
ρ

∏

ρ∈∆(1)base

λ
Da

ρ
ρ ,(4.21)

where the Da
ρ are defined in Remark 4.9.(2). viewing C[λ±] as a C[q±a ]-algebra, we claim that

there exist an isomorphism :

M⊗C[q±a ] C[λ
±
ρ ]

∼−→ D1/〈�1
d,Z1

u〉 ⊗C C[z±](4.22)

To construct this isomorphism, put D2 = C[λ±ρ , z]〈z∂λρ〉, with the relations z∂λρ .λρ = λρ.z∂λρ+

z. For any d ∈ H2(X,Z), put �2
d = (z∂λ)

d+ − (z∂λ)
d− . Consider as above the vector β =

(0N ,−1, . . . ,−1) ∈ N ×Zk and for any u ∈M ′ put Z2
u =

∑
ρ〈u, vρ〉λρz∂λρ − 〈u, β〉z. Sending λρ

to zλρ, z∂λρ to ∂λρ and z to z, one get an isomorphism :

D2/〈�2
d,Z2

u〉
∼−→ D1/〈�1

d,Z1
u〉 ⊗C C[z±].
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Then consider as in remark 4.9.(2) the module D′′/〈�′′
d, Z

′′
u〉, isomorphic to M. Put, in D2,

ℓ :=
∏

ρ∈∆(1)bund λρ. There is an injective morphism of non commutative C[z±]-algebras :

D′′ −֒→ D2

zδλρ 7−→ ℓ−1(λρ.z∂λρ)ℓ =

{
λρ.z∂λρ if ρ ∈ ∆(1)base

λρ.z∂λρ + z if ρ ∈ ∆(1)bund

qa 7−→
∏

ρ∈∆(1)bund

(−λρ)D
a
ρ

∏

ρ∈∆(1)base

λ
Da

ρ
ρ ,

which gives :

M⊗C[q±a ] C[λ
±
ρ ] ≃ D′′/〈�′′

d,Z ′′
u〉 ⊗C[q±a ] C[λ

±
ρ ]

∼−→ D2/〈�2
d,Z2

u〉.
Step 4. The rank of M over U× C∗ is dimH2∗(X,C).

The morphism ϕ defined in 4.20 is injective ; this gives a surjective morphism h : SpecC[λ±ρ ]→
T = SpecC[q±a ], and O = h−1(U) is a dense open subset of the irreducible smooth variety
SpecC[λ±ρ ].

The isomorphism 4.22 ensures that, over O, the differential module D1/〈�1
d,Z1

u〉 is locally free
of rank equals to the generic rank of M. Moreover, by Corollary 5.11 of [Ado94] the rank of
D1/〈�1

d,Z1
u〉 is (n+k)!Vol(Γ∆) where Γ∆ is the convex hull of the points {0, vρ, ρ ∈ ∆(1)} in N ′

R.
Since all the Li are nef, the fan ∆ is convex, and 0 is not in the interior of this convex hull.

Since the divisor −KX −
∑k

i=1 Li is nef, the vectors (v1, . . . , vk) ∈ N × Zk defined by the toric
divisors Li all are either vertices or contained in faces of Γ∆ which do not contain 0. Hence, Γ∆

is a "disjoint" (except for faces) union of the simplexes Γ∆(τ) := (v1, . . . , vk, (vρθ)θ∈τ ) where τ is
any simplex defined by 0 ∈ NR and generating vectors of rays of Σ (we make use of notations of
Section 3.1). Let ΓΣ be the convex hull of the points {0, wθ, θ ∈ Σ(1)} in NR. We have :

rk(M) = (n+ k)!Vol(Γ∆) =
∑

τ, simplex of Σ

(n+ k)!Vol(Γ∆(τ))

=
∑

τ, simplex of Σ

| det(v1, . . . , vk, (vρθ)θ∈τ )| =
∑

τ, simplex of Σ

| det((wθ)θ∈τ )|

=
∑

τ, simplex of Σ

n!Vol(ΓΣ(τ)) = n!Vol(ΓΣ) = dimH2∗(X).

4.4. Local freeness and rank of the residual GKZ sheaf associated to (X, E). —

Proposition 4.23. — Under assumptions of Theorem 4.15.

1. On z = 0, the OU-module (Mres/zMres)|U is locally free of rank dimCH2∗(X) =
dimCH

2∗(X)− dimC ker(mctop).

2. On z 6= 0, the OU×C∗-module Mres |U×C∗ is locally free of rank less than dimCH2∗(X).

Proof. — On z 6= 0,Mres|U×C∗ is locally free by Theorem 1.4.10 of [HTT08], as as in Step 2 of
the proof of Proposition 4.18. By Nakayama’s lemma, it is enough to prove the first statement.

Consider the residual Batyrev Λ-algebra Bres = Λ[xρ]/(G : xtop) defined in Subsection 3.2.c.
By Proposition 3.18.2, Bres is a locally free module of rank dimCH

2∗(X)− dimC ker(mctop) over
the open subscheme V ⊂ S defined in Lemma 3.35. Proposition 4.23 follows from the Lemma
below.

Lemma 4.24. — Consider the alternative definition of M given in Remark 4.9.(2) : M =
D′′/G′′, where D′′ = C[q±a , z]〈zδλρ〉 and G′′ := 〈✷′′

d,Z ′′
u〉. Put ĉtop =

∏
ρ∈∆(1)bund (−zδλρ) ∈ D′′.
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Then Mres ≃ D′′/(G′′ : ĉtop) and the following application is a well defined isomorphism of
commutative C[q±a ]-algebras :

Mres/zMres−→Bres ⊗Λ C[q±a ](4.25)

z 7−→ 0

zδλρ 7−→
{
xρ if ρ ∈ ∆(1)base

−xρ if ρ ∈ ∆(1)bund

Proof. — The first isomorphism Mres ≃ D′′/(G′′ : ĉtop) is immediate. We make use of the same
notation, ĉtop, in D or in D′′.

