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We give an interpretation of quantum Serre theorem of Coates and Givental as a duality

of twisted quantum D-modules. This interpretation admits a non-equivariant limit, and

we obtain a precise relationship among (1) the quantum D-module of X twisted by a

convex vector bundle E and the Euler class, (2) the quantum D-module of the total space

of the dual bundle E∨ → X, and (3) the quantum D-module of a submanifold Z ⊂ X cut

out by a regular section of E . When E is the anticanonical line bundle K−1
X , we identify

these twisted quantum D-modules with second structure connections with different

parameters, which arise as Fourier–Laplace transforms of the quantum D-module of X.

In this case, we show that the duality pairing is identified with Dubrovin’s second metric

(intersection form).

1 Introduction

Genus-zero Gromov–Witten invariants of a smooth projective variety X can be encoded

in different mathematical objects: a generating function that satisfies some system of
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2 H. Iritani et al.

partial differential equations (Witten–Dijkgraaf–Verlinde–Verlinde equations), an asso-

ciative and commutative product called quantum product, the Lagrangian cone LX of

Givental [13] or in a meromorphic flat connection called quantum connection. These

objects are all equivalent to each other; in this paper, we focus on the realization of

Gromov–Witten invariants as a meromorphic flat connection.

Encoding Gromov–Witten invariants in a meromorphic flat connection defines

the notion of quantum D-module [10], denoted by QDM(X), that is a tuple (F,∇, S) con-

sisting of a trivial holomorphic vector bundle F over H ev(X)× Cz with fibre H ev(X), a

meromorphic flat connection ∇ on F given by the quantum connection:

∇ =d+
s∑

α=0

(Tα•τ )dtα +
(
−1

z
(E•)+ deg

2

)
dz

z

and a flat non-degenerate pairing S on F given by the Poicaré pairing (see Definition 2.1

and Remark 2.4). These data may be viewed as a generalization of a variation of Hodge

structure (see [19]).

Quantum Serre theorem of Coates and Givental [4, Section 10] describes a cer-

tain relationship between twisted Gromov–Witten invariants. The data of a twist are

given by a pair (c, E) of an invertible multiplicative characteristic class c and a vec-

tor bundle E over X. Since twisted Gromov–Witten invariants satisfy properties similar

to usual Gromov–Witten invariants, we can define twisted quantum product, twisted

quantum D-module QDM(c,E)(X) and twisted Lagrangian cone L(c,E) associated to the

twist (c, E). Let c∗ denote the characteristic class satisfying c(V)c∗(V∨)= 1 for any vec-

tor bundle V . Quantum Serre theorem (at genus zero) gives the equality of the twisted

Lagrangian cones:

L(c∗,E∨) = c(E)L(c,E). (1.1)

Quantum Serre theorem of Coates and Givental was not stated as a duality. An obser-

vation in this paper is that this result can be restated as a duality between twisted

quantum D-modules.

Theorem 1.1 (see Theorem 2.11 for more precise statements). There exists a (typically

non-linear) map f : H ev(X)→ H ev(X) (see (2.7)) such that the following holds:

(1) The twisted quantum D-modules QDM(c,E)(X) and f∗QDM(c∗,E∨)(X) are dual

to each other; the duality pairing SQS is given by the Poincaré pairing.

(2) The map QDM(c,E)(X)→ f∗QDM(c∗,E∨)(X) sending α to c(E) ∪ α is a morphism

of quantum D-modules. �
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Quantum Serre Theorem as a Duality Between Quantum D-Modules 3

Genus-zero twisted Gromov–Witten invariants were originally designed to com-

pute Gromov–Witten invariants for Calabi–Yau hypersurfaces or non-compact local

Calabi–Yau manifolds [2, 11, 25]. Suppose that E is a convex vector bundle and c is

the equivariant Euler class eλ. In this case, non-equivariant limits of (c, E)-twisted

Gromov–Witten invariants yield Gromov–Witten invariants of a regular section Z ⊂ X

of E and non-equivariant limits of (c∗, E∨)-twisted Gromov–Witten invariants yield

Gromov–Witten invariants for the total space E∨. The original statement (1.1) of quan-

tum Serre theorem does not admit a non-equivariant limit since the non-equivariant

Euler class is not invertible. We see however that our restatement above passes to the

non-equivariant limit as follows:

Corollary 1.2 (Theorem 3.14, Corollary 3.17). Let E be a convex vector bundle and let

e denote the (non-equivariant) Euler class. Let h: H ev(X)→ H ev(X) be the map given by

h(τ )= τ + π√−1c1(E) and let f̄ : H ev(X)→ H ev(X) denote the non-equivariant limit of

the map f of Theorem 1.1 in the case where c= eλ. We have the following:

(1) The quantum D-modules QDM(e,E)(X) and (h ◦ f̄)∗QDM(E∨) are dual to each

other.

(2) Let Z be the zero-locus of a regular section of E and suppose that Z satis-

fies one of the conditions in Lemma 3.15. Denote by ι : Z ↪→ X the inclusion.

Then the morphism e(E) : QDM(e,E)(X)→ (h ◦ f̄)∗QDM(E∨) factors through

the ambient part quantum D-module QDMamb(Z) of Z as:

QDM(e,E)(X)

ι∗ ��
��

e(E)∪
�� (h ◦ f̄)∗QDM(E∨)

(ι∗)∗QDMamb(Z)

� �

ι∗ ���������������

(1.2)

�

What is non-trivial here is the existence of an embedding of QDMamb(Z) into

QDM(E∨). This is reminiscent of the Knörrer periodicity [21, 32]: we expect that this

would be a special case of a more general phenomenon which relates quantum coho-

mology of a non-compact space equipped with a holomorphic function W to quantum

cohomology of the critical locus of W.

In Section 4, we introduce certain integral structures for the quantum

D-modules QDM(e,E)(X), QDM(E∨), and QDMamb(Z), generalizing the construction in

[17, 19]. These integral structures are lattices in the space of flat sections which are
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4 H. Iritani et al.

isomorphic to the K-group K(X) of vector bundles. We show in Propositions 4.4 and 4.5

that the duality pairing SQS is identified with the Euler pairing on the K-groups, and

that the maps appearing in the diagram (1.2) are induced by natural functorial maps

between K-groups.

In Section 5, we consider the case where E = K−1
X and study quantum cohomol-

ogy of a Calabi–Yau hypersurface in X and the total space of KX. We show that the small

quantum D-modules SQDM(e,K−1
X )(X) and SQDM(KX) are isomorphic to the second struc-

ture connections of Dubrovin [8] (Here small quantum D-modules are the restriction of

quantum D-modules to the H2(X)-parameter space). The second structure connections

are meromorphic flat connections ∇̌(σ ) on the trivial vector bundle F̌ over H ev(X)× Cx

with fibre H ev(X), which is obtained from the quantum connection of X via the Fourier–

Laplace transformation with respect to z−1 (see (5.5)):

∂z−1 � x, z−1�−∂x.

The second structure connection has a complex parameter σ ; we will see that the two

small quantum D-modules correspond to different values of σ .

Theorem 1.3 (see Theorems 5.16 and 5.19 for more precise statements). Suppose that

the anticanonical class −KX of X is nef. Let n be the dimension of X:

(1) There exist maps πeu, πloc : H2(X)× Cx→ H2(X) and isomorphisms of vector

bundles with connections:

ψeu : (F̌ , ∇̌( n+1
2 ))|H2(X)×Cx −→ π∗euSQDM(e,K−1

X )(X)|z=1

ψloc : (F̌ , ∇̌(− n+1
2 ))|H2(X)×Cx −→ π∗locSQDM(KX)|z=1

which are defined in a neighbourhood of the large radius limit point and for

sufficiently large |x|.
(2) The duality pairing SQS between π∗euSQDM(e,K−1

X )(X) and π∗locSQDM(KX) is

identified with the second metric ǧ : (O(F̌ ), ∇̌( n+1
2 ))× (O(F̌ ), ∇̌(− n+1

2 ))→O given

by

ǧ(γ1, γ2)=
∫

X
γ1 ∪ (c1(X) •τ −x)−1γ2

over H2(X)× Cx. �

Combined with the commutative diagram (1.2), this theorem gives an entirely

algebraic description of the ambient part quantum D-module of a Calabi–Yau
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Quantum Serre Theorem as a Duality Between Quantum D-Modules 5

hypersurface Z in a Fano manifold X (Corollary 5.20). We will also describe the A-model

Hodge filtration for these small quantum D-modules in terms of the second structure

connection in Section 5.8. These results are illustrated for a quintic threefold in P4 in

Section 6. Note that the second structure connection is closely related to the almost dual

Frobenius manifold of Dubrovin (see [9, Proposition 3.3]) and our result may be viewed

as a generalization of the example in [9, Section 5.4].

This paper arose out of our previous works [18, 28] on quantum D-modules of

(toric) complete intersections. The embedding of QDMamb(Z) into QDM(E∨) appeared in

[18, Remark 6.14] in the case where X is a weak Fano toric orbifold and E∨ = KX; in

[28, Theorem 1.1], QDMamb(Z) was presented as the quotient QDM(e,E)(X) by Ker(e(E)∪)
when E is a direct sum of ample line bundles. We would also like to draw attention to a

recent work of Borisov and Horja [1] on the duality of better behaved Gelfand Kapranov

Zelevinsky systems. The conjectural duality in their work should correspond to a certain

form of quantum Serre duality generalized to toric Deligne–Mumford stacks.

We assume that the reader is familiar with Givental’s formalism and quantum

cohomology Frobenius manifold. As preliminary reading for the reader, we list [4, 13; 27,

Chapter I,II].

Notation 1.4. We use the following notation throughout the paper.

X a smooth projective variety of complex dimension n.

E a vector bundle over X of rank r with E∨ the dual vector bundle.

(T0, . . . , Ts) an homogeneous basis of H ev(X)=⊕n
p=0 H2p(X,C) such that T0 = 1

and {T1, . . . , Tr} form a nef integral basis of H2(X).

(t0, . . . , ts) the linear coordinates dual to the basis (T0, . . . , Ts); we write

τ :=∑s
α=0 tαTα and ∂α := (∂/∂tα).

(T0, . . . , Ts) the Poincaré dual basis such that
∫

X Tα ∪ Tβ = δβα .
Eff(X) the set of classes in H2(X,Z) represented by effective curves.

γ (d) the pairing
∫

d γ between γ ∈ H2(X) and d∈ H2(X).

eλ the equivariant Euler class.

e the non-equivariant Euler class. �

2 Quantum Serre Theorem as a Duality

In this section, we reformulate quantum Serre theorem of Coates and Givental [4] as a

duality of quantum D-modules. After reviewing twisted Gromov–Witten invariants and

twisted quantum D-modules, we give our reformulation in Theorem 2.11.
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6 H. Iritani et al.

2.1 Notation

We introduce the notation we use throughout the paper. Let {T0, . . . , Ts} be a homo-

geneous basis of the cohomology group H ev(X)=⊕n
p=0 H2p(X;C) of even degree. We

assume T0 = 1 and T1, . . . , Tr form a nef integral basis of H2(X) for r = dim H2(X)≤ s.

Let {t0, . . . , ts} denote the linear co-ordinates on H ev(X) dual to the basis {T0, . . . , Ts} and

write τ =∑s
α=0 tαTα for a general point of H ev(X). We write ∂α = ∂/∂tα for the partial

derivative.

Let Eff(X) denote the set of classes of effective curves in H2(X;Z). Let K be a

commutative ring. For d∈Eff(X), we write Qd for the corresponding element in the group

ring K[Q] := K[Eff(X)]. The variable Q is called the Novikov variable. We write K[[Q]] for

the natural completion of K[Q]. For an infinite set s= {s0, s1, s2, . . .} of variables, we define

the formal power series ring

K[[s]]= K[[s0, s1, s2, . . .]]

to be the (maximal) completion of K[s0, s1, s2, . . .] with respect to the additive valuation v

defined by v(sk)= k+ 1. We write

C[[Q, τ ]], C[[Q, s, τ ]], and C[z][[Q, s, τ ]]

for the completions of C[[Q]][t0, . . . , ts], C[[Q]][t0, . . . , ts, s0, s1, s2, . . .], and C[z][[Q]][t0, . . . ,

ts, s0, s1, s2, . . .], respectively. We write τ2 =
∑r

i=1 tiTi for the H2(X)-component of τ and

set τ = τ2 + τ ′. Because of the divisor equation in Gromov–Witten theory, the Novikov

variable Q and τ2 often appear in the combination (Q eτ2)d= Qd et1T1(d)+···+tr Tr(d). Therefore

we can also work with the subring

C[[Q eτ2, τ ′]]=C[[Q eτ2 ]][[t0, tr+1, . . . , ts]]⊂C[[Q, τ ]].

The subrings C[[Q eτ2, s, τ ′]]⊂C[[Q, s, τ ]], C[z][[Q eτ2, s, τ ′]]⊂C[z][[Q, s, τ ]] are defined

similarly.

2.2 Twisted quantum D-modules

Coates and Givental [4] introduced Gromov–Witten invariants twisted by a vector bundle

and a multiplicative characteristic class. We consider the quantum D-module defined by

genus-zero twisted Gromov–Witten invariants.
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Quantum Serre Theorem as a Duality Between Quantum D-Modules 7

2.2.1 Twisted Gromov–Witten invariants and twisted quantum product

Let X be a smooth projective variety and let E be a vector bundle on X. Denote by

Eff(X) the subset of H2(X,Z) of classes of effective curves. For d∈Eff(X) and g, � ∈N,

we denote by M̄g,�(X,d) the moduli space of genus g stable maps to X of degree d and

with � marked points. Recall that M̄g,�(X,d) is a proper Deligne–Mumford stack and

is equipped with a virtual fundamental class [M̄g,�(X,d)]vir in H2D(M̄g,�(X,d),Q) with

D = (1− g)(dim X − 3)+ (c1(X) · d)+ �. In this paper, we only consider the genus-zero

moduli spaces. The universal curve of M̄0,�(X,d) is M̄0,�+1(X,d):

M̄0,�+1(X,d)

π

��

ev�+1

�� X

M̄0,�(X,d)

where π is the map that forgets the (�+ 1)th marked point and stabilizes, and ev�+1 is

the evaluation map at the (�+ 1)th marked point.