Consider the morphism of C[q±a ]-algebras :

h : C[q±a , z]〈zδλρ〉 −→ C[q±a ][xρ]

z 7−→ 0

zδλρ 7−→
{
xρ if ρ ∈ ∆(1)base

−xρ if ρ ∈ ∆(1)bund ,

well defined since z is sent to 0. For any d ∈ NE(Y ) and u ∈M ′ we have :

h(�′′
d) = Rd, h(Z ′′

u) = Zu.

To prove that 4.25 is a well defined isomorphism, we must show that each polynomial P ∈
(G : xtop) in C[q±a ][xρ] possesses an antecedent for h in (G : ĉtop).

Let us choose a section of h as a morphism of C[q±a ]-module. First consider the following
isomorphism of C-algebras :

.̂ : C[xρ] −→ C[zδλρ ]

xρ 7−→ x̂ρ =

{
zδλρ if ρ ∈ ∆(1)base ,

−zδλρ if ρ ∈ ∆(1)bund ,

and extend it C[q±a ]-linearly to .̂ : C[q±a ][xρ]→ C[q±a , z]〈zδλρ〉. For any P ∈ C[q±a ][xρ], one check

that h
(
P̂
)
= P .

Let P be in (G : xtop). Recall that the ideal QSR is generated by polynomials Rd, d ∈ P,
where P is the set of primitive classes. Let (ui, i ∈ I = {1, . . . , k}) be a base of the dual lattice
of N ′ = N ⊕ Zk. Put Zi :=

∑
ρ∈∆(1)〈ui, vρ〉xρ. The ideal Lin is generated by polynomials

{Zi, i ∈ I}. Then we can write :

xtopP =
∑

d∈P

AdRd +
∑

i∈I

BiZi, Ad, Bi ∈ C[q±a ][xρ].(4.26)

We need to find P̃ ∈ (G′′ : ĉtop) such that h
(
P̃
)
= P . For that, we may assume that xtop does not

divide any monomial of Ad or Bi. If not we have, for any d ∈ P or i ∈ I a unique decomposition :

Ad = Ad,1 + xtopAd,2, Bi = Bi,1 + xtopBi,2.

where xtop does not divide any monomial of Ad,1 or Bi,1. Put P2 =
∑
Ad,2Rd +

∑
Bi,2Zi and

P̃2 =
∑
Âd,2�

′′
d +

∑
B̂i,2Z ′′

i . Since P̃2 is in G′′, it is also in (G′′ : ĉtop) ; moreover, h
(
P̃2

)
= P2.

If we find P̃1 ∈ (G′′ : ĉtop) such that h
(
P̃1

)
= P − xtopP2, then P̃ = P̃1 + P̃2 is an antecedent of

P in (G′′ : ĉtop).
Assume now that xtop does not divide any monomial of Ad or Bi.
Since each primitive class is in the Mori cone, and each line bundle Li is ample, xtop =∏
ρ∈∆(1)bund xρ divides xd

−

for any d ∈ P and we can write :

Rd = xd
+ −Qdxtopx

d−−ǫ,
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where ǫ = (ǫρ)ρ∈∆(1), ǫρ = 1 if ρ ∈ ∆(1)bund , ǫρ = 0 if ρ ∈ ∆(1)base . In the same way, for any i ∈ I,
we write

Zi = Z ′
i + aixtop,

where ai ∈ C, and xtop does not divide any term of Z ′
i. Since deg xtop = k, ai = 0 if k > 1, and

ai = 〈ui, vρtop〉 if k = 1.
Finally, for any d ∈ P, i ∈ I, we write :

Ad =
∑

α∈Zr

qαAd,α, Bi =
∑

α∈Zr

qαBi,α, where Ad,α, Bi,α ∈ C[xρ]

In the quotient ring C[q±a ][xρ]/(xtop) we obtain from (4.26), for any α ∈ Zr :

∑

d∈P

Ad,αx
d+ +

∑

i∈I

Bi,αZ
′
i = 0.(4.27)

For any α ∈ Zr, put

P̃α = −
∑

d∈P

Âd,αq
d
∏

ρ∈∆(1)bund

[−zδλρ + zd−ρ − z]d−ρ −1

∏

ρ∈∆(1)base

[zδλρ ]d−ρ +
∑

i∈I

B̂i,αai,

where we make use of the Pochammer symbol defined in Notation 4.3. Set :

P̃ =
∑

α∈Zr

qαP̃α.

Then h(P̃α) = −
∑

d∈P Ad,αq
dxγd +

∑
i∈I Bi,αai, and (4.27) gives :

xtop(P − h(P̃ )) =
∑

α∈Zr

qα

(∑

d∈P

Ad,αx
d+ +

∑

i∈I

Bi,αZ
′
i

)
= 0

Which proves that P = h(P̃ ).

We claim that P̃ ∈ (G′′ : ĉtop). By definition of the quotient ideal (G′′ : ĉtop), it is sufficient to

show that, for any α ∈ Zr, ĉtopP̃α ∈ G.
Recall that, for any ρ ∈ ∆(1), zδλρ .qa = qa.zδλρ +Da

ρzqa (Remark 4.9.(2)). Then we have, for
d ∈ NE(Y ) :

ĉtopq
d =

∏

ρ∈∆(1)bund

(−zδλρ)
∏

a

qTa.da =
∏

ρ∈∆(1)bund

qd(−zδλρ − z
r∑

a=1

(Ta.d)D
a
ρ) = qd

∏

ρ∈∆(1)bund

(−zδλρ + zd−ρ )(4.28)

since dρ = d−ρ for any d ∈ NE(Y ) and ρ ∈ ∆(1)bund .
Applying morphism .̂ to equality (4.27), which does not contain any variable qa, we have :

∑

d∈P

Âd,αx̂d
+ +

∑

i∈I

B̂i,αẐ ′
i = 0.

Moreover, since d is a primitive class, coefficients of d+ = (d+ρ )ρ∈∆(1) are either equal to

0 or 1, and d+ρ = 0 if ρ ∈ ∆(1)bund . Thus x̂d+ =
∏

ρ∈∆(1)(zδλρ)
d+ρ =

∏
ρ∈∆(1)bund [−zδλρ +

zd+ρ ]d+ρ
∏

ρ∈∆(1)base [zδλρ ]d+ρ , which gives :

∑

d∈P

Âd,α
∏

ρ∈∆(1)bund

[−zδλρ + zd+ρ ]d+ρ

∏

ρ∈∆(1)base

[zδλρ ]d+ρ +
∑

i∈I

B̂i,αẐ ′
i = 0.(4.29)
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Finally, equalities (4.29) and (4.28) gives :

ĉtopP̃α = −
∑

d∈P

ĉtopÂd,αq
d

∏

ρ∈∆(1)bund

[−zδλρ + d−ρ − 1]d−ρ −1

∏

ρ∈∆(1)base

[zδλρ ]d−ρ +
∑

i∈I

ĉtopB̂i,αai

=
∑

d∈P

Âd,α�
′′
d +

∑

i∈I

B̂i,αZ ′′
i ∈ G′′.

5. Isomorphisms between quantum D-modules and GKZ modules

5.1. The mirror Theorem of Givental and Lian-Liu-Yau. — The mirror theorem was
proved by Givental (cf. [Giv98, Theorem 0.1] and [CG07, Corrolary 5]) and by Lian-Liu-Yau
[LLY99]. Our technics are closed to the work of Givental that we recall now. As before, X is a
smooth toric projective variety endowed with k globally generated line bundles L1, . . . ,Lk such
that (ωX ⊗L1 ⊗ · · · ⊗ Lk)∨ is nef. We put E = ⊕ki=1Li.

Denote by t0 the coordinate on H0(X) associated to T0 = 1. In the definition below, we
denote by E0,1,d(1) the vector bundle on X0,1,d defined in Subsection 2.1.a.

Definition 5.1. — We define the cohomological multi-valued function J tw by :

J tw(t0, q, z) := et0/zqT/z


1 + z−1

∑

d∈H2(X,Z)

d6=0

qde1∗

(
ctop(E0,1,d(1))

z − ψ ∩ [X0,1,d]
vir

)



where q is in the domain of convergence of the quantum product D ⊂ T, z is in C and

qT/z =
∏r

a=1 q
Ta/z
a := ez

−1
∑r

a=1 Ta log(qa).
The proposition below is the twisted version of Lemma 10.3.3 of [CK99].

Proposition 5.2. — Let Ltw be the multivalued section of Hom(F, F ) defined in (2.9). In
H2∗(X), we have

ctop(E)J tw(t0, q, z) = ctop(E)(e−t0/zLtw(q, z))−11

In the reduced cohomology ring H2∗(X)/ kermctop we have

J tw(t0, q, z) = (e−t0/zL(q, z))−11.

Remark 5.3. — Notice that ctop(E)J tw(t0, q, z) is exactly JV of [CK99, p.358].

Proof of Proposition 5.2. — The first equalities is obtained by repeating the proof of Lemma
10.3.3 in [CK99] where one changes the standard Gromov-Witten axioms by the twisted axioms

(see Appendix A). This first equality implies that J tw(t0, q, z) = et0/z(Ltw(q, z))−11 which is
(L(q, z))−11 by definition of L (cf. Formula (2.24)).

Recall notations from section 3.1 and 3.2 : to a ray θ ∈ Σ(1), we associate a toric divisor
denoted by Dθ. For any class d ∈ H2(X,Z) and any i ∈ {1, . . . , k} we put

dθ :=

∫

d

Dθ and di :=

∫

d

Li

We define a cohomological multi-valued function by

I(q, z) := qT/z
∑

d∈H2(X,Z)

qd
k∏

i=1

∏di
m=−∞([Li] +mz)

∏0
m=−∞([Li] +mz)

∏

θ∈Σ(1)

∏0
m=−∞([Dθ] +mz)

∏dθ
m=−∞([Dθ] +mz)

(5.4)

where qT/z := ez
−1

∑r
a=1 Ta log(qa).
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We develop the I-function in power series in z−1 and a direct computation gives :

I(q, z) = F (q)1+ z−1G(q) +O(z−2)(5.5)

where F is an invertible univariate scalar function and G takes value in H≤2(X).
There exists a natural map α : H2(X,C)→ T defined by :

α : H2(X,C) −→ T = SpecC[H2(X,Z)]

τ 7−→ q :=

[
d 7→ qd = exp

(
2iπ

∫

d

τ

)]
,

so that α(
∑r

a=1 taTa) = (e2iπta)a∈{1,...,r}.

Definition 5.6. — The mirror map of (X, E) is the composite map

Mir : T −→ H0(X)×T(5.7)

q 7−→ (Id× α)
(
G(q)

F (q)

)

where α : H2(X,C) → T is defined above, and F,G are the functions appearing in (5.4). One
can check that the mirror map is univariate.

The mirror theorem of Givental (cf. [Giv98, Theorem 0.1] and [CG07, Corrolary 5] ; see also
[CK99, Theorem 11.2.16] or Lian-Liu-Yau [LLY99]) tells us the following.