The vector bundle E defines a K-class E0,�,d := π!e∗�+1 E ∈ K0(M̄0,�(X,d)) on the

moduli space, where π! denotes the K-theoretic push-forward. The restriction to a point

( f : C → X) ∈ M̄0,�(X,d) gives

E0,�,d |( f :C→X)= [H0(C , f∗E)]− [H1(C , f∗E)].

For i ∈ {1, . . . , �}, let Li denote the universal cotangent line bundle on M̄0,�(X,d)

at the ith marking. The fibre of Li at a point (C , x1, . . . , x�, f : C → X) is the cotangent

space T∗xi
C at xi. Put ψi := c1(Li) in H2(M̄0,�(X,d),Q).

The universal invertible multiplicative characteristic class c(·) is given by:

c(·)= exp

( ∞∑
k=0

skchk(·)
)

with infinitely many parameters s0, s1, s2, . . .. In the discussion of Coates–Givental’s

quantum Serre theorem, we treat s0, s1, s2, . . . as formal infinitesimal parameters. On

the other hand, the result we obtain later sometimes makes sense for non-zero val-

ues of the parameters. For example, we will use the equivariant Euler class for c(·) in

Section 3.
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8 H. Iritani et al.

The genus-zero (c, E)-twisted Gromov–Witten invariants are defined by the fol-

lowing formula. For any γ1, . . . , γ� ∈ H ev(X) and any k1, . . . ,k� ∈N, we put:

〈γ1ψ
k1 , . . . , γ�ψ

k�〉(c,E)0,�,d :=
∫

[M̄0,�(X,d)]vir

(
�∏

i=1

ψ
ki
i ev∗i γi

)
c(E0,�,d).

We also use the following notation:

〈〈γ1ψ
k1 , . . . , γ�ψ

k�〉〉(c,E)τ :=
∑

d∈Eff(X)

∑
k≥0

Qd

k!
〈γ1ψ

k1
1 , . . . , γ�ψ

k�
� , τ, . . . , τ 〉(c,E)0,�+k,d

The genus-zero twisted Gromov–Witten potential is

F0
(c,E)(τ )= 〈〈〉〉(c,E)τ =

∑
d∈Eff(X)

∑
k≥0

Qd

k!
〈τ, . . . , τ 〉(c,E)0,k,d .

The genus-zero-twisted potential F0
(c,E)(τ ) lies in C[[Q, s, τ ]]. By the divisor equation, we

see that it lies in the subring C[[Q eτ2, s, τ ′]]. Introduce the symmetric bilinear pairing

(·, ·)(c,E) on H ev(X)⊗ C[[s]] by

(γ1, γ2)(c,E) =
∫

X
γ1 ∪ γ2 ∪ c(E).

The (c, E)-twisted quantum product •(c,E)τ is defined by the formula:

(Tα •(c,E)τ Tβ, Tγ )(c,E) = ∂α∂β∂γF0
(c,E)(τ ). (2.1)

The structure constants lie in C[[Q eτ2, s, τ ′]]⊂C[[Q, s, τ ]]. The product is extended bilin-

early over C[[Q, s, τ ]] and defines the (c, E)-twisted quantum cohomology (H ev(X)⊗
C[[Q, s, τ ]], •(c,E)τ ). It is associative and commutative, and has T0 = 1 as the identity.

2.2.2 Twisted quantum D-module and fundamental solution

Definition 2.1. The (c, E)-twisted quantum D-module is a triple

QDM(c,E)(X)= (H ev(X)⊗ C[z][[Q, s, τ ]],∇(c,E), S(c,E))

where ∇(c,E) is the connection defined by

∇(c,E)α : H ev(X)⊗ C[z][[Q, s, τ ]]→ z−1 H ev(X)⊗ C[z][[Q, s, τ ]]

∇(c,E)α = ∂α + 1

z
(Tα•(c,E)τ ), α = 0, . . . , s,
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Quantum Serre Theorem as a Duality Between Quantum D-Modules 9

and S(c,E) is the “z-sesquilinear” pairing on H ev(X)⊗ C[z][[Q, s, τ ]] defined by

S(c,E)(u, v)= (u(−z), v(z))(c,E)

for u, v ∈ H ev(X)⊗ C[z][[Q, s, τ ]]. The connection ∇(c,E) is called the quantum connection.

When c= 1 and E = 0, the triple

QDM(X)= (H ev(X)⊗ C[z][[Q, τ ]],∇ =∇(c=1,E=0), S= S(c=1,E=0))

is called the quantum D-module of X. �

Remark 2.2. The module H ev(X)⊗ C[z][[Q, s, τ ]] should be viewed as the module of sec-

tions of a vector bundle over the formal neighbourhood of the point Q= s= τ = z= 0.

Since the connection ∇(c,E) does not preserve H ev(X)⊗ C[z][[Q, s, τ ]], quantum D-module

is not a D-module in the traditional sense. It can be regarded as a lattice in the D-module

H ev(X)⊗ C[z±][[Q, s, τ ]] (see, e.g. [34, p. 18]). �

Remark 2.3. As discussed, structure constants of the quantum product belong to the

subring C[[Q eτ2, s, τ ′]]. Therefore, the twisted quantum D-modules can be defined over

C[z][[Q eτ2, s, τ ′]]. This will be important when we specialize Q to one in Section 3. �

Remark 2.4. For c= 1 and E = 0, we can complete the quantum connection ∇ in the

z-direction as a flat connection. We define

∇z∂z = z∂z− 1

z
(E•τ )+ deg

2

where E=∑s
α=0(1− 1

2 deg Tα)tαTα + c1(T X) is the Euler vector field. �

The quantum connection ∇(c,E) is known to be flat and admit a fundamental solu-

tion. The fundamental solution of the following form was introduced by Givental [11,

Corollary 6.2]. We define L(c,E)(τ, z) ∈End(H ev(X))⊗ C[z−1][[Q, s, τ ]] by the formula:

L(c,E)(τ, z)γ = γ −
s∑

α=0

〈〈
γ

z+ ψ , Tα
〉〉(c,E)
τ

Tα

c(E)

where γ /(z+ ψ) in the correlator should be expanded in the geometric series∑∞
n=0 γψ

n(−z)−n−1.

Proposition 2.5 (see, e.g. [18, Proposition 2.1; 33, Section 2]).
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10 H. Iritani et al.

The quantum connection ∇(c,E) is flat and L(c,E)(τ, z) gives the fundamental solu-

tion for ∇(c,E). Namely we have

∇(c,E)α (L(c,E)(τ, z)γ )= 0, α= 0, . . . , s

for all γ ∈ H ev(X). Moreover, S(c,E) is flat for ∇(c,E) and L(c,E)(τ, z) is an isometry for S(c,E):

dS(c,E)(u, v)= S(c,E)(∇(c,E)u, v)+ S(c,E)(u,∇(c,E)v)

S(c,E)(u, v)= S(c,E)(L(c,E)u, L(c,E)v)

where u, v ∈ H ev(X)⊗ C[z][[Q, s, τ ]]. �

From the last point of Proposition 2.5, one can deduce that the inverse of L(c,E)

is given by the adjoint of L(c,E)(τ,−z). Explicitly,

L(c,E)(τ, z)
−1γ = γ +

s∑
α=0

〈〈
Tα

z− ψ , γ
〉〉(c,E)
τ

Tα
c(E)

. (2.2)

Definition 2.6. The (c, E)-twisted J-function is defined to be

J(c,E)(τ, z) := zL(c,E)(τ, z)
−11

= z+ τ +
s∑

α=0

〈〈
Tα

z− ψ
〉〉(c,E)
τ

Tα

c(E)
(2.3)

�

We deduce the following equality for α = 0, . . . , s:

L(c,E)(τ, z)
−1Tα = L(c,E)(τ, z)

−1z∇(c,E)α 1= ∂α J(c,E)(τ, z). (2.4)

Remark 2.7. When c= 1 and E = 0, we can complete the quantum connection ∇ in the

z-direction as in Remark 2.4. The fundamental solution for flat sections, including in the

z-direction, is given by L(τ, z)z−deg /2zc1(T X); see [18, Proposition 3.5]. �

Remark 2.8. The divisor equation for descendant invariants shows that

L(c,E)(τ, z)γ = e−τ2/zγ +
∑

(d,�) �=(0,0)
d∈Eff(X),�≥0

Qd eτ2(d)

�!

〈
e−τ2/zγ

−z− ψ , τ
′, . . . , τ ′, Tα

〉(c,E)
0,�+2,d

Tα

c(E)
. (2.5)

See, for example, [18, Section 2.5]. In particular, L(c,E) belongs to End(H ev(X))⊗
C[z−1][[Q eτ2, s, τ ′]][τ2]. �
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Quantum Serre Theorem as a Duality Between Quantum D-Modules 11

2.3 Quantum Serre theorem in terms of quantum D-modules

We formally associate to c(·) another multiplicative class c∗(·) by the formula:

c∗(·)= exp

(∑
k≥0

(−1)k+1skchk(·)
)
. (2.6)

The class c∗ corresponds to the choice of parameters s∗ = (s∗0, s∗1, s∗2, . . .) with

s∗k = (−1)k+1sk. For any vector bundle G, we have

c∗(G∨)c(G)= 1.

Definition 2.9. Define the map f : H ev(X)→ H ev(X) by the formula:

f(τ )=
s∑

α=0

〈〈Tα, c∗(E∨)〉〉(c,E)τ Tα. (2.7)

More precisely, the formula defines a morphism f : SpfC[[Q, s, τ ]]→ SpfC[[Q, s, τ ]] of for-

mal schemes. �

Definition 2.10. The quantum Serre pairing SQS is the z-sesquilinear pairing on

H ev(X)⊗ C[z][[Q, s, τ ]] defined by:

SQS(u, v)=
∫

X
u(−z) ∪ v(z)

for u, v ∈ H ev(X)⊗ C[z][[Q, s, τ ]]. �

Theorem 2.11. (1) The twisted quantum D-modules QDM(c,E)(X) and f∗QDM(c∗,E∨)(X)

are dual to each other with respect to SQS, that is,

∂αSQS(u, v)= SQS(∇(c,E)α u, v)+ SQS(u, ( f∗∇(c∗,E∨))αv) (2.8)

for u, v ∈ H ev(X)⊗ C[z][[Q, s, τ ]].

(2) The isomorphism of vector bundles

c(E) : QDM(c,E)(X)→ f∗QDM(c∗,E∨)(X)

α �→ c(E) ∪ α

intertwines the connections ∇(c,E), f∗∇(c∗,E∨) and the pairings S(c,E), f∗S(c∗,E∨).
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12 H. Iritani et al.

(3) The fundamental solutions satisfy the following properties:

c(E)L(c,E)(τ, z)= L(c∗,E∨)( f(τ ), z)c(E),

SQS(u, v)= SQS(L(c,E)u, ( f∗L(c∗,E∨))v). �

We will give a proof of this theorem in Section 2.5.

Remark 2.12. (1) The pull back f∗∇(c∗,E∨) is defined to be

( f∗∇(c∗,E∨))α = ∂α + 1

z

s∑
β=0

∂ fβ(τ )

∂tα
(Tβ•(c

∗,E∨)
f(τ ) ).

where we set f(τ )=∑s
α=0 fα(τ )Tα. The flatness (2.8) of SQS implies a certain complicated

relationship between the quantum products •(c,E)τ , •(c∗,E∨)f(τ ) .

(2) The map c(E) in the above theorem is obtained as the composition of the

quantum Serre duality and the self-duality:

(−)∗( f∗QDM(c∗,E∨)(X))∨

S(c∗ ,E∨)

∼= ����������������

QDM(c,E)(X)

SQS

∼=

��������������� c(E)
�� f∗QDM(c∗,E∨)(X)

where (−)∗ means the pull back by the change z �→−z of sign and (· · · )∨ means the dual

as C[z][[Q, s, τ ]]-modules. Therefore, part (1) of the theorem is equivalent to part (2). �

2.4 Quantum Serre theorem of Coates–Givental

Coates and Givental [4] stated quantum Serre theorem as an equality of Lagrangian

cones. We review the language of Lagrangian cones and explain quantum Serre theorem.

2.4.1 Givental’s symplectic vector space

Givental’s symplectic vector space for the (c, E)-twisted Gromov–Witten theory is an

infinite dimensional C[[Q, s]]-module:

H= H ev(X)⊗ C[z, z−1][[Q, s]]

equipped with the anti-symmetric pairing

Ω(c,E)( f, g)=Resz=0( f(−z), g(z))(c,E)dz.
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Quantum Serre Theorem as a Duality Between Quantum D-Modules 13

The space H has a standard polarization

H=H+ ⊕H−

where H± are Ω(c,E)-isotropic subspaces:

H+ = H ev(X)⊗ C[z][[Q, s]]

H− = z−1 H ev(X)⊗ C[z−1][[Q, s]].

This polarization identifies H with the total space of the cotangent bundle T∗H+. A gen-

eral element on H can be written in the form (note that the dual basis of {Tα}sα=0 with

respect to the pairing (·, ·)(c,E) is {c(E)−1Tα}sα=0):

∞∑
k=0

s∑
α=0

qαk Tαzk +
∞∑

k=0

s∑
α=0

pk,αc(E)−1Tα 1

(−z)k+1

with pk,α,qαk ∈C[[Q, s]]. The coefficients pk,α,qαk here give Darboux co-ordinates on H in

the sense that Ω(c,E) =
∑

k,α dpk,α ∧ dqαk .

2.4.2 Twisted Lagrangian cones

The genus-zero gravitational descendant Gromov–Witten potential is a function on the

formal neighbourhood of −z1 in H+ defined by the formula:

F0,grav
(c,E) (−z+ t(z))= 〈〈〉〉(c,E)t(ψ) =

∑
d∈Eff(X)

∞∑
k=0

Qd

k!
〈t(ψ1), . . . , t(ψk)〉0,k,d

where t(z)=∑∞
k=0 tkzk with tk=

∑s
α=0 tαk Tα is a formal variable in H+. The variables {tαk }

are related to the variables {qαk } by tαk = qαk + δk,1δα,0.