Theorem 5.8. — [CG07, Corrolary 7] Let Mir be the mirror map defined in 5.6.
There exists an open subset

W = {(qa)a∈{1,...,r}, |qa| < δ, δ ∈ R>0}
of T such that

1. Mir(W) is contained in H0(X)×D where D ⊂ T is the convergence domain of the quantum
product (see Notation 2.7),

2. Mir(q) = (0, q) +O(q),
3. J tw(Mir(q), z) = I(q, z)/F (q).

5.2. Quantum D-module of a toric complete intersection in terms of residual GKZ
system.— In order to relate the GKZ modules defined in section 4 and quantum D-modules
defined in section 2 we make use of the mirror map. As the target of this map is not D but
H0(X) × D (Theorem 5.8), we first need to extend the base space of the various quantum
D-modules defined over D. We will keep the same notations for these extended D-modules :

– The twisted quantum D-module QDM(X, E) is the trivial bundle F tw with fibre H2∗(X)
over H0(X)×D× Cz endowed with the connection :

∇δz = δz −
1

z
E •Zq +µ, ∇∂t0

= ∂t0 +
1

z
1 •twq and ∀a ∈ {1, . . . , r},∇δa = δa +

1

z
Ta•twq ,

where E = c1(TX)− c1(E) + t01 and µ is the unchanged endomorphism of H2∗(X) defined
in 2.8. The fundamental solution Ltw is also extended in :

Ltw(t0, q, z) := e−t0/zLtw(q, z)

– The reduced quantum D-module QDM(X, E) is extended over H0(X)×D× Cz by taking
the quotients of QDM(X, E). We do the same for the fundamental solution, which gives
L(t0, q, z) := e−t0/zL(q, z).
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– The ambient quantum D-module QDMamb(Z, E) is the trivial bundle FZ
amb with fiber

H2∗
amb(X) over H0(X)×D× Cz endowed with the connection :

∇Z
δz = δz −

1

z
E
Z •Zq +µZ , ∇Z

∂t0
= ∂t0 +

1

z
1 •Zq and ∀a ∈ {1, . . . , r},∇Z

δa = δa +
1

z
Ta•Zq ,

where E
Z := c1(TZ) + t01 and µZ(ψa) = ψa(deg(ψa)− dimC Z)/2.

We have :

Theorem 5.9. — Let X be a projective smooth toric variety endowed with k line bun-
dles L1, . . . ,Lk ; put E := ⊕ki=1Li. Assume that each Li is globally generated and that
(ωX ⊗ L1 ⊗ . . .⊗ Lk)∨ is nef.

Consider the mirror map Mir and the open subset W of T defined in Theorem 5.8. For
ε ∈ R>0, put

Wε := {(q1, . . . , qr) ∈W | 0 < |qa| < ε}.
There exists ε in R>0 such that

1. Let M be the GKZ sheaf and QDM(X, E) the twisted quantum D-module. Over Wε × C,
the morphism

M ∼−→ (Mir× id)∗QDM(X, E)(5.10)

1 7−→ Ltw(Mir(q), z)I(q, z)

is a well-defined isomorphism of D-modules.
2. Let L1, . . . ,Lk be k ample line bundles. Over Wε × C, the morphism

Mres|Wε×C
∼−→ (Mir× id)∗QDM(X, E) ≃ (Mir× id)∗QDMamb(Z)(5.11)

1 7−→ L(Mir(q), z)I(q, z)

is a well defined isomorphism of D-modules.

Remark 5.12. — 1. The first point of Theorem 5.9 should be known by specialists. However,
we did not find a precise reference in our settings.

2. The second point constitutes our main result. It answers to the question addressed in
the [CK99, p.94-95 and p.101]: “What differential equations shall we add to G to get an
isomorphism with QDMamb(Z) ?”.

This result should permit us to compute algorithmically a finite system of differential
equation defining QDMamb(Z). We present it in the Remark 6.2.

Lemma 5.13. — Under the assumption of Theorem 5.9.1, the morphism of D-modules

M ∼−→ (Mir× id)∗QDM(X, E)
1 7−→ Ltw(Mir(q), z)I(q, z)

is well defined over W.

Proof of Lemma 5.13. — A direct computation shows that

Ltw(Mir(q), z)I(q, z) = Ltw(Mir(q), z)J tw(Mir(q), z)/F (q)

is univariate.
We make use of notations of Definitions 4.7 and 4.5 ; we haveM the sheaf associated to D/G,

where
D := C[q±a , z]〈zδq , zδz〉, G :=

〈
Ê,✷d, d ∈ H2(X,Z)

〉
.

It is sufficient to prove that, for any d ∈ H2(X,Z) :

�d

(
z−c1(TX )−c1(E)zµI(q, z)

)
= 0,

and Ê
(
z−c1(TX )−c1(E)zµI(q, z)

)
= 0.
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Put

Ad(z) :=

k∏

i=1

∏di
m=−∞([Li] +mz)

∏0
m=−∞([Li] +mz)

∏

θ∈Σ(1)

∏0
m=−∞([Dθ] +mz)

∏dθ
m=−∞([Dθ] +mz)

.

For any α ∈ H2(X), we have [µ, α] = α. This implies that

zµ
α

z
= αzµ.(5.14)

From this we deduce that zµAd(z) = z−dTX+dEAd(1) where we set, as usual : dTX =
∫
d
c1(TX)

and dE =
∫
d
c1(E). Using the definition (5.4) of the function I we find :

z−c1(TX)+c1(E)zµI(q, z) =
∑

d∈H2(X,Z)

qT+dz−c1(TX)+c1(E)−dTX+dEAd(1).(5.15)

For any class α ∈ H2(X), a direct computation shows that

α̂qT+d = qT+dz(α + dα),(5.16)

zδz(z
−c1(TX )+c1(E)−dTX+dE ) = z(−c1(TX) + c1(E)− dTX + dE)z

−c1(TX)+c1(E)−dTX+dE .(5.17)

We deduce that

zδz
(
qT+dz−c1(TX)+c1(E)−dTX+dE

)
=
(
−ĉ1(TX) + c1(Ê)

)
(qT+dz−c1(TX)+c1(E)−dTX+dE ).

which gives : Ê
(
z−c1(TX)−c1(E)zµI(q, z)

)
= 0.

Using Formula (5.16), the equality �d(z
−c1(TX)+c1(E)zµI(q, z)) = 0 reduces to the following

relation :

Ad−d′(1)

k∏

i=1

d+i∏

ν=1

([Li] + (d− d′)Li
+ ν)

∏

θ∈Σ(1)

d+
θ
−1∏

ν=0

([Dθ] + (d− d′)θ − ν)(5.18)

= Ad(1)
k∏

i=1

d−i∏

ν=1

([Li] + di + ν)
∏

θ∈Σ(1)

d−
θ
−1∏

ν=0

([Dθ] + dθ − ν).

This formula can be proved for any d, d′ ∈ H2(X,Z) by direct computation.

Lemma 5.19. — Under the assumption of Theorem 5.9.1, the morphism of D-modules

Mres ∼−→ (Mir× id)∗QDM(X, E)
1 7−→ Ltw(Mir(q), z)I(q, z)

is well defined over W.

Proof of Lemma 5.19. — Let R(q, z, zδq, zδz) ∈ D be in the quotient ideal (G : ĉtop). We have
to show that the cohomological valued function R(q, z, zδq, zδz)z

−c1(TX )+c1(E)zµI(q, z) belongs to
kermctop where mctop is the endomorphism of H2∗(X) : α 7→ ctop(E) ∪ α.

It is enough to prove it when R is a generator of the ideal (G : ĉtop) i.e., ĉtopR ∈ G. From
Formulas (5.16) and (5.17), we deduce that

R(q, z, zδq, zδz)q
T+dz−c1(TX)+c1(E)−dTX+dE(5.20)

= R (q, z, z(T + d), z(−c1(TX) + c1(E)− dTX + dE)) q
T+dz−c1(TX)+c1(E)−dTX+dE .

We decompose

R(q, z, zδq, zδz) =
∑

d′∈H2(X,Z)

finite

qd
′

Rd′(z, zδq, zδz).
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From Equalities (5.15) and (5.20), we deduce that

R(q, z, zδq, zδz)z
−c1(TX )+c1(E)zµI(q, z) =

∑

d∈H2(X,Z)

qd+T z−c1(TX )+c1(E)−dTX+dEBd(z)

where

Bd(z) :=
∑

d′∈H2(X,Z)

finite

Rd′ (z, z(T + d), z(−c1(TX) + c1(E)− dTX + dE))Ad−d′(1).

To prove the lemma, it is enough to show that ctop(E)Bd(z) = 0 for all d ∈ H2(X,Z). By
ĉtopR ∈ G and Lemma 5.13, we have

ĉtopR(q, z, zδq, zδz)z
−c1(TX)+c1(E)zµI(q, z) = 0∑

d∈H2(X,Z)
qd+T z−c1(TX)+c1(E)−dTX+dE

(∏k
i=1 z ([Li] + di)

)
Bd(z) = 0.

As ctop(E)Bd : C → H∗(X) is a polynomial function in z, it is enough to prove that it vanishes
on C∗. Assume z ∈ C∗. As q ∈ (C∗)r, we deduce that qT and z−c1(TX)+c1(E) are invertible in
H∗(X). Denote by Id := {i ∈ {1, . . . , k} | di = 0} and Icd its complementary set. For i ∈ Icd, the
class [Li] + di is invertible in H∗(X). So we deduce that

(∏

i∈Id

[Li]

)
Bd(z) = 0.

This implies that ctop(E)Bd(z) = 0 as ctop(E) =
∏k

i=1[Li].

Proof of Theorem 5.9. — Let us first prove that ϕ is an isomorphism. By Theorem 4.15, rkM =
rkF , so it is enough to prove that the morphism ϕ is surjective in a neighbourhood of 0. From
[CK99, Proof of Proposition 5.5.4 p.100] we deduce that the "d" term in the definition of the I
function (see (5.4)) vanishes when d /∈ NE(X), so that we have:

I(q, z) = qT/z
∑

d∈NE(X)

qdAd(z).(5.21)

Then from (5.16) we have, for any α ∈ H2(X) :

α̂I(q, z) = qT/z(α +O(q)).

As H2∗(X) is generated by H2(X), we deduce that for any a ∈ {0, . . . , s − 1}, there exists an
operator Pa(q, z, zδq) such that

Pa(q, z, zδq)I(q, z)F (q)
−1 = qT/z(Ta +O(q))

where F (q) is defined in (5.5) ; notice that we do not need zδz in the operator Pa. From the
definition of the function Ltw(t0, q, z) (cf. Equality (2.9)), we deduce that

Ltw(t0, q, z)γ = e−t0/zq−T/z(γ +O(q)).

By the mirror Theorem 5.8 we have that

Mir(q) = q +O(q).

Putting the last three arguments together, for any a ∈ {0, . . . , s− 1} we have

ϕ(Pa(q, z, zδq)) = Ltw(Mir(q), z)qT/z(Ta +O(q)) = Ta + o(1).

This proves the surjectivity of ϕ near the point 0. As it is an open condition, it is true in a
neighbourhood of q = 0.

Let us prove that ϕ′ is an isomorphism. First, the surjectivity of ϕ implies the surjectivity
of π ◦ ϕ. We deduce that ϕ′ is also surjective. On z 6= 0, Proposition 4.23 implies that the
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rank of Mres is less than rkF . Hence the surjectivity implies that its rank is rkF . This also
implies that Mres is locally free on U × C of rank dimH2∗(X)C = rkF . We deduce that ϕ′ is
an isomorphism.

Remark 5.22. — The last point of this proof is the missing argument to finish the proof of
Theorem 4.15.2.

6. Examples: hypersurface in Pn and in Blpt Pn

In the following examples, we want to give explicit computations of the quotient ideal (G : ĉtop).
The first example is Pn with the line bundle O(a) and the second one is the blow up of Pn at
one point with an appropriate bundle (see below). In a forthcoming paper, we will prove the
following general statement

Theorem 6.1. — Let X be a smooth projective toric variety with L1, . . . ,Lk nef line bundles
on X such that ωX ⊗L∨

1 ⊗· · ·⊗L∨
k is nef. Put D′ := C[q±a , z]〈zδq〉 and G′ the left ideal generated

by �d for d ∈ H2(X,Z) (see Remark 4.9). Let P ∈ G′, we can write

P =
∑

c∈P

Bc✷c, deg(Bc✷c) ≤ deg(P ).

where the degree means the degree as differential operators in D′ and P is the set of primitive
classes (see Notation 3.26 and Definition 3.24 ).