Definition 2.13. The (c, E)-twisted Lagrangian cone L(c,E) ⊂H is the graph of the differ-

ential dF0,grav
(c,E) : H+→ T∗H+ ∼=H. In terms of the Darboux co-ordinates above, L(c,E) is cut

out by the equations

pk,α =
∂F0,grav

(c,E)

∂qαk
.

In other words, it consists of points of the form:

− z+ t(z)+
s∑

α=0

〈〈
Tα

−z− ψ
〉〉(c,E)

t(ψ)

Tα
c(E)

(2.9)

with t(z) ∈H+. �
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14 H. Iritani et al.

Givental [13] showed that the submanifold L(c,E) is in fact a cone (with vertex

at the origin of H). Moreover, he showed the following geometric property of L(c,E). For

every tangent space T of L(c,E) (T is a linear subspace of H),

• zT = T ∩ L(c,E);
• the tangent space of L(c,E) at any point in zT ⊂L(c,E) is T .

Note that the twisted J-function (2.3) is a family of elements lying on L(c,E):

J(c,E)(τ,−z)=−z+ τ +
s∑

α=0

〈〈
Tα

−z− ψ
〉〉(c,E)
τ

Tα

c(E)

obtained from (2.9) by setting t(z)= τ .

Remark 2.14. In [3, Appendix B], L(c,E) is defined as a formal scheme over C[[Q, s]]. For a

complete Hausdorff topological C[[Q, s]]-algebra R, we have the notion of R-valued points

on L(c,E). An R-valued point on L(c,E) is a point of the form (2.9) with tαk ∈ R such that

tαk are topologically nilpotent, that is, limn→∞(tαk )
n= 0. A C[[Q, s]]-valued point is given

by tαk ∈C[[Q, s]] with tαk |Q=s=0 = 0. The J-function is a C[[Q, s, τ ]]-valued point on L(c,E). In

what follows we mean by a point (2.9) on L(c,E) a C[[Q, s]]-valued point, but the discussion

applies to a general R-valued point. �

2.4.3 Tangent space to the twisted Lagrangian cone

Let g= g(t) denote the point on L(c,E) given in Equation (2.9). Differentiating g(t) in tαk ,

we obtain the following tangent vector:

∂g(t)

∂tαk
= Tαzk +

s∑
β=0

〈〈
Tαψ

k,
Tβ

−z− ψ
〉〉(c,E)

t(ψ)

Tβ
c(E)

in TgL(c,E). (2.10)

The tangent space TgL(c,E) is spanned by these vectors. Since TgL(c,E) is complementary

to H−, TgL(c,E) intersects with 1+H− at a unique point. The intersection point is the one

(2.10) with k= α= 0:

(1+H−) ∩ TgL(c,E) =
{
∂g(t)

∂t0
0

= 1− τ̃ (t)

z
+ O(z−2)

}

where

τ̃ (t)=
s∑

α=0

〈〈1, Tα〉〉(c,E)t(z)

Tα

c(E)
. (2.11)

Givental [13] observed that each tangent space to the cone is uniquely parametrized

by the value τ̃ (t), that is, the tangent spaces at g(t1) and g(t2) are equal if and only
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Quantum Serre Theorem as a Duality Between Quantum D-Modules 15

if τ̃ (t1)= τ̃ (t2). The string equation shows that τ̃ (t)= τ when t(z)= τ . Hence Tg(t)L(c,E)
equals the tangent space at g(τ̃ (t))= J(c,E)(τ̃ (t),−z).

Proposition 2.15 ([13], see also [3, Proposition B.4]).

Let g= g(t) denote the point of L(c,E) given in Equation (2.9). The tangent space

TgL(c,E) is a free C[z][[Q, s]]-module generated by the derivatives of the twisted J-function:

∂ J(c,E)
∂tα

(τ,−z)

∣∣∣∣
τ=τ̃ (t)

. �

Proof. As discussed, TgL(c,E) equals the tangent space of L(c,E) at J(τ,−z) with τ = τ̃ (t).
On the other hand, the tangent space at J(c,E)(τ,−z) is freely generated by the derivatives

∂α J(c,E)(τ,−z) [3, Lemma B.5], and the result follows. �

2.4.4 Relations between Lagrangian cones and QDM(c,E)(X)

Proposition 2.15 means that the quantum D-module can be identified with the family of

tangent spaces to the Lagrangian cone L(c,E) at the J-function J(c,E)(τ,−z).

(−)∗QDM(c,E)(X)τ ∼= TJ(c,E)(τ,−z)L(c,E)

Tα �→ ∂α J(c,E)(τ,−z)= L(c,E)(τ,−z)−1Tα

where (−)∗ denotes the pull back by the sign change z �→−z and we used (2.4). This

identification preserves the pairing S(c,E) and intertwines the quantum connection ∇ on

QDM(c,E)(X) with the trivial differential d on H: this follows from the properties of L(c,E)

in Proposition 2.5.

2.4.5 Quantum Serre theorem of Coates–Givental

Theorem 2.16 (Coates–Givental [4, Corollary 9]). The multiplication by c(E) defines a

symplectomorphism c(E) : (H,Ωc(E))→ (H,Ωc∗(E∨)) and identifies the twisted Lagrangian

cones:

c(E)L(c,E) =L(c∗,E∨). �

For any γ =∑s
α=0 γ

αTα ∈ H ev(X), we write ∂γ :=∑s
α=0 γ

α∂α for the directional

derivative.
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16 H. Iritani et al.

Corollary 2.17. Let Tτ denote the tangent space of L(c,E) at J(c,E)(τ,−z) and let T∗τ denote

the tangent space of L(c∗,E∨) at J(c∗,E∨)(τ,−z). Then we have the following equations:

(1) c(E)Tτ = T∗f(τ ), where f was defined in (2.7);

(2) c(E)∂α J(c,E)(τ,−z)= (∂c(E)∪Tα J(c∗,E∨))(τ ∗,−z)|τ ∗= f(τ ) for α = 0,1, . . . , s. �

Remark 2.18. Exchanging the twist (c, E) with (c∗, E∨) in the above Corollary, we obtain

c∗(E∨)z∂c(E)J(c∗,E∨)(τ, z)= J(c,E)( f̃(τ ), z)

where f̃(τ )=∑s
α=0〈〈Tα, c(E)〉〉(c

∗,E∨)
τ Tα. This is exactly [4, Corollary 10]. �

Proof of Corollary 2.17. (1) Theorem 2.16 implies that c(E)Tτ is a tangent space to the

cone L(c∗,E∨). Therefore, by the discussion in the previous section Section 2.4.3, c(E)Tτ

equals T∗σ with σ given by the intersection point:

(1+H−) ∩ c(E)Tτ =
{

1− σ

z
+ O(z−2)

}
. (2.12)

Note that

∂c∗(E∨)J(c,E)(τ,−z)= c∗(E∨)− 1

z

s∑
α=0

〈〈Tα, c∗(E∨)〉〉τ Tα
c(E)

+ O(z−2)

lies in Tτ . Multiplying this by c(E), we obtain the intersection point in (2.12) and we have

σ = f(τ ) as required (recall that c(E)c∗(E∨)= 1).

(2) By part (1), the vector c(E)∂α J(c,E)(τ,−z) belongs to the tangent space T∗f(τ ) of

L(c∗,E∨). It has the following asymptotics:

c(E)∂α J(c,E)(τ,−z)= c(E) ∪ Tα + O(z−1).

By the description of tangent spaces in Section 2.4.3, a tangent vector in T∗f(τ ) with this

asymptotics is unique and is given by (∂c(E)∪Tα J(c∗,E∨))(τ ∗,−z) with τ ∗ = f(τ ). �

2.5 A proof of Theorem 2.11

We use the correspondence in Section 2.4.4 between quantum D-module and tan-

gent spaces to the Givental cone. Then Corollary 2.17 implies that the map

c(E) : QDM(c,E)(X)→ f∗QDM(c∗,E∨)(X) respects the quantum connection. Also it is

obvious that the map c(E) intertwines the pairings S(c,E) and f∗S(c∗,E∨). This shows part
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Quantum Serre Theorem as a Duality Between Quantum D-Modules 17

(2) of the theorem. Also part (2) of Corollary 2.17 implies, in view of (2.4)

c(E)L(c,E)(τ,−z)−1Tα = L(c∗,E∨)( f(τ ),−z)−1(c(E) ∪ Tα)

for α= 0,1, . . . , s. This implies the first equation of part (3). To see the second equation

of part (3), we calculate:

SQS(u, v)= S(c,E)(u, c(E)−1v)= S(c,E)(L(c,E)u, L(c,E)e(E)−1v)

= S(c,E)(L(c,E)u, c(E)
−1( f∗L(c∗,E∨))v)= SQS(L(c,E), ( f∗L(c∗,E∨))v)

where we used Proposition 2.5. Part (1) of the theorem is equivalent to part (2), as

explained in Remark 2.12.

3 Quantum Serre Duality for Euler-Twisted Theory

In this section we apply Theorem 2.11 to the equivariant Euler class eλ and a convex

vector bundle E . By taking the non-equivariant limit, we obtain a relationship among the

quantum D-module twisted by the Euler class and the bundle E , the quantum D-module

of the total space of E∨, and the quantum D-module of a submanifold Z ⊂ X cut out by

a regular section of E .

To ensure the well-defined non-equivariant limit, we assume that our vector

bundle E → X is convex, that is, for every genus-zero stable map f : C → X we have

H1(C , f∗E)= 0. The convexity assumption is satisfied, for example, if O(E) is generated

by global sections.

3.1 Equivariant Euler class

In this section, we take c to be the C×-equivariant Euler class eλ. Given a vector bundle

G, we let C× act on G by scaling the fibres and trivially on X. With respect to this

C×-action we have

eλ(G)=
rkG∑
i=0

λr−ici(G)

where λ is the C×-equivariant parameter: the C×-equivariant cohomology of a point is

H∗
C×(pt)=C[λ]. Choosing eλ means the following specialization:

sk :=

⎧⎪⎨
⎪⎩

log λ if k= 0

(−1)k−1(k− 1)!λ−k if k> 0
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18 H. Iritani et al.

Although the parameters sk contain log λ and negative powers of λ, we will see that the

(eλ, E)-twisted theory and (e−1
λ , E∨)-twisted theory are defined over the polynomial ring

in λ, and hence admit the non-equivariant limit λ→ 0. Here the convexity of E plays a

role.

3.2 Specialization of the Novikov variable

We henceforth specialize the Novikov variable Q to one. By Remark 2.3, the specializa-

tion Q= 1 is well defined: one has

Tα •(c,E)τ Tβ |Q=1 ∈ H ev(X)⊗ C[[eτ2, s, τ ′]]

L(c,E)(τ, z)|Q=1 ∈End(H ev(X))⊗ C[z−1][[eτ2, s, τ ′]][τ2]

f(τ )|Q=1 ∈ H ev(X)⊗ C[[eτ2, s, τ ′]] see (2.7)

where C[[eτ2 , s, τ ′]] is the completion of C[et1
, . . . , ets

, t0, tr+1, . . . , ts, s0, s1, s2, . . .]. Since we

chose T1, . . . , Tr to be a nef integral basis of H2(X,Z), we have only nonnegative inte-

gral powers of et1
, . . . , etr

in the structure constants of quantum cohomology. The Euler-

twisted quantum D-module will be defined over C[z][[eτ2, τ ′]]. In what follows, we shall

omit (· · · )|Q=1 from the notation.

3.3 Non-Equivariant limit of QDM(eλ,E)(X)

Let e= limλ→0 eλ denote the non-equivariant Euler class. We first discuss the non-

equivariant limit of QDM(eλ,E)(X). Recall the K-class E0,�,d on the moduli space

M̄0,�(X,d) introduced in Section 2.2.1. The convexity assumption for E implies that

E0,�,d is represented by a vector bundle. Moreover, the natural evaluation morphism

E0,�,d→ ev∗j E at the jth marking is surjective for all j ∈ {1, . . . , �}. Define E0,�,d( j) by the

exact sequence:

0 �� E0,�,d( j) �� E0,�,d �� ev∗j E �� 0 . (3.1)

We use the following variant of (eλ, E)-twisted invariants (see [33]). For any γ1, . . . ,

γ� ∈ H ev(X) and any k1, . . . ,k� ∈N, we put:

〈γ1ψ
k1
1 , . . . ,

˜
γ jψ

kj

j , . . . , γ�ψ
k�
� 〉(eλ,E)0,�,d :=

∫
[M̄0,�(X,d)]vir

(
�∏

i=1

ψ
ki
i ev∗i γi

)
eλ(E0,�,d( j)).

This lies in the polynomial ring C[λ].
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Quantum Serre Theorem as a Duality Between Quantum D-Modules 19

Lemma 3.1 ([33]). Suppose that E is convex. The (eλ, E)-twisted quantum product

Tα •(eλ,E)τ Tβ lies in H ev(X)⊗ C[λ][[eτ2, τ ′]] and admits the non-equivariant limit Tα •(e,E)τ

Tβ := limλ→0(Tα •(eλ,E)τ Tβ). �

Proof. Recall that the twisted quantum product (2.1) is given by:

γ1 •(eλ,E)τ γ2 =
s∑

α=0

〈〈
γ1, γ2,

Tα
eλ(E)

〉〉(eλ,E)
τ

Tα.

From the exact sequence (3.1), we deduce that

eλ(E0,�,d)

ev∗3eλ(E)
= eλ(E0,�,d(3)).

Therefore, we have

γ1 •(eλ,E)τ γ2 =
s∑

α=0

〈〈γ1, γ2, T̃α〉〉(eλ,E)τ Tα

and this lies in H ev(X)⊗ C[λ][[eτ2, τ ′]]. �

Lemma 3.2. Suppose that E is convex. For (c, E)= (eλ, E), the map f(τ ) in (2.7) lies in

H ev(X)⊗ C[λ][[eτ2, τ ′]] and admits the non-equivariant limit f̄(τ ) := limλ→0 f(τ ). �

Proof. Note that c∗(E∨)= e∗λ(E
∨) in (2.7) equals eλ(E)−1. Arguing as in Lemma 3.1, we

have

f(τ )=
s∑

α=0

〈〈Tα, 1̃〉〉(eλ,E)τ Tα.

The conclusion follows. �

By Lemma 3.1, we deduce that the non-equivariant limit ∇(e,E) = limλ→0 ∇(eλ,E) of

the quantum connection exists. Moreover, it can be completed in the z-direction in a flat

connection:

∇(e,E)z∂z
= z∂z− 1

z
(E(e,E)•(e,E)τ )+ deg

2

where E(e,E) is the Euler vector field:

E(e,E) =
s∑

α=0

(
1− deg Tα

2

)
tαTα + c1(T X)− c1(E). (3.2)

The non-equivariant limit S(e,E)(u, v) := ∫
X u(−z) ∪ v(z) ∪ e(E) of the pairing S(eλ,E)

becomes degenerate. The pairing S(e,E) is not flat in the z-direction, but satisfies the
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20 H. Iritani et al.

following equation:

z∂zS(e,E)(u, v)− S(e,E)(∇(e,E)z∂z
u, v)− S(e,E)(u,∇(e,E)z∂z

v)=−(dim X − rkE)S(e,E)(u, v).

We refer to this by saying that S(e,E) is of weight −(dim X − rkE). Note that zdim X−rkE S(e,E)

is flat in both τ and z.

Definition 3.3 (cf. Definition 2.1). We call the triple

QDM(e,E)(X) := (H ev(X)⊗ C[z][[eτ2, τ ′]],∇(e,E), S(e,E))

the (e, E)-twisted quantum D-module. �

Remark 3.4. By a similar argument, the fundamental solution L(eλ,E) in Proposition 2.5

can be written as:

L(eλ,E)(τ, z)γ = γ −
s∑

α=0

〈〈
γ

z+ ψ , T̃α
〉〉(eλ,E)
τ

Tα

and therefore admits the non-equivariant limit L(e,E). The fundamental solution for

∇(e,E), including in the z-direction, is given by L(e,E)(τ, z)z−
deg
2 zc1(T X)−c1(E). All the prop-

erties of Proposition 2.5 are true for the limit (see [28, Section 2] for a more precise

statement). �

3.4 Quantum D-module of a section of E

In this section, we describe a relationship between the (e, E)-twisted quantum

D-module and the quantum D-module of a submanifold Z ⊂ X cut out by a regular

section of E .

Let ι : Z → X denote the natural inclusion. The functoriality of virtual classes

[20]

[M̄0,�(X,d)]
vir ∩ e(E0,�,d)=

∑
ι∗(d′)=d

ι∗[M̄0,�(Z ,d
′)]vir

together with the argument in [18, Corollary 2.5; 33] shows that

ι∗(γ1 •(e,E)τ γ2)= (ι∗γ1) •Z
ι∗τ (ι

∗γ2) (3.3)

for γ1, γ2 ∈ H ev(X). Define the ambient part of the cohomology of Z by

H∗
amb(Z)= Im(ι : H∗(X)→ H∗(Z)). Equation (3.3) shows that the ambient part H∗

amb(Z) is

closed under the quantum product •Z
τ of Z as long as τ lies in the ambient part.
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Quantum Serre Theorem as a Duality Between Quantum D-Modules 21

Definition 3.5. The ambient part quantum D-module of Z is a triple

QDMamb(Z) := (H ev
amb(Z)⊗ C[z][[eτ2, τ ′]],∇ Z , SZ )

where the parameter τ = τ2 + τ ′ is restricted to lie in the ambient part H ev
amb(Z) and

SZ (u, v)=
∫

Z u(−z) ∪ v(z). We complete the quantum connection ∇ Z in the z-direction as

in Remark 2.4; then SZ is of weight (−dim Z). �

Equation (3.3) proves the following proposition.

Proposition 3.6. The restriction map ι∗ : H ev(X)→ H ev
amb(Z) induces a morphism between

the quantum D-modules

ι∗ : QDM(e,E)(X)→ (ι∗)∗QDMamb(Z)

which is compatible with the connection and the pairing. �

3.5 Quantum D-module of the total space of E∨

We explain that the non-equivariant limit of the (e−1
λ , E∨)-twisted quantum D-module is

identified with the quantum D-module of the total space of E∨.

The (e−1
λ , E∨)-twisted Gromov–Witten invariants admit a non-equivariant limit

under the concavity (a bundle E∨ is said to be concave if for every non-constant genus-

zero stable map f : C → X, one has H0(C , f∗E∨)= 0) assumption for E∨ and they are

called local Gromov–Witten invariants [2, 11, 12]. In this paper, we only impose the

weaker assumption that E is convex (see Remark 3.9). In this case, a non-equivariant

limit of (e−1
λ , E∨)-twisted invariants may not exist, but a non-equivariant limit of the

twisted quantum product is still well-defined.

The virtual localization formula [14] gives the following proposition.

Proposition 3.7. For γ1, . . . , γ� ∈ H ev(X) and non-negative integers k1, . . . ,k�, we have

〈γ1ψ
k1 , . . . , γ�ψ

k�〉(e−1
λ ,E∨)

0,�,d = 〈γ1ψ
k1 , . . . , γ�ψ

k�〉E∨,C×0,�,d

where the right-hand side is the C×-equivariant Gromov–Witten invariant of E∨ with

respect to the C×-action on E∨ scaling the fibres. �

The non-equivariant Gromov–Witten invariants for E∨ are ill-defined in general

because the moduli space M̄0,�(E∨,d) can be non-compact. The following lemma, how-

ever, shows the existence of the non-equivariant quantum product of E∨.
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Lemma 3.8. Let E be a vector bundle on X such that f∗E is generated by global sections

for any stable maps f : C → X of genus g. Then the evaluation map evi : M̄g,�(E∨,d)→ E∨

is proper for all i ∈ {1, . . . , �}. In particular, when E is convex, evi : M̄0,�(E∨,d)→ E∨ is

proper. �

Proof. The convexity of E implies that, for any map u: P1 → X, u∗E is isomorphic to⊕r
i=1 O(ki) with ki ≥ 0. Thus the latter statement follows from the former.

Let us prove the former statement. We start with the remark that, for every stable

map f : C → X, the evaluation map evi : H0(C , f∗E∨)→ E∨f(xi)
at the ith marking xi ∈ C is

injective. Suppose that a section s ∈ H0(C , f∗E∨) vanishes at xi, that is, evi(s)= 0. For

every u∈ H0(C , f∗E), the pairing 〈s,u〉 is a global section of OC which vanishes at xi.

Then 〈s,u〉 must be identically zero on C . Since f∗E is generated by global sections, this

implies that s= 0. Hence we have shown that the evaluation map H0(C , f∗E∨)→ E∨f(xi)
is

injective.

Giving a stable map to E∨ is equivalent to giving a stable map f : C → X

and a section of H0(C , f∗E∨). Therefore, by the preceding remark, the moduli functor

M̄g,�(E∨,d) is a subfunctor of M̄g,�(X,d)× E∨ via the natural projection M̄g,�(E∨,d)→
M̄g,�(X,d) and the evaluation map evi : M̄g,�(E∨,d)→ E∨. Since M̄g,�(X,d) is proper, it

suffices to show that the map M̄g,�(E∨,d)→ M̄g,�(X,d)× E∨ is proper. We use the valu-

ative criterion for properness (see [6, Theorem 4.19]). Let R be a DVR. Suppose that we

are given a stable map f : C R→ X over Spec(R) and an R-valued point v ∈ E∨(R). These

data ( f, v) give a map Spec(R)→ M̄g,�(X,d)× E∨. Suppose moreover that there exists a

section s ∈ H0(C K , f∗E∨) over the field K of fractions of R such that evi(s)= v in E∨(K),

where C K = C R×Spec(R) Spec(K). Then ( f, s) defines a map Spec(K)→ M̄g,�(E∨,d) such

that the following diagram commutes:

M̄g,�(E∨,d) �� M̄g,�(X,d)× E∨

Spec(K) ��

( f,s)

��

Spec(R).

( f,v)

����� � � � � �

We will show that there exists a morphism Spec(R)→ M̄g,�(E∨,d) which commutes with

the maps in the above diagram. Since M̄g,�(E∨,d) is a subfunctor of M̄g,�(X,d)× E∨,

it suffices to show the existence of a morphism Spec(R)→ M̄g,�(E∨,d) which makes the

upper-right triangle commutative, that is, v is the image of a section in H0(C R, f∗E∨). Let

π : C R→ Spec(R) denote the structure map and xi : Spec(R)→ C R denote the ith marking.
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Note that the composition Spec(R)
v−→ E∨ → X coincides with f ◦ xi, since the two maps

coincide when we compose them with Spec(K)→ Spec(R) (by the existence of s) and by

the separatedness of X. Thus v defines a section of x∗i f∗E∨, which we denote again by

v. We need to show that v is in the image of R0π∗ f∗E∨ → x∗i f∗E∨. Let p∈ Spec(R) denote

the unique closed point and let k(p) be the residue field at p. We claim that the maps

R0π∗ f∗E∨
⊗

R k(p)→ H0(C p, f∗E∨), H0(C p, f∗E∨)→ (x∗i f∗E∨)
⊗

R k(p) are injective. The

injectivity of the latter map has been shown. To see the injectivity of the former, we take

the so-called Grothendieck complex [31, Section 5, p. 46]: a complex G0 →G1 of finitely

generated free R-modules such that the sequences

0 −−−−→ R0π∗ f∗E∨ −−−−→ G0 d0−−−−→ G1

0 −−−−→ H0(C p, f∗E∨) −−−−→ G0⊗
R k(p) −−−−→ G1⊗

R k(p)

are exact. Since R is a PID, the image of d0 is a free R-module. Therefore

TorR
1 (Imd0,k(p))= 0 and we obtain the exact sequence:

0 −−−−→ (R0π∗ f∗E∨)
⊗

R k(p) −−−−→ G0⊗
R k(p) −−−−→ (Imd0)

⊗
R k(p) −−−−→ 0.

Now the claim follows. The claim implies that R0π∗ f∗E∨ → x∗i f∗E∨ is injective at the

fibre of p. Then it follows that the cokernel M of R0π∗ f∗E∨ → x∗i f∗E∨ is a free R-module.

In fact, let N be the image of R0π∗ f∗E∨ → x∗i f∗E∨; then the inclusion N ⊂ x∗i f∗E∨ induces

an injection N
⊗

R k(p)→ (x∗i f∗E∨)
⊗

R k(p). Because x∗i f∗E∨ is a free R-module, we have

the exact sequence

0 �� TorR
1 (M, k(p))

�� N
⊗

R k(p) �� x∗i f∗E∨
⊗

R k(p) �� M
⊗

R k(p) �� 0.

Therefore, TorR
1 (M,k(p))= 0; thus M is free. We know by assumption that the image of v

in M
⊗

R K vanishes. Thus v has to vanish in M. The conclusion follows. �

Remark 3.9. The concavity of E∨ implies the convexity of E . This can be proved as

follows. For a stable map f : C → X of genus zero, we have H1(C , f∗E)= H0(C , f∗E∨ ⊗
ωC )

∨ by Serre duality, where ωC is the dualizing sheaf on C . Suppose that E∨ is concave.

Since the degree of ωC on a tail component of C is negative, a section of f∗E∨ ⊗ ωC has

to vanish on tail components and defines a section of f∗E∨ ⊗ ωC ′ where C ′ is obtained

from C by removing all its tail components. By induction on the number of components,

we can see that a section of f∗E∨ ⊗ ωC vanishes and H0(C , f∗E∨ ⊗ ωC )= 0. �
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24 H. Iritani et al.

By the above lemma, we can define the quantum product of E∨ using the push-

forward along the evaluation map ev3:

Tα •E∨
τ Tβ =

∑
d∈Eff(E∨)

∞∑
�=0

1

�!
ev3∗

⎛
⎝ev∗1(Tα)ev∗2(Tβ)

�+3∏
j=4

ev∗j(τ ) ∩ [M̄0,3+�(E∨,d)]vir

⎞
⎠ . (3.4)

The quantum product •E∨
τ defines a flat quantum connection ∇E∨ as in Definition 2.1.

Definition 3.10. The (non-equivariant) quantum D-module of E∨ is a pair

QDM(E∨)= (H ev(X)⊗ C[z][[eτ2, τ ′]],∇E∨)

where the connection ∇E∨ is completed in the z-direction as in Remark 2.4:

∇E∨
z∂z
= z∂z− 1

z
(EE∨•τ )+ deg

2

where EE∨ :=∑s
α=0(1− 1

2 deg Tα)tαTα + c1(T X)− c1(E) is the Euler vector field (note that

this is the same as E(e,E) in (3.2)). Here the standard identification H ev(E∨)∼= H ev(X) is

understood. �

We conclude the following proposition.

Proposition 3.11. Suppose that E is convex. Define the map h: H ev(X)→ H ev(X) by

h(τ )= τ + π√−1c1(E) (3.5)

Then we have

(1) The non-equivariant limit of ∇(e−1
λ ,E∨) exists and coincides with ∇E∨ .

(2) The non-equivariant limit of ∇(e∗λ,E∨) exists and coincides with h∗∇E∨ . �

Proof. Part (1) follows from Proposition 3.7 and the existence of the non-equivariant

quantum product for E∨. To see part (2), notice a small difference between e∗λ and e−1
λ :

for a vector bundle G we have

e∗λ(G)=
1

eλ(G∨)
= (−1)rkG 1

e−λ(G)
.
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Since the virtual rank of (E∨)0,�,d equals rkE + c1(E)(d), we have

∞∑
n=0

1

n!
〈Tα, Tβ, Tγ , τ, . . . , τ 〉(e

∗
λ,E

∨)
0,n+3,d

Tγ

e∗λ(E∨)

=
∞∑

n=0

1

n!
(−1)rkE+c1(E)(d)〈Tα, Tβ, Tγ , τ, . . . , τ 〉(e

−1
−λ,E

∨)
0,n+3,d

Tγ

e∗λ(E∨)

=
∞∑

n=0

1

n!
〈Tα, Tβ, Tγ ,h(τ ), . . . ,h(τ )〉(e

−1
−λ,E

∨)
0,n+3,d e−λ(E∨)Tγ

where we used the divisor equation in the second line. This implies that the (e∗λ, E∨)-

twisted quantum product is the pull-back of the (e−1
−λ, E∨)-twisted quantum product by

h. The conclusion follows by taking the non-equivariant limit λ→ 0. �

Remark 3.12. The pairing S(e∗λ,E∨) does not have a non-equivariant limit. �

Remark 3.13. We can define the fundamental solution for the quantum connection of

E∨ using the push-forward along an evaluation map similarly to (3.4). Therefore, the

fundamental solution L(e−1
λ ,E∨) admits a non-equivariant limit L E∨ . Using the formula

(2.5) and an argument similar to Proposition 3.11, we find that

L(e−1
−λ,E∨)

(h(τ ), z)= L(e∗λ,E∨)(τ, z) ◦ e−π
√−1c1(E)/z

and thus

L E∨(h(τ ), z)= lim
λ→0

L(e∗λ,E∨)(τ, z) ◦ e−π
√−1c1(E)/z. (3.6)

Then L E∨(τ, z)z−
deg
2 zc1(T X)−c1(E) is a fundamental solution of ∇E∨ including in the

z-direction. �

3.6 Non-equivariant limit of quantum Serre duality

We will state a non-equivariant limit of Theorem 2.11 when c is eλ and E is a convex

vector bundle. From Sections 3.3 and 3.5, the quantum D-modules QDM(eλ,E)(X) and

QDM(e∗λ,E∨)(X) have non-equivariant limits, and the limits are, respectively, QDM(e,E)(X)

and h∗QDM(E∨). The map f in (2.7) also admits a non-equivariant limit by Lemma 3.2.