Remark 6.2. — Let us explain how one could use this theorem to get an algorithm to compute
the residual ideal 〈G′ : ĉtop〉 in order to get, via the isomorphism of Theorem 5.9, a presentation
of QDMamb(Z).

1. First, Theorem 6.1 implies that the generators of the ideal G′ can be indexed by the primitive
classes, i.e., G′ = 〈✷c, c ∈ P〉.

2. As the line bundle Li are ample, for any d ∈ NE(X), we see that the operator ✷d is of the
form P1 − ĉtopqdP2 where P1, P2 are two operators in D′ (see (3.37) for a similar statement
in the commutative case). Let c1, c2 be two primitive classes. Using the same ideas that
S-polynomials for Groebner basis (in the commutative case), we can find three operators
T, U, V ∈ D′ such that

U✷c1 − V✷c2 = ĉtopTc1,c2

This means that for each pair of primitive class c1, c2, we get an operator Tc1,c2 in the
residual ideal (G′ : ĉtop).

3. We think that the residual ideal is generated by the ✷c for c ∈ P and by Tc1,c2 for c1, c2 ∈ P.
At this point, we do not have a complete proof of this statement. We hope that an induction,
like in Proposition 6.5, could work.

Ideas of proof of Theorem 6.1. — We only give some ideas for a proof because it is quite long
and technical.
Calabi-Yau case i.e., ωX ⊗ L∨

1 ⊗ · · · ⊗ L∨
k = OX:The theorem follows immediately from the

homogeneity of the operator �d for any d ∈ H2(X,Z).
Non Calabi-Yau case: This case is more difficult. Let’s recall some notations of (4.14). We
use the following isomorphism

f : D′′/〈✷′′
d,Z ′′

u〉 −→ D′/G′ ≃M

zδλρ 7−→
r∑

a=1

Da
ρzδqa
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where D′′ := C[q±a , z]〈zλqρ, ρ ∈ ∆(1)〉 and

✷
′′
d :=

∏

ρ∈∆(1)bund

[−zδλρ + zd+ρ ]d+ρ

∏

ρ∈∆(1)base

[zδλρ ]d+ρ − q
d
∏

ρ∈∆(1)bund

[−zδλρ + zd−ρ ]d−ρ

∏

ρ∈∆(1)base

[zδλρ ]d−ρ ,

Z ′′
u :=

∑

ρ

〈u, vρ〉zδλρ , u ∈M ′.

Using a suitable monomial order, we can prove a first result. Let P ∈ 〈✷′′
d〉 ⊂ D′′, we can write

P =
∑

c∈P

Bc✷
′′
c , deg(Bc✷

′′
c ) ≤ deg(P ).

Then, we have to incorporate the Z ′′
u operators into the picture. This is the tricky part. We

consider the ideals generated by the symbols which is a monomial ideals in a commutative ring.
We use the Taylor’s complex (see [Lyu88]) which plays the role of the Koszul resolution for
monomial ideals. Then we pass to the ideal 〈✷′′

d,Zu〉 and use the isomorphism f to conclude.

6.1. The projective space X = Pn and the invertible sheaf L = O(a).— We have
H2(Pn,Z) ∼= Z and H2(Pn,Z) ∼= Z. Denote by h the homology class of a line in Pn, and by H
the Chern class of O(1). They both generates their respective group, and we have

∫
h
H = 1. The

nef cone in H2(X,Z) is N.H and its dual, the Mori cone in H2(X,Z), is equal to N.h. The ring
Λ is C[Qd, d ∈ NE(X)] ≃ C[q] where we set q := Qh. The ring Π is Π = C[Qd, d ∈ H2(X,Z)] ≃
C[q±] := C[q, q−1]. We put L = O(a) for a ∈ Z. The sheaf O(a) is ample if and only if a > 0.
The sheaf ω∨

Pn⊗O(a)∨ = O(n+1−a) is nef if and only if n+1−a ≥ 0. We have 0 < a ≤ n+1.
The different cases are :

Calabi-Yau a = n+ 1.
Fano 1 ≤ a ≤ n,where (ωX ⊗ L)∨ = O(n+ 1− a) is ample.

We make use of the notations of Subsection 3.1. Let us choose a fan for Pn : Denote by N
the lattice Zn and by (e1, . . . , en) its canonical basis. Put w1 := e1, . . . wn := en, wn+1 :=
−e1 − · · · − en. These are the lattice generators of the rays θi, where θi = R+wi for any
i ∈ {1, . . . , n + 1}. We set Σ(1) := {θ1, . . . , θn+1}. The set of maximal cones is

Σ(n) = {every (necessarily convex) cone generated by n vectors in Σ(1)}.
Denote by Dθ the toric divisor associated to the ray θ ∈ Σ(1). We have [Dθ] = H in H2∗(X).
There is only one primitive collection (see §.3.3.c) P = {θ1, . . . , θn+1} = Σ(1). The primitive
class is P = {h}.

Let us compute the quotient ideal. We will use the alternative definition 4.9.1 of the GKZ
module, that is M = D′/G′, with D′ = C[q±]〈zδq〉 and G′ = 〈✷h〉. We have ctop = c1(L) =
c1(O(a)) = aH and ĉtop = azδq.

Proposition 6.3. — We have:

(G′ : ĉtop) =

〈
✷h,

1

a
(zδq)

n − q(azδq + z). . . . .(azδq + (a− 1)z)

〉
.

Proof. — The operator P0 = 1
a
(zδq)

n − q(azδq + 2z). . . . .(azδq + az) is in (G′ : ĉtop) : since
zδq.q = q(zδq + z), we have ĉtop.P = a✷h. We prove now, by induction on the degree, that any
operator P in (G′ : ĉtop) is in 〈P0〉. First notice that a.yσ(P0) = σ(✷h), even in the Calabi-Yau
case where σ is the symbol. Let P be in (G′ : ĉtop).