The quantum Serre pairing in Definition 2.10 has an obvious non-equivariant limit:

SQS : QDM(e,E)(X)× (h ◦ f̄)∗QDM(E∨)→C[z][[eτ2, τ ′]]

defined by SQS(u, v)= ∫
X u(−z) ∪ v(z).
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Theorem 3.14. Let E be a convex vector bundle on X. Let h be the map in (3.5) and let f̄

be the map in Lemma 3.2.

(1) The pairing SQS is flat in the τ -direction and is of weight (−dim X).

(2) The map e(E)∪ : QDM(e,E)(X)→ (h ◦ f̄)∗QDM(E∨), α �→ e(E) ∪ α respects the

quantum connection in the τ -direction and is of weight rkE , that is,

∇′αe(E)= e(E)∇α

∇′z∂z
e(E)= e(E)∇z∂z + rk(E)e(E)

for ∇′ = (h ◦ f̄)∗∇E∨ and ∇ =∇(e,E).
(3) The fundamental solutions in Remarks 3.4, 3.13 satisfy the following rela-

tions:

e(E) ◦ L(e,E)(τ, z)= L E∨(h ◦ f̄(τ ), z) eπ
√−1c1(E)/z ◦ e(E)

(γ1, e
−π√−1c1(E)/zγ2)= (L(e,E)(τ,−z)γ1, L E∨(h( f̄(τ )), z)γ2).

where (u, v)= ∫
X u∪ v is the Poincaré pairing. �

Proof of Theorem 3.14. Almost all the statements follow by taking the non-equivariant

limit of Theorem 2.11. Note that part (3) follows from Theorem 2.11 (3), Remarks 3.4,

3.13, and Equation (3.6). What remains to show is the statement about weights of SQS

and e(E). Regarding E(e,E), EE∨ (see (3.2)) as vector fields on H ev(X), we can check that

(h ◦ f̄)∗E(e,E) =EE∨ . Therefore,

gr :=∇(e,E)z∂z
+∇(e,E)

E(e,E) = z∂z+ E(e,E) + deg

2
= ((h ◦ f̄)∗∇E∨)z∂z + ((h ◦ f̄)∗∇E∨)E(e,E) .

On the other hand, we can check that

(z∂z+ E(e,E))SQS(u, v)− SQS(gru, v)− SQS(u,grv)=−(dim X)SQS(u, v).

The flatness of SQS in the E(e,E)-direction shows that SQS is of weight −dim X. The dis-

cussion for e(E) is similar. �

Let Z ⊂ X be the zero-locus of a transverse section of E and let ι : Z → X be the

inclusion map. We consider the following conditions for Z .
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Lemma 3.15. The following conditions are equivalent:

(1) the Poincaré pairing on H ev
amb(Z)= Im(ι∗ : H ev(X)→ H ev(Z)) is non-

degenerate;

(2) we have the decomposition H ev(Z)=Kerι∗ ⊕ Imι∗;

(3) ι∗ induces an isomorphism H ev(X)/Ker(e(E)∪)∼= H ev
amb(Z). �

Proof. (1)⇒ (2): it suffices to see that Kerι∗ ∩ Imι∗ = {0}. Suppose that α ∈Kerι∗ ∩ Imι∗.

Then for every ι∗β ∈ H ev
amb(Z) we have (ι∗β, α)= (β, ι∗α)= 0. By assumption we have α= 0.

(2)⇒ (3): we have ι∗α = 0 if and only if ι∗ι∗α= e(E) ∪ α = 0. Therefore, Ker(ι∗)=Ker(e(E)∪)
and part (3) follows. (3)⇒ (1): since (ι∗α, ι∗β)= (α, ι∗ι∗β)= (α, e(E) ∪ β), the kernel of the

Poincaré pairing on H ev
amb(Z) is ι∗(Ker(e(E)∪)), which is zero. �

Remark 3.16. The conditions in Lemma 3.15 hold if E is the direct sum of ample line

bundles by the Hard Lefschetz theorem. They also hold if X is a toric variety and Z is

a regular hypersurface with respect to a semiample line bundle E on X by a result of

Mavlyutov [29]. �

Corollary 3.17. Suppose that E is a convex vector bundle on X and Z ⊂ X be the zero-

set of a regular section of E satisfying one of the conditions in Lemma 3.15. Then

the morphism e(E)∪ : QDM(e,E)(X)→ (h ◦ f̄)∗QDM(E∨) in Theorem 3.14 factors through

QDMamb(Z) as:

QDM(e,E)(X)

ι∗ ��
��

e(E)∪
�� (h ◦ f̄)∗QDM(E∨)

(ι∗)∗QDMamb(Z)

� � ι∗

���������������

In particular, ι∗ : (ι∗)∗QDMamb(Z)→ (h ◦ f̄)∗QDM(E∨) respects the quantum connection in

the τ -direction and is of weight rkE . �

Proof. We already showed that ι∗ is a morphism of flat connections in Proposition 3.6.

It suffices to invoke the factorization of the linear map e(E)∪:

H ev(X)

ι∗ ��
��

e(E)∪
�� H ev(X)

H ev
amb(Z)

∼= H ev(X)/Ker(e(E)∪)
� �

ι∗
�����������������

(3.7)

�
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Remark 3.18. Recall that for a general non-compact space, the Poincaré duality pairs

the cohomology with the cohomology with compact support. This analogy leads us

to think of QDM(e,E)(X) as the quantum D-module with compact support of the total

space E∨. �

Remark 3.19. It would be interesting to study if ι∗ always defines a morphism of quan-

tum D-modules without assuming the conditions in Lemma 3.15. �

4 Quantum Serre Duality and Integral Structures

In this section, we study a relation between quantum Serre duality for the Euler-twisted

theory and the Γ̂ -integral structure studied in [17–19, 28]. The Γ̂ -integral structure is a

lattice in the space of flat sections for the quantum connection, which is isomorphic to

the Grothendieck group K(X) of vector bundles on X. After introducing a similar integral

structure in the Euler-twisted theory, we see that the quantum Serre pairing is identi-

fied with the Euler pairing on K-groups, and that the morphisms of flat connections

in Corollary 3.17 are induced by natural maps between K-groups. In this section, the

Novikov variable Q is specialized to one (see Section 3.2).

Recall 4.1. Recall the classical self-intersection formula in K-theory. Let j : X ↪→Y be a

closed embedding with normal bundle N between quasi-compact and quasi-separated

schemes. In Theorem 3.1 of [36], Thomason proves that we have for any [V ] ∈ K(X)

j∗ j∗[V ]= [λ−1N∨] · [V ] (4.1)

where

[λ−1N∨] :=
∑
k≥0

(−1)k[∧kN∨] ∈ K(X). �

Definition 4.2. For a vector bundle G with Chern roots δ1, . . . , δr, we define the Γ̂ -class

to be

Γ̂ (G)=
r∏

i=1

Γ (1+ δi).

We also define a (2π
√−1)-modified Chern character by

Ch(G)= (2π√−1)
deg
2 ch(G)=

r∑
i=1

e2π
√−1δi . �

Suppose that E is a convex vector bundle on X. Let Z ⊂ X be a submanifold cut

out by a transverse section s of E . For the (twisted) quantum connection ∇, we write
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Ker∇ for the space of flat sections:

Ker∇(e,E) = {s ∈ H ev(X)⊗ C[z±][[eτ2, τ ′]][log z] :∇(e,E)s= 0},

Ker∇ Z = {s ∈ H ev
amb(Z)⊗ C[z±][[eτ2, τ ′]][log z] :∇ Z s= 0},

Ker∇E∨ = {s ∈ H ev(X)⊗ C[z±][[eτ2, τ ′]][log z] :∇E∨s= 0}.

Definition 4.3. The K-group framing is a map from a K-group to the space of flat sec-

tions defined as follows:

(1) for the twist (e, E), the K-group framing Z (e,E) : K(X)→Ker∇(e,E) is:

Z (e,E)(V)= 1

(2π
√−1)dim X−rkE

L(e,E)(τ, z)z
− deg

2 zc1(T X)−c1(E) Γ̂ (T X)

Γ̂ (E)
Ch(V);

(2) for a smooth section Z ⊂ X of E , the K-group framing

Zamb : Kamb(Z)→Ker∇ Z is:

Zamb(V)= 1

(2π
√−1)dim Z

L Z (τ, z)z−
deg
2 zc1(T Z)Γ̂ (T Z)Ch(V);

(3) for the total space E∨, the K-group framing Z E∨ : K(X)→Ker∇E∨ is:

Z E∨(V)= 1

(2π
√−1)dim E∨

L E∨(τ, z)z−
deg
2 zc1(T X)−c1(E)Γ̂ (T E∨)Ch(V).

where Kamb(Z)= Im(ι∗ : K(X)→ K(Z)) and L Z , L E∨ are the fundamental solutions for Z

and E∨, respectively. Recall from Remarks 2.7, 3.4, and 3.13 that these formula define a

section which is flat in both τ and z. �

Proposition 4.4. For any vector bundles V,W on X, we have

χ(V ⊗W∨)= (−2π
√−1z)dim X SQS(Z (e,E)(V)(τ, eπ

√−1z), Z E∨(W)(h ◦ f̄(τ ), z))

where χ(V ⊗W∨)=∑dim X
i=0 (−1)i dim Exti(W,V) is the holomorphic Euler

characteristic. �

Proof. This is analogous to [17, Proposition 2.10]. Since the pairing zdim X SQS is flat, the

right-hand side is constant with respect to τ and z. Evaluating the right-hand side at
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z= 1, we obtain

1

(−2π
√−1)dim X

(
L(e,E)(τ,−1) e−π

√−1 deg
2 eπ

√−1(c1(T X)−c1(E))γ1, L E∨(h ◦ f̄(τ ),1)γ2

)

with γ1 = Γ̂ (T X)
Γ̂ (E)

Ch(V), γ2 = Γ̂ (T X)Γ̂ (E∨)Ch(W), where (·, ·) is the Poincaré pairing on X.

By Theorem 3.14(3), we find that this equals

1

(−2π
√−1)dim X

(
e−π

√−1 deg
2 eπ

√−1(c1(T X)−c1(E))γ1, e
−π√−1c1(E)γ2

)
.

Since the adjoint of deg
2 is dim X − deg

2 , this is

1

(2π
√−1)dim X

(
eπ
√−1c1(T X)γ1, e

π
√−1 deg

2 γ2

)
.

Using the following identities:

eπ
√−1 deg

2 Γ (1+ δ)= Γ (1− δ) and eπ
√−1 deg

2 ch(W)= ch(W∨)

(2π
√−1)−dim X

∫
X
γ =

∫
X
(2π

√−1)−
deg

2 γ

(2π
√−1)−

deg
2 Γ (1+ δ)= (2π√−1)

deg
2 Γ

(
1+ δ

2
√−1π

)

with δ a degree-two cohomology class, we deduce that the right-hand side of the propo-

sition is ∫
X

ch(V ⊗W∨)eρ/2
n∏

i=1

Γ

(
1+ ρi

2
√−1π

)
Γ

(
1− ρi

2
√−1π

)

where ρ1, . . . , ρn are the Chern roots of T X and ρ = c1(T X)= ρ1 + · · · + ρn. Finally, we use

Γ (x)Γ (1− x)= π/ sin(πx) to get

eρ/2
n∏

i=1

Γ

(
1+ ρi

2
√−1π

)
Γ

(
1− ρi

2
√−1π

)
=Td(T X). (4.2)

We conclude the proposition by the theorem of Hirzebruch–Riemann–Roch. �

The following proposition shows that the integral structures are compatible

with the diagram in Corollary 3.17.

Proposition 4.5. Let E be a convex vector bundle and Z ⊂ X be a submanifold cut out by

a regular section of E . Let ι : Z ↪→ X, j : X ↪→ E∨ denote the natural inclusions. Assume
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that Z satisfies one of the conditions in Lemma 3.15. Then the diagram in Corollary 3.17

can be extended to the following commutative diagram

K(X)

ι∗

		

Z (e,E)



����������

j∗ j∗
�� K(X)

Z E∨

������������

Ker∇(e,E)

ι∗

��

c(z)e(E)∪
�� Ker( f̄ ◦ h)∗∇E∨

Ker(ι∗)∗∇amb

� � c(z)ι∗

�����������������

Kamb(Z)

Zamb

��

(−1)rkE det(E)⊗ι∗

��

where c(z)= 1/(−2π
√−1z)rkE . �

Proof. We first prove that the top square is commutative. Recall the following equation

from part (3) of Theorem 3.14:

e(E)L(e,E)(τ, z)= L E∨(h ◦ f̄(τ ), z) eπ
√−1c1(E)/ze(E).

So it remains to prove that for any V ∈ K(X), we have

(−2π
√−1)rkEeπ

√−1c1(E)e(E)Γ̂ (T X)Γ̂ (E)−1Ch(V)= Γ̂ (T X)Γ̂ (E∨)Ch( j∗ j∗V)

This follows from (4.2) applied to the vector bundle E and from

ch j∗ j∗V = e(E∨)Td(E∨)−1ch(V), see (4.1).

The commutativity of the left square follows from the properties of the Γ̂ -class and the

following facts (see [18, Proposition 2.4] for the second property):

0 �� T Z �� ι∗T X �� ι∗E �� 0 is exact;

L Z (ι∗τ, z)ι∗γ = ι∗(L(e,E)(τ, z)γ ) ∀γ ∈ H ev(X).

The identity j∗ j∗ = (−1)rkE det(E)⊗ ι∗ι∗ implies that the right square is commutative. �
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5 Quantum Serre Duality and Abstract Fourier–Laplace Transform

In this section, we study quantum Serre duality with respect to the anticanonical line

bundle K−1
X . We consider the (e, K−1

X )-twisted quantum D-module of X and the quantum

D-module of the total space of KX. On the small quantum cohomology locus H2(X), we

identify these quantum D-modules with Dubrovin’s second structure connections with

different parameters σ . We show that the duality between them is given by the second

metric ǧ. Throughout the section, we assume that the anticanonical class −KX = c1(X)

of X is nef and the Novikov variable is specialized to one (Section 3.2). We also set

n:= dimC X and ρ := c1(X).

5.1 Convergence assumption

In this section, we assume certain analyticity of quantum cohomology of X. In Sec-

tions 5.2 and 5.3, we assume that the big quantum cohomology of X is convergent, that

is, the quantum product (with Novikov variables specialized to one; see Section 3.2)

Tα •τ Tγ ∈C[[eτ2 , τ ′]]=C[[et1
, . . . , etr

, t0, tr+1, . . . , ts]]

converges on a region U ⊂ H ev(X,C) of the form:

U = {τ ∈ H ev(X,C) : |eti |< ε (1≤ i ≤ r), |t j|< ε (r + 1≤ j ≤ s)}.

For the main results in this section, we only need the convergence of the small quan-

tum product. This means that the quantum product Tα •τ Tβ restricted to τ = τ2 to lie in

H2(X,C) converges on a region Usm ⊂ H2(X,C) of the form

Usm = {τ2 ∈ H2(X,C) : |eti |< ε (1≤ i ≤ r)}. (5.1)

When X is Fano, that is, if −KX is ample, the convergence of small quantum cohomology

is automatic because the structure constants are polynomials in et1
, . . . , etr

for degree

reason.

5.2 Quantum connection with parameter σ

We introduce a variant of the quantum connection parametrized by a complex number

σ . Consider the trivial vector bundle

F = H ev(X)× (U × Cz)
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Quantum Serre Theorem as a Duality Between Quantum D-Modules 33

over U × Cz, where U is the convergence domain of the big quantum product in

Section 5.1, and define a meromorphic flat connection ∇(σ ) of F by the formula (cf.

Definition 2.1 and Remark 2.4)

∇(σ )α = ∂α + 1

z
(Tα•τ )

∇(σ )z∂z
= z∂z− 1

z
(E•τ )+

(
μ− 1

2
− σ

)

where μ is an endomorphism of H ev(X) defined by

μ(Tα)=
(
|α| − n

2

)
Tα with |α| = 1

2
deg Tα, n= dimC X.

Let (−) : U × Cz→U × Cz denote the map sending (τ, z) to (τ,−z). We note the following

facts.

Proposition 5.1 ([15, Theorem 9.8(c)]). The OU×Cz-bilinear pairing

g : (−)∗(F,∇(σ ))× (F,∇(−1−σ))→OU×Cz

defined by g(Tα, Tβ)=
∫

X Tα ∪ Tβ is flat. �

Proposition 5.2 (see, e.g. [17, Proposition 2.4]). Let L(τ, z) be the fundamental solution

for the quantum connection of X from Proposition 2.5 (with c= 1, E = 0). We have that

L(τ, z)z−(μ−
1
2−σ)zc1(T X) is a fundamental solution of ∇(σ ) including in the z-direction. �

Remark 5.3. The variable z in this paper corresponds to z−1 in Hertling’s book [15,

Section 9.3]. For convenience of the reader, we made a precise link of notation with the

book of Hertling:

U =E•τ , D = 2− n, V =−μ− n

2
. (5.2)

�

Using the divisor equation, the inverse of the fundamental solution L(τ, z) for X

(see (2.2)) can be written in the form:

L(τ, z)−1Tα = eτ2/z

⎛
⎜⎜⎝Tα +

∑
(d,l)�=(0,0)
β∈{0,...,s}

〈
Tα, τ

′, . . . , τ ′,
Tβ

z− ψ
〉

0,l+2,d

eτ2(d) T
β

l!

⎞
⎟⎟⎠ (5.3)

Denote by K (σ )
α the αth column of the inverse fundamental solution matrix for ∇(σ ):

K (σ )
α (τ, z) := z−c1(T X)zμ−

1
2−σ L(τ, z)−1Tα.
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If we restrict τ to lie in H2(X), we have the following expression.

Lemma 5.4. For any α ∈ {0, . . . , s} and τ2 ∈ H2(X), we have

K (σ )
α (τ2, z)=

∑
d∈Eff(X)

Nα,d(1)
eτ2+τ2(d)

zρ+ρ(d)−|α|+
n+1

2 +σ

where ρ = c1(X) and

Nα,d(z) :=

⎧⎪⎪⎨
⎪⎪⎩
∑s

β=0

〈
Tα,

Tβ
z− ψ

〉
0,2,d

Tβ if d �= 0;

Tα if d= 0.

(5.4)

�

Proof. Restricting to H2(X) means setting τ ′ = 0 in (5.3). For d �= 0 ∈Eff(X), we have

Nα,d(z)=
s∑

β=0

〈
Tα,

Tβ
z− ψ

〉
0,2,d

Tβ =
∑
k≥0

s∑
β=0

〈Tα, ψkTβ〉0,2,d Tβ

zk+1
.

By the degree axiom for Gromov–Witten invariants, only the term with k=n− |β| −
|α| + ρ(d)− 1 contributes. Therefore, zμNα,d(z)= Nα,d(1)z−(ρ(d)+

n
2−|α|). Using the fact that

zμ ◦ eτ2/z= eτ2 ◦ zμ, we deduce the formula of the lemma. �

5.3 The second structure connection

We introduce the second structure connection [8, lecture 3; 9, Section 2.3; 15, Section 9.2;

27, II, Section 1]. Let x be the variable Laplace-dual to z−1 and let Cx denote the complex

plane with co-ordinate x. Consider the trivial vector bundle

F̌ = H ev(X)× (U × Cx)

over U × Cx. The second structure connection is a meromorphic flat connection on the

bundle F̌ defined by

∇̌(σ )α = ∂α +
(
μ− 1

2
− σ

)
((E•τ )− x)−1(Tα•τ )

∇̌(σ )∂x
= ∂x −

(
μ− 1

2
− σ

)
((E•τ )− x)−1.

(5.5)

The connection has a singularity along the divisor Σ ⊂U × C:

Σ := {(τ, x) ∈U × Cx | det((E•τ )− x)= 0}.
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Quantum Serre Theorem as a Duality Between Quantum D-Modules 35

The second structure connection has an invariant pairing called the second metric (or

the intersection form).

Proposition 5.5 ([15, Theorem 9.4.c]). The OU×Cx-bilinear pairing

ǧ : (F̌ , ∇̌(σ ))× (F̌ , ∇̌(−σ))→OU×Cx(Σ)

defined by ǧ(Tα, Tβ)=
∫

X Tα ∪ ((E•τ )− x)−1Tβ is flat. This is called the second metric. �

We now explain how the second structure connection ∇̌(σ ) arises from the

Fourier–Laplace transformation of the quantum connection ∇(σ−1) (see [7, 1.b; 34, V]).

Consider the module M= H ev(X)⊗OU [z] of sections of the trivial bundle F which are

polynomials in z. The quantum connection ∇(σ−1) equips M[z−1] with the structure of an

OU 〈∂α, z±, ∂z〉-module by the assignment:

∂z �→ ∇(σ−1)
∂z

, ∂α �→ ∇(σ−1)
α .

Consider the isomorphism of the rings of differential operators:

OU 〈∂α, z−1, ∂z−1〉 ∼=OU 〈∂α, x, ∂x〉

sending ∂z−1 =−z2∂z to x and z−1 to −∂x. Via this isomorphism, we may regard M[z−1]

as an OU [x]〈∂α, ∂x〉-module. This is called the abstract Fourier–Laplace transform. The

subset M⊂M[z−1] is closed under the action of x=−z2∂z, and thus becomes an OU [x]-

submodule of M[z−1]. Note that M[z−1] is generated by M over OU 〈x, ∂x〉 since z−1 =−∂x.

Regard Tα ∈ H ev(X) as an element of M. Under the abstract Fourier–Laplace transforma-

tion, we have

(∂xx) · Tα =∇(σ−1)
z∂z

Tα = ∂x · (E •τ Tα)+ (μ+ 1
2 − σ)Tα

∂β · Tα =∇(σ−1)
β Tα =−∂x · (Tβ •τ Tα)

Regarding (E•τ ), μ, (Tβ•τ ) as matrices written in the basis {Tα}, we obtain

[∂xT0, . . . , ∂xTs](x− E•τ )= [T0, . . . , Ts](μ− 1
2 − σ)

[∂βT0, . . . , ∂βTs]=−[∂xT0, . . . , ∂xTs](Tβ•τ )

Inverting (x− E•τ ) in the first equation, we obtain the connection matrices for the second

structure connection ∇̌(σ ). In other words, writing O(F̌ ) for the sheaf of holomorphic
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sections of F̌ which are polynomials in x, the natural OU [x]-module map

O(F̌ )→M, Tα �→ Tα (5.6)

intertwines the meromorphic connection ∇̌(σ ) on F̌ with the action of ∂x, ∂α on M after

inverting det(x− E•τ ) ∈OU [x]. On the other hand, {Tα} does not always give an OU [x]-

basis of M and the map (5.6) is not always an isomorphism. A sufficient condition for

the map (5.6) to be an isomorphism is given by a result of Sabbah [34].

Proposition 5.6 ([34, Proposition V.2.10]). Suppose that σ /∈−n−1
2 + Z≥0 with n= dimC X.

Then the second structure connection (F̌ , ∇̌(σ )) coincides with the abstract Fourier trans-

form of the quantum connection (F,∇(σ−1)), that is, the map (5.6) is an isomorphism. �

5.4 Fundamental solution for the second structure connection

We will henceforth restrict ourselves to the small quantum cohomology locus H2(X).

We find an inverse fundamental solution for the second structure connection using a

truncated Laplace transformation.

Definition 5.7. Consider a cohomology-valued power series of the form:

K(z)= z−γ
∑

k

akz−k

with ak ∈ H ev(X) and γ ∈ H ev(X), where z−γ = e−γ log z. We assume that the exponent k

ranges over a subset of C of the form {k0,k0 + 1,k0 + 2, . . .}. Let � be a complex number

such that

• �− k0 ∈Z and,

• 0 /∈ {k0 + 1,k0 + 2, . . . , �− 1} if k0 ≤ �− 2.

We define the truncated Laplace transform of K(z) to be

Lap(�)(K)(x) :=
∑

k

akx−γ−k−1Γ (γ + k+ 1)

Γ (γ + �)

where note that

Γ (γ + k+ 1)

Γ (γ + �) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(γ + �)(γ + �+ 1) · · · (γ + k) if k≥ �;

1 if k= �− 1;
1

(γ + k+ 1)(γ + k+ 2) · · · (γ + �− 1)
if k≤ �− 2,
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and the above condition for � ensures that we do not have the division by γ when k≤ �− 2

and that this expression is well defined. �

The truncated Laplace transformation satisfies the following property:

Lap(�)(z−1K)= (−∂x)Lap(�)(K)

Lap(�)(−z2∂zK)= Lap(�)(∂z−1 K)= xLap(�)(K) (5.7)

Remark 5.8. Suppose that K(z) is convergent for all z∈C×, �(k0) >−1 and that we have

an estimate |K(z)| ≤ C eM/z over the interval z∈ (0,1) for some C ,M> 0. Then we can

write the truncated Laplace transform as the actual Laplace transform:

Lap(�)(K)(x)= 1

Γ (γ + �)
∫∞

0
K(z) e−x/z d(z−1). �

Proposition 5.9. Let � be a complex number such that �≡ n−1
2 + σ mod Z. Assume that

we have either � /∈Z>0 or σ /∈ n−1
2 + Z≤0. Then

(1) The truncated Laplace transform

Ǩ (σ,�)
α (τ2, x) := Lap(�)(K (σ−1)

α (τ2, ·))

=
∑

d∈Eff(X)

Nα,d(1)
eτ2+τ2(d)

xρ+ρ(d)−|α|+
n+1

2 +σ
Γ (ρ + ρ(d)− |α| + n+1

2 + σ)
Γ (ρ + �) .

with τ2 ∈ H2(X) is well-defined. Here ρ = c1(X), |α| = 1
2 deg Tα and Nα,d(1) is

given in (5.4).

(2) Under the convergence assumption for the small quantum cohomology of X

(see Section 5.1), Ǩ (σ,�)
α (τ2, x) converges on a region of the form {(τ2, x) : τ2 ∈

Usm, |x|> c} where Usm is a region of the form (5.1) and c∈R>0.

(3) These Laplace transforms define a cohomology-valued solution to the second

structure connection ∇̌(σ ), that is, the multi-valued bundle map

Ǩ (σ,�) : (F̌ , ∇̌(σ ))−→ (F̌ ,d), Tα �−→ Ǩ (σ,�)
α

defined over {(τ, x) ∈Usm × C : |x|> c} intertwines ∇̌(σ ) with the trivial connec-

tion d. �

Proof. The well-definedness of the truncated Laplace transforms Lap(�)(K (σ−1)
α ) follows

easily from Lemma 5.4 by checking the conditions in Definition 5.7. The coefficients
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Nα,d(1) satisfy the following estimate [16, Lemma 4.1]:

|Nα,d(1)| ≤ C1C |d|+ρ(d)
2

1

ρ(d)!
(5.8)

for some constants C1,C2 > 0 independent of α and d, where | · | is a fixed norm on H ev(X)

and H2(X). The convergence of the series Ǩ (σ,�)
α follows from this.