If deg P = 0 (and P 6= 0). We have, azδq.P = Q.✷h, where Q ∈ D and deg(azδq.P ) = 1,
degQ.✷h = degQ + deg✷h = degQ + (n + 1) (recall that a ≤ n + 1). It follows that n = 0,
which is impossible.

Assume it is true for degP = l. If degP = l+ 1, we still have azδq.P = Q.✷h. Passing to the
symbol we get : ayσ(P ) = σ(Q).σ(✷h) = ayσ(Q).σ(P0). It follows that the polynomials P and
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QP0 both are in Quot(ĉtop,G′) and have the same symbol. Hence, P − QP0 is in Quot(ĉtop,G′)
and has degree strictly less than l. By induction, P −QP0 ∈ 〈P0〉 and P ∈ 〈P0〉.

6.2. The blown-up plane X = Blpt Pn and the sheaf L = O(aH + bE).— Denote by
N = Zn the lattice and by (e1, . . . , en) the canonical basis of N . The fan Σ of X is given by the
rays

v0 = −en, ∀i ∈ {1, . . . , n}, vi = ei, vn+1 = (−1, . . . ,−1).
The maximal cone in N ⊗ R are

∀i ∈ {1, . . . , n + 1} \ {n}, σi =
n+1∑

j=1

j 6=i

R+vj, and σn,i = R+v0 +

n−1∑

j=1

j 6=i

R+vj

We have H2(X,Z) ∼= Z2 and H2(X,Z) ∼= Z2. Let E be the exceptional divisor, and H the strict
transform by the blown-up of an hyperplane of Pn which does not meet the blown-up point. We
also denote by E and H their Chern classes. Denote by e the homology class of E and h the
homology class of H . We choose the following bases which are dual to each others :

– Base of H2(X,Z): (T1 = H − E, T2 = H).
– Base of H2(X,Z): (B1 = e, B2 = h− e).

Notice that c1(ωX) = (n + 1)H − (n − 1)E. We denote by Dθ the toric divisor associated to
θ ∈ Σ(1) and [Dθ] its class inH2(X,Z). We have for i ∈ {1, . . . , n+1}\{n}, [Di] = H−E, [Dn] =
H, [D0] = E. There are two primitive collections, P1 = {θ0, θn} and P2 = {θi, i /∈ {0, n}}. The
primitive classes are P = {e, h− e}. The nef cone in H2(X,Z) is R+H+R+(H−E), an its dual,
the Mori cone in H2(X,Z) is equal to R+e + R+(h − e) (see Figure 2). Following the choice of

T2 = H

T1 = H −E

E

•

The nef cone in H2(Blp P2,Z).

de Rham duality←−−→ h
e

h− e
•

The Mori cone in H2(BlptP2,Z).

Figure 2. Nef and Mori cone of Blp P2.

our base, we put q1 := Qe, q2 := Qh−e. The ring Λ is C[q1, q2]. We want O(aH + bE) to be
ample and ω∨

BlpPn ⊗ O(aH + bE)∨ = O((n + 1 − a)H − (n − 1 + b)E) to be nef. This leads to
the following cases

{(a, b) ∈ Z2 | b ∈ {−1, . . . , 1− n}, a+ b ∈ {1, 2}}
The Calabi-Yau case is (a, b) = (n+ 1, 1− n). We have

ctop = −bT1 + (a+ b)T2, ĉtop = −b(zδq1) + (a+ b)(zδq2)

In the differential ring D′ := C[z, q±1 , q
±
2 ] 〈zδq1 , zδq2〉 we consider the GKZ ideal G′ = 〈✷e,✷h−e〉,

where {
✷e = (zδq1)

n − q1(zδq2 − zδq1)
∏−b

ν=1(−bzδq1 + (a+ b)zδq2 + νz),

✷h−e = (zδq2)(zδq2 − zδq1)− q2
∏a+b

ν=1(−bzδq1 + (a+ b)zδq2 + νz).

}
(6.4)
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The following proposition gives the generator of the quotient ideal.

Proposition 6.5. — The quotient ideal of the GKZ ideal by ĉtop is:

(G′ : ĉtop) = 〈P0,✷e,✷h−e〉
where

P0 :=− a(zδq1)n−1 + (a+ b)(zδq1)
n−2(zδq2)+

− abq1(zδq2 − zδq1)
−b−1∏

ν=1

(−b(zδq1) + (a + b)(zδq2) + νz)

− (a+ b)2q2(zδq1)
n−2

a+b−1∏

ν=1

(−b(zδq1) + (a+ b)(zδq2) + νz)

Proof of Proposition 6.5. — First, we have ĉtopP0 ∈ G′ as

ab✷e + (a+ b)2(zδq1)
n−2

✷h−e = ĉtopP0(6.6)

Let us prove by induction on the degree of the operator P ∈ D′ that if ĉtopP ∈ G′ then
P ∈ 〈P0,✷e,✷h−e〉. From Theorem 6.1, we have

ĉtopP = R1✷e +R2✷h−e(6.7)

where the degree of the operators R1✷e and R2✷h−e are less or equal to deg(P ) + 1.
Taking the symbol of 6.7 we get

σ(ĉtop)σ(P ) = S1σ(✷e) + S2σ(✷h−e)

where Si are either the symbol of Ri or 0. Replacing σ(✷e) by Equality (6.6), we get the following
equality in Q[q1, q2, y1, y2]

σ(ĉtop)σ(P ) = σ(ĉtop)
S1σ(P0)

ab
+ σ(✷h−e)

(
−(a + b)2

ab
S1y

n−2
1 + S2

)
(6.8)

From (6.4), we have

✷h−e = (zδq2)(zδq2 − zδq1)− ĉtopq2
a+b−1∏

ν=1

(−bzδq1 + (a+ b)zδq2 + νz).(6.9)