Next we show that Ǩ (σ,�) gives a solution to the second structure connection.

Since K (σ−1)
α , α = 0, . . . , s are the columns of an inverse fundamental solution for ∇(σ−1),

they satisfy the same differential relations as Tα:

[z∂zK (σ−1)
0 , . . . , z∂zK (σ−1)

s ]= [K (σ−1)
0 , . . . , K (σ−1)

s ]
(
−1

z
(E•τ )+ μ+ 1

2
− σ

)

[∂βK (σ−1)
0 , . . . , ∂βK (σ−1)

s ]= [K (σ−1)
0 , . . . , K (σ−1)

s ]
1

z
(Tβ•τ )

where we regard (E•τ ), μ, (Tβ•τ ) as matrices written in the basis [T0, T1, . . . , Ts]. Applying

the truncated Laplace transformation Lap(�) to the above formulae and using (5.7), we

find the following equations:

[∂xxǨ (σ,�)
0 , . . . , ∂xxǨ (σ,�)

s ]= [∂xǨ (σ,�)
0 , . . . , ∂xǨ (σ,�)

s ](E•τ )+ [Ǩ (σ,�)
0 , . . . , Ǩ (σ,�)

s ](μ+ 1
2 − σ),

[∂β Ǩ (σ−1)
0 , . . . , ∂β Ǩ (σ−1)

s ]=−[∂xǨ (σ−1)
0 , . . . , ∂xǨ (σ−1)

s ](Tβ•τ ).

The first equation can be rewritten as

[∂xǨ (σ,�)
0 , . . . , ∂xǨ (σ,�)

s ]= [Ǩ (σ,�)
0 , . . . , Ǩ (σ,�)

s ](μ− 1
2 − σ)(x− E•τ )−1.

Together with the second equation, this implies that Ǩ (σ,�)
α , α = 0, . . . , s define a solution

to the second structure connection ∇̌(σ ). �

Remark 5.10. Note that the convergence region Usm in the above proposition depends

on c. The real positive number c can be chosen arbitrarily, but Usm becomes smaller if

we choose a smaller c. �

5.5 Small twisted quantum D-modules

In this section, we study the (e, K−1
X )-twisted quantum D-module QDM(e,K−1

X )(X) and the

quantum D-module QDM(KX) of the total space of KX over the small quantum cohomol-

ogy locus H2(X) using quantum Lefschetz theorem [4].

Since c1(X) is assumed to be nef, the anticanonical line bundle K−1
X is convex.

Therefore, by the results of Sections 3.3 and 3.5, the quantum D-modules QDM(e,K−1
X )(X)
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Quantum Serre Theorem as a Duality Between Quantum D-Modules 39

and QDM(KX) are well-defined. We shall see that, under the convergence assumption

for the small quantum cohomology in Section 5.1, the quantum connections for these

quantum D-modules are convergent on a region Usm ⊂ H2(X) of the form (5.1). Therefore,

we have the following small quantum D-modules:

SQDM(e,K−1
X )(X) := (H ev(X)⊗OUsm×Cz,∇eu, Seu)

SQDM(KX) := (H ev(X)⊗OUsm×Cz,∇loc)

(5.9)

where ∇eu =∇(e,K−1
X ) is the (e, K−1

X )-twisted quantum connection, Seu = S(e,K−1
X ) is the

(e, K−1
X )-twisted pairing Seu(u, v)=

∫
X u(−z) ∪ v(z) ∪ ρ, and ∇loc =∇KX is the quantum

connection of KX. The superscript “eu” means “Euler” and “loc” means “local”. We denote

the fundamental solutions (in Proposition 2.5) for these quantum D-modules by

Leu(τ, z)= L(e,K−1
X )(τ, z) (see Remark 3.4)

L loc(τ, z)= L KX (τ, z) (see Remark 3.13)

where the Novikov variable is set to be one. For a smooth anticanonical hypersur-

face Z ⊂ X, we can similarly consider the small ambient part quantum D-module of Z

(cf. Definition 3.5):

SQDMamb(Z) := (H ev
amb(Z)⊗OUsm×Cz,∇ Z , SZ ).

Definition 5.11. For α ∈ {0, . . . , s}, we put

I eu
α (τ2, z) := eτ2/z

∑
d∈Eff(X)

Nα,d(z) eτ2(d)
ρ(d)∏
k=1

(ρ + kz)

I loc
α (τ2, z) := eτ2/z

∑
d∈Eff(X)

Nα,d(z) eτ2(d)
ρ(d)−1∏

k=0

(−ρ − kz)

where recall that ρ = c1(X) and we set
∏ρ(d)

k=1 (ρ + kz)=∏ρ(d)−1
k=0 (−ρ − kz)= 1 for d= 0. We

call I eu
α the (e, K−1

X )-twisted I -function of X and I loc
α the I -function of KX. �

Remark 5.12. (1) The large radius limit is the limit:

�(τ2(d))→ 0 for ∀d∈Eff(X) \ {0}.
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With our choice of co-ordinates, the large radius limit corresponds to eti → 0 for 1≤ i ≤ r.

The I -function satisfies the asymptotics

I eu
α (τ2, z)∼lrl eτ2/zTα and I loc

α (τ2, z)∼lrl eτ2/zTα

under the large radius limit (the subscript “lrl” stands for the large radius limit). There-

fore, they are linearly independent in a neighbourhood of the large radius limit.

(2) Put ∂ρ :=∑s
β=0 ρβ∂β , where ρ = c1(T X)=∑s

β=0 ρβTβ . We have

e−
√−1πρ/zz∂ρ I loc

α (h(τ2), z)= ρ I eu
α (τ2, z) (5.10)

where h is the map in (3.5) with c1(E)= c1(K
−1
X )= ρ. �

Lemma 5.13. Suppose that the small quantum product of X is convergent as in

Section 5.1. There exists a region Usm ⊂ H2(X) of the form (5.1) such that the I -functions

I eu
α (τ2, z), I loc

α (τ2, z) are convergent and analytic on Usm × C×z . �

Proof. This follows easily from the estimate (5.8) and Nα,d(z)= z−(ρ(d)−|α|)z−
deg

2 Nα,d(1). �

For α = 0, the I -functions I eu
0 and I loc

0 have the following z−1-expansions:

I eu
0 (τ2, z)= F (τ2)1+ G(τ2)z

−1 + O(z−2),

I loc
0 (τ2, z)= 1+ H(τ2)z

−1 + O(z−2),

where F (τ2) is a scalar-valued function and G(τ2) and H(τ2) are H2(X)-valued functions.

We define the mirror maps by

meu(τ2) := G(τ2)

F (τ2)
, mloc(τ2) := H(τ2). (5.11)

Note that F (τ2) is invertible in a neighbourhood of the large radius limit point and the

mirror maps take values in H2(X). The mirror maps have the asymptotic m(τ2)∼lrl τ2

and thus induce isomorphisms between neighbourhoods of the large radius limit point.

Quantum Lefschetz Theorem of Coates and Givental [4] gives the following proposition:

Proposition 5.14. For any α ∈ {0, . . . , s}, there exist vα(τ2, z), wα(τ2, z) ∈ H ev(X)⊗ C[z][[eτ2 ]]

such that

I eu
α (τ2, z)= Leu(meu(τ2), z)

−1vα(τ2, z),

I loc
α (τ2, z)= L loc(mloc(τ2), z)

−1wα(τ2, z).
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Moreover, we have the asymptotics vα ∼lrl Tα, wα ∼lrl Tα under the large radius limit, and

vα, wα are homogeneous of degree 2|α| = deg Tα with respect to the usual grading on

H ev(X), deg z= 2 and deg eτ2 = 0. �

Proof. We will just prove the equality for the (e, K−1
X )-twisted theory. The same argu-

ment applies to the other case. Coates and Givental [4, Theorem 2, see also p. 27 and 34]

introduced the following “big” I -function:

I(τ, z) := z1+ τ +
s∑

β=0

∑
(d,�) �=(0,0),(0,1)

Qd

�!

〈
Tβ

z− ψ , τ, . . . , τ
〉

0,�+1,d

Tβ

ρ(d)∏
k=1

(ρ + λ+ kz)

and showed that I(τ,−z) lies in the Lagrangian cone L(eλ,K−1
X ) of the (eλ, K−1

X )-twisted

theory. This is related to our I -functions as

I eu
α (τ2, z)= ∂αI(τ, z)|τ=τ2,Q=1,λ=0. (5.12)

Note that ∂αI(τ2,−z) is a tangent vector to the cone L(eλ,K−1
X ) at I(τ2,−z). Moreover,

∂0I(τ2,−z) has the following expansion:

∂0I(τ2,−z)= F(τ2)− z−1G(τ2)+ O(z−2)

with F(τ2) ∈C[[Q, τ2]] and G(τ2) ∈ H ev(X)⊗ C[λ][[Q, τ2]]. Therefore, ∂0I(τ2,−z)/F(τ2) gives

the unique intersection point:

(1+H−) ∩ TI(τ2,−z)L(eλ,K−1
X ).

Set τ̃ =G(τ2)/F(τ2). The discussion in Section 2.4.3 shows that the tangent space at

I(τ2,−z) is generated by ∂α J(eλ,K−1
X )(τ̃ ,−z)= L(eλ,K−1

X )(τ̃ ,−z)−1Tα over C[z, λ][[Q, τ2]] (see (2.4)).

Therefore, there exists vα(τ2, z) ∈ H ev(X)⊗ C[z, λ][[Q, τ2]] such that

∂αI(τ2, z)= L(eλ,K−1
X )(τ̃ , z)

−1vα(τ2, z).

It is easy to check that τ̃ − τ2 and vα in fact belong to H ev(X)⊗ C[z, λ][[Q eτ2 ]]. Under

the non-equivariant limit λ→ 0 and the specialization Q= 1, τ̃ becomes meu(τ2). Set-

ting vα(τ2, z)= vα(τ2, z)|λ=0,Q=1 and using (5.12), we obtain the formula in the propo-

sition. The asymptotics of vα(τ2, z) follows from the asymptotics of I eu
α (τ2, z) in

Remark 5.12. The homogeneity of vα(τ2, z) follows from the homogeneity of I eu
α (τ2, z) and

Leu(τ2, z). �
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Lemma 5.15. Suppose that the small quantum cohomology of X is convergent as

in Section 5.1. The flat connections ∇eu, ∇loc for the small quantum D-modules

SQDM(e,K−1
X )(X), SQDM(KX) are convergent over a region Usm ⊂ H2(X) of the form (5.1).

Also the functions vα, wα in Proposition 5.14 are convergent over the same region. �

Proof. We only discuss the convergence of the (e, K−1
X )-twisted theory. The other case

is similar. From Lemma 5.13, it follows that the mirror map meu(τ2) is convergent on

a region of the form (5.1). Recall that Leu(τ2, z) is homogeneous of degree zero and

that Leu(τ2, z)= id+ O(z−1). Recall also that vα(τ2, z) is homogeneous of degree 2|α|
from Proposition 5.14. Therefore, Leu is lower-triangular and the matrix [v0, . . . , vs]

is upper-triangular with respect to the grading on H ev(X). Therefore, the matrix

equation ⎛
⎜⎜⎝
| | |

I eu
0 I eu

1 · · · I eu
s

| | |

⎞
⎟⎟⎠= Leu(meu(τ2), z)

−1

⎛
⎜⎜⎝
| | |
veu

0 veu
1 · · · veu

s

| | |

⎞
⎟⎟⎠

in Proposition 5.14 can be viewed as the LU decomposition. Therefore, we can solve for

L−1
eu and vα from [I eu

0 , . . . , I eu
s ] by simple linear algebra, and Lemma 5.13 implies that both

Leu(meu(τ2), z) and vα are convergent. The conclusion follows. �

The above lemma justifies the definition (5.9) at the beginning of Section 5.5.

5.6 Second structure connections are twisted quantum connections

We show that the small quantum D-modules SQDM(e,K−1
X )(X) and SQDM(KX) correspond

to the second structure connections ∇̌( n+1
2 ) and ∇̌(− n+1

2 ), respectively.

By the divisor equation, the quantum connections ∇eu, ∇loc are invariant under

the shift τ �→ τ + 2π
√−1v with v ∈ H2(X,Z). Therefore, the small quantum D-modules

descend to the quotient space

Usm/2π
√−1H2(X,Z)∼= {(q1, . . . ,qr) ∈ (C×)r : |qi|< ε}.

Since the I -functions I eu
0 , I loc

0 satisfy the equation I (τ2 + 2π
√−1v, z)= e2π

√−1v/zI (τ2), the

mirror maps m=meu or mloc satisfy m(τ2 + 2π
√−1v)=m(τ2)+ 2π

√−1v; therefore, the

mirror maps descend to isomorphisms

meu/loc : U ′
sm/2π

√−1H2(X,Z)
∼=−→U ′′

sm/2π
√−1H2(X,Z)
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between neighbourhoods U ′
sm, U ′′

sm of the form (5.1). Define the maps πeu, πloc by

πeu(τ2, x)=meu(τ2 − ρ log x),

πloc(τ2, x)=mloc(τ2 − ρ log x+ π√−1ρ).
(5.13)

Choosing smaller U ′
sm if necessary, each of πeu and πloc defines a map

U ′
sm × {x∈C× : |x|> c} −→U ′′

sm/2π
√−1H2(X,Z).

We need to choose sufficiently small large radius limit neighbourhoods of the form (5.1)

which may vary in each case: we denote by U ′
sm, U ′′

sm for such neighbourhoods.