In Q[q1, q2, y1, y2]/σ(ĉtop), we get from (6.9)

0 = y2(y2 − y1)
(
−(a + b)2

ab
S1y

n−2
1 + S2

)

As y2(y2 − y1) 6= 0, there exists Q ∈ Q[q1q2, y1, y2] such that

−(a + b)2

ab
S1y

n−2
1 + S2 = Qσ(ĉtop)

By the degree conditions on R1✷e and R2✷h−e, we have that degQ = degP − 2. Putting this
in (6.8), we get

σ(ĉtop)σ(P ) = σ(ĉtop)

(
S1σ(P0)

ab
+ σ(✷h−e)Q

)
(6.10)

As deg S1σ(P0) = deg σ(✷h−e)Q = degP , we have

σ(P ) = σ

(
−R1

a
P0 −

Q̂

a
✷h−e

)
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where Q̂ is any operator having symbol Q. The operator

P ′ := P −
(
−R1

a
P0 −

Q̂

a
✷h−e

)

satisfies that ĉtopP
′ ∈ G′ and has degree strictly inferior to the degree of P . By induction, we

deduce that P ′ ∈ 〈P0,✷e,✷h−e〉 that is P is in 〈P0,✷e,✷h−e〉.

A

Twisted Axioms for Gromov-Witten invariants

In this Appendix, we will state (without proof) the twisted axioms for twisted Gromov-Witten
invariants. For the “untwisted” axioms, we refer to two papers of Behrend and Manin ([BM96]
and [Beh97]). As explained in §.2.1.b, the twisted axioms are the non-equivariant limit of the
equivariant twisted axioms.

Recall from Notation 2.1 and T0, . . . , Ts−1 be a basis of H2∗(X). We denote by T a the Poincaré
dual of Ta for a ∈ {0, . . . , s− 1}. Let d be in H2(X,Z). Let γ1, . . . , γℓ be in H2∗(X), m1, . . . , mℓ

be in N, for any σ ∈ Sℓ and j be in {1, . . . , ℓ}.
A.1. (Twisted Sℓ-invariance)

〈
˜τm1(c1(E) ∪ γ1), . . . , τmℓ

(γℓ)
〉
0,ℓ,d

=
〈
τmσ(1)

(γσ(1)), . . . , ˜τmσ(j)
(c1(E) ∪ γσ(j)), . . . , τmσ(ℓ)

(γσ(ℓ))
〉
0,ℓ,d

A.2. (Twisted Fundamental class equation / string equation )
〈
τm1(γ1), . . . ,

˜τmk
(γk), . . . , τmℓ

(γℓ), 1
〉
0,ℓ+1,d

=
∑

i|mi>0

〈
τm1(γ1), . . . , τmi−1(γi), . . . , ˜τmk

(γk), . . . , τmℓ
(γℓ)

〉
0,ℓ,d

A.3. (Consequence of the two above)
〈
τm1(γ1), . . . ,

˜τmk
(γk), . . . , τmℓ

(γℓ), 1
〉
0,ℓ+1,d

=
∑

i|mi>0

〈
τm1(γ1), . . . , τmi−1(γi), . . . , ˜τmk

(γk), . . . , τmℓ
(γℓ)

〉
0,ℓ,d

A.4. (Twisted Divisor axiom)
〈
τm1(γ1), . . . ,

˜τmk
(γk), . . . , τmℓ

(γℓ), γ
〉
0,ℓ+1,d

=

(∫

d

γ

)
〈τm1(γ1), . . . ,

˜τmk
(γk), . . . , τmℓ

(γℓ)〉0,ℓ,d

+
∑

i:mi>0

〈
τm1(γ1), . . . ,

˜τmi−1(γ ∪ γi), . . . , τmℓ
(γℓ)

〉
0,ℓ,d

A.5. (Twisted Dilaton equation)

〈τm1(γ1), . . . ,
˜τmj

(γj), . . . , τmℓ
(γℓ), τ1(1)〉0,ℓ+1,d

= (−2 + n)〈τm1(γ1), . . . , τ̃mj
(γj), . . . , τmℓ

(γℓ)〉0,ℓ,d
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A.6. (Twisted TRR i.e., Topological Recursion Relation)

〈〈
τm1+1(γ1), τm2(γ2),

˜τm3(γ3)
〉〉

0
=

s−1∑

a=0

〈〈
τm2(γ2),

˜τm3(γ3), T
a
〉〉

0

〈〈
τm1(γ1), T̃a

〉〉
0

〈〈
˜τm1+1(γ1), τm2(γ2), τm3(γ3)

〉〉
0
=

s−1∑

a=0

〈〈
τm2(γ2), τm3(γ3), T̃

a
〉〉

0

〈〈
˜τm1(γ1), Ta

〉〉
0

using the notation

〈〈τm1(γ1), . . . , τmℓ
(γℓ)〉〉0 :=

∑

ℓ≥0

∑

d∈H2(X,Z)

1

ℓ!
〈τm1(γ1), . . . , τmℓ

(γℓ), τ, . . . , τ〉0,ℓ+n,d(A.1)

A.7. (Twisted WDVV equations)

s−1∑

a=0

〈〈
τm1(γ1), τm2(γ2), T̃a

〉〉
0

〈〈
τm3(γ3),

˜τm4(γ4), T
a
〉〉

0

=
s−1∑

a=0

〈〈
τm1(γ1), τm3(γ3), T̃a

〉〉
0

〈〈
τm2(γ2),

˜τm4(γ4), T
a
〉〉

0

s−1∑

a=0

〈〈τm1(γ1), τm2(γ2), Ta〉〉0
〈〈
τm3(γ3),

˜τm4(γ4), T̃
a
〉〉

0

=
s−1∑

a=0

〈〈τm1(γ1), τm3(γ3), Ta〉〉0
〈〈
τm2(γ2),

˜τm4(γ4), T̃
a
〉〉

0
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