Theorem 5.16. Suppose that the small quantum cohomology of X is convergent as in

Section 5.1. We have the following isomorphisms of vector bundles with connections:

ψeu : (F̌ , ∇̌( n+1
2 ))|U ′

sm×{|x|>c} ∼= π∗euSQDM(e,K−1
X )(X)|z=1

ψloc : (F̌ , ∇̌(− n+1
2 ))|U ′

sm×{|x|>c} ∼= π∗locSQDM(KX)|z=1

where, as discussed above, we regard SQDM(e,K−1
X )(X), SQDM(KX) as flat connections on

the quotient space U ′′
sm/2π

√−1H2(X,Z). These maps are given by the following formu-

lae:

ψeu(Tα)= ((−π∗eu∇eu)∂x)
n−|α|(x−1vα(τ2 − ρ log x,1)) (5.14)

ψloc((−∇̌(−
n+1

2 )

∂x
)|α|Tα)=wα(τ2 − ρ log x+ π√−1ρ,1) (5.15)

�

Proof. To show that ψeu/loc intertwines the connections, we compare the solution Ǩ (σ,�)

to the second structure connection from Proposition 5.9 with the inverse fundamental

solution L−1
eu/loc of the small quantum D-modules. More precisely, we check the commu-

tativity of a diagram of the form:

(F̌ , ∇̌(σ ))|Usm×{|x|>c}
ψ

��

Ǩ (σ,�) 													
π∗SQDM|z=1

(constant factor)·π∗L−1|z=1














(F̌ ,d)

for suitable �; we shall take �= 1 for σ = n+1
2 and �= 0 for σ =−n+1

2 .
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We define the O-module map ψeu by the formula (5.14) and show that it inter-

twines the connections. We have

Leu(πeu(τ2, x),1)−1((−π∗eu∇eu)
n−|α|
∂x

(x−1vα(τ2 − ρ log x,1)))

= (−∂x)
n−|α|Leu(meu(τ2 − ρ log x),1)−1(x−1vα(τ2 − ρ log x,1))

= (−∂x)
n−|α|x−1 I eu

α (τ2 − ρ log x,1) (by Proposition 5.14)

=
∑

d

Nα,d(1)
eτ2+τ2(d)

xρ+ρ(d)+n−|α|+1

ρ(d)+n−|α|∏
k=1

(ρ + k) (5.16)

∼lrl
Tα

xρ+n−|α|+1
(ρ + 1)(ρ + 2) · · · (ρ + n− |α|) ∈ H≥2|α|(X,C) (5.17)

From Proposition 5.9, we deduce that the expression in Formula (5.16) is exactly

Ǩ
( n+1

2 ,1)
α (τ2, x). This implies that the morphism ψeu is a morphism of vector bundles

with connection. The asymptotics (5.17) at the large radius limit shows that it is an

isomorphism.

Since {wα(τ2)} form a basis in a neighbourhood of the large radius limit, we can

define an O-module map ψ−1
loc such that the formula (5.15) holds. Note that ∇̌(σ )∂x

has no

singularities on U ′
sm × {|x|> c} if we take the neighbourhood U ′

sm sufficiently small. We

have

e−π
√−1ρL loc(πloc(τ2, x),1)−1wα(τ2 − ρ log x+√−1πρ,1)

= e−π
√−1ρ I loc

α (τ2 − ρ log x+√−1πρ,1) (by Proposition 5.14)

=
∑

d

Nα,d(1)
eτ2+τ2(d)

xρ+ρ(d)

ρ(d)−1∏
k=0

(ρ + k) (5.18)

∼lrl Tα eτ2 x−ρ. (5.19)

From Proposition 5.9, we deduce that the expression in Formula (5.18) is exactly

(−∂x)
|α| Ǩ(

− n+1
2 ,0)

α (τ2, x).

This implies that the morphism ψ−1
loc is a morphism of vector bundle with connection.

The asymptotics (5.19) at the large radius limit shows that it is an isomorphism. �

Remark 5.17. By construction in the proof, we have

ψeu = Leu(πeu(τ2, x),1) ◦ Ǩ ( n+1
2 ,1)
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ψloc = L loc(πloc(τ2, x),1) eπ
√−1ρ ◦ Ǩ (− n+1

2 ,0).

with Ǩ (σ,�) in Proposition 5.9. In particular, we have the following formula for ψloc(Tα):

ψloc(Tα)= L loc(πloc(τ2, x),1)

[
e
√−1πρ

∑
d

Nα,d(1)
eτ2+τ2(d)

xρ+ρ(d)−|α|

∏ρ(d)−|α|−1
k=−∞ (ρ + k)∏−1

k=−∞(ρ + k)

]
. (5.20)

�

5.7 Quantum Serre duality in terms of the second structure connections

In this section, we see that the quantum Serre duality between QDM(e,K−1
X )(X) and

QDM(KX) from Theorem 3.14 can be rephrased in terms of the second structure con-

nections. As a corollary, we obtain a description of the quantum D-module of an anti-

canonical hypersurface Z ⊂ X in terms of the second structure connection. When X is

Fano, this gives an entirely algebraic description of the quantum connection of Z .

We begin with the following lemma.

Lemma 5.18. Let f̄ be the map in Lemma 3.2 and h be the map in (3.5) in the case where

E = K−1
X . The map h ◦ f̄ relates the two mirror maps (5.11) as

(h ◦ f̄)(meu(τ2))=mloc(h(τ2)).

In particular h ◦ f̄ |H2(X) is convergent and gives an isomorphism between neighbour-

hoods of the large radius limit point of the form (5.1). �

We will postpone the proof of the lemma until the end of this section. Consider

the quantum Serre pairing SQS from Theorem 3.14 in the case where E = K−1
X . By the

above lemma, h ◦ f̄ preserves H2(X) and therefore SQS induces a flat pairing

SQS : SQDM(e,K−1
X )(X)|z=−1 × (h ◦ f̄)∗SQDM(KX)|z=1 →OUsm .

Combined with the ∇eu-flat shift (−1)
deg

2 : SQDM(e,K−1
X )(X)|z=1

∼= SQDM(e,K−1
X )(X)|z=−1, we

obtain a flat pairing

P : SQDM(e,K−1
X )(X)|z=1 × (h ◦ f̄)∗SQDM(KX)|z=1 →OUsm

defined by P (u, v)=
∫

X

(
(−1)

deg
2 u
)
∪ v. (5.21)

The second structure connections satisfy a certain “difference equation” with respect to

the parameter σ . It is easy to check that we have the following morphism of meromorphic
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flat connections [15, Theorem 9.4.b]:

Δσ : (F̌ , ∇̌(σ+1))−→ (F̌ , ∇̌(σ ))

Tα �−→ ∇̌(σ )∂x
Tα =−(μ− 1

2 − σ)(E ◦τ −x)−1Tα.

This is an isomorphism over (Usm × Cx) \Σ if μ− 1
2 − σ is invertible, that is, if σ /∈

{−n+1
2 ,−n−1

2 , . . . , n−1
2 }.

Lemma 5.18 shows that (h ◦ f̄ ◦ πeu)(τ2, x)= πloc(τ2, x). Thus the pairing (5.21)

induces the flat pairing

P : π∗euSQDM(e,K−1
X )(X)|z=1 × π∗locSQDM(KX)|z=1 −→OUsm . (5.22)

We also have the morphism of flat connections

ρ : π∗euSQDM(e,K−1
X )(X)|z=1 −→ π∗locSQDM(KX)|z=1 (5.23)

induced from the morphism in Theorem 3.14 (2).

Theorem 5.19. Via the isomorphisms ψeu, ψloc in Theorem 5.16, the pairing P (5.22)

coincides with (−1)n+1ǧ, that is, P (ψeuTα, ψlocTβ)= (−1)n+1ǧ(Tα, Tβ) and the morphism ρ

(5.23) coincides with the composition:

Δ := (−1)n+1Δ− n+1
2
◦Δ− n−1

2
◦ · · · ◦Δ n−1

2
: (F̌ , ∇̌( n+1

2 ))−→ (F̌ , ∇̌(− n+1
2 )).

Moreover, we have

ǧ(γ1, γ2)= (−1)n+1
∫

X
((−1)

deg
2 Ǩ ( n+1

2 ,1)γ1) ∪ Ǩ (− n+1
2 ,0)γ2,

Ǩ (− n+1
2 ,0) ◦Δ= ρ ◦ Ǩ ( n+1

2 ,1)

for γ1, γ2 ∈ H ev(X). �

Proof. First, we prove that P corresponds to (−1)n+1ǧ. Since both pairings are flat, it is

enough to compare the asymptotics of P (ψeuTα, ψlocTβ) and ǧ(Tα, Tβ) at the large radius

limit. Since the quantum product equals the cup product at the large radius limit, we
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have

ǧ(Tα, Tβ)|x=1 ∼lrl −
∫

X
(1− ρ)−1 ∪ Tα ∪ Tβ

=

⎧⎪⎪⎨
⎪⎪⎩
−

∫
X
ρn−|α|−|β| ∪ Tα ∪ Tβ if |α| + |β| ≤n;

0 otherwise.

(5.24)

We then compute the asymptotics of P (ψeu(Tα), ψloc(Tβ)). By Remark 5.17, after some

computation, we find

(−1)
deg

2 ψeu(Tα)|x=1 = Leu(meu(τ2),−1)

[∑
d

((−1)
deg

2 Nα,d(1)) e−τ2+τ2(d)
ρ(d)+n−|α|∏

k=1

(−ρ + k)

]
.

(5.25)

We have already found a similar formula (5.20) for ψloc(Tα). In view of Lemma 5.18,

Theorem 3.14 (3) gives the identity:

(Leu(meu(τ2),−z)γ1, L loc(mloc(h(τ2)), z)γ2)= (γ1, e
−√−1πρ/zγ2)

for γ1, γ2 ∈ H ev(X), where (u, v)= ∫
X u∪ v is the Poincaré pairing. Therefore, Equa-

tions (5.25) and (5.20) give

P (ψeu(Tα), ψloc(Tβ))|x=1 ∼lrl (−1)n
∫

X
Tα ∪ Tβ ∪

∏n−|α|
k=1 (ρ − k)∏|β|
k=1(ρ − k)

.

To have non-zero asymptotics, we must have |α| + |β| ≤n; in this case, the right-hand

side is

(−1)n
∫

X
Tα ∪ Tβ ∪

n−|α|∏
k=|β|+1

(ρ − k)= (−1)n
∫

X
Tα ∪ Tβ ∪ ρn−|α|−|β|.

Comparing this with (5.24), we deduce that P (ψeuTα, ψlocTβ)= (−1)n+1ǧ(Tα, Tβ). Note that

the above computation shows

P (ψeuTα, ψlocTβ)=
∫

X
((−1)

deg
2 Ǩ

( n+1
2 ,1)

α ) ∪ Ǩ
(− n+1

2 ,0)
β .

We deduce the equality of the pairings.
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Next, we prove that the morphism ρ corresponds to Δ, that is, ρ ◦ ψeu =ψloc ◦Δ.

Recall from Remark 5.17 that ψeu, ψloc are given by

ψeu = Leu(πeu(τ2, x),1) ◦ Ǩ ( n+1
2 ,1),

ψloc = L loc(πloc(τ2, x),1) eπ
√−1ρ ◦ Ǩ (− n+1

2 ,0).

Therefore, it suffices to prove the following formulae:

ρ ◦ Leu(πeu(τ2, x),1)= L loc(πloc(τ2, x),1) eπ
√−1ρ ◦ ρ,

ρ ◦ Ǩ ( n+1
2 ,1) = Ǩ (− n+1

2 ,0) ◦Δ.

The first equation follows from Theorem 3.14(3) in view of Lemma 5.18. To see the second

equation, it suffices to prove

ρ ◦ Ǩ ( n+1
2 ,1) = Ǩ ( n+1

2 ,0) and Ǩ (σ+1,0) =−Ǩ (σ,0) ◦Δσ .

The first formula is immediate from the definition. To see the second, we calculate:

Ǩ (σ,0)(ΔσTα)= Ǩ (σ,0)(∇̌(σ )∂x
Tα)= ∂x(Ǩ

(σ,0)Tα)= ∂xǨ (σ,0)
α =−Ǩ (σ+1,0)

α .

The conclusion follows. �

Combined with Corollary 3.17, the above theorem implies the following

corollary.

Corollary 5.20. Let Z be a smooth anticanonical hypersurface of X that satis-

fies one of the conditions in Lemma 3.15. Then the small quantum D-module

(ι∗ ◦ πeu)
∗SQDMamb(Z)|z=1 of Z is isomorphic to the image ImΔ of the morphism:

Δ : (F̌ , ∇̌( n+1
2 ))|U ′

sm×{|x|>c} → (F̌ , ∇̌(− n+1
2 ))|U ′

sm×{|x|>c}.

where ι∗ ◦ πeu is regarded as a map

ι∗ ◦ πeu : U ′
sm × {|x|> c}→ ι∗(U ′′

sm)/2π
√−1H2(Z ,Z).

The isomorphism sends Δ(Tα) ∈ Im(Δ) to ι∗ψeu(Tα) ∈ (ι∗ ◦ πeu)
∗SQDMamb(Z)|z=1. �

Remark 5.21. Recall that the conditions in Lemma 3.15 are satisfied for an anticanonical

hypersurface if X is Fano. �
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Proof of Lemma 5.18. We consider the following equivariant I -functions (cf.

Definition 5.11):

I eu,λ
α (τ2, z)= eτ2/z

∑
d∈Eff(X)

Nα,d(z) eτ2(d)
ρ(d)∏
k=1

(ρ + λ+ kz)

I loc,λ
α (τ2, z)= eτ2/z

∑
d∈Eff(X)

Nα,d(z) eτ2(d)
ρ(d)−1∏

k=0

(−ρ − λ− kz)

and define the equivariant mirror maps mλ
eu, mλ

loc as in (5.11). By exactly the same argu-

ment as Proposition 5.14, we have that

I eu,λ
α (τ2, z)= Leu,λ(m

λ
eu(τ2), z)

−1vλα(τ2, z),

I loc,λ
α (τ2, z)= L loc,λ(m

λ
loc(τ2), z)

−1wλα(τ2, z)
(5.26)

for some vλα(τ2, z), wλα(τ2, z) ∈ H ev(X)⊗ C[λ, z][[eτ2 ]]. Here we set Leu,λ = L(eλ,K−1
X ) and

L loc,λ = L(e−1
−λ,KX)

. Similarly to (5.10), we have the following relationship:

e−π
√−1ρ/z(z∂ρ + λ)I loc,λ

α (h(τ2), z)= (ρ + λ)I eu,λ
α (τ2, z). (5.27)

We compute both sides of this equation. By (5.26), the left-hand side equals

e−π
√−1ρ/z(z∂ρ + λ)L loc,λ(m

λ
loc(h(τ2)), z)

−1wλα(h(τ2), z)

= e−π
√−1ρ/zL loc,λ(m

λ
loc(h(τ2)), z)

−1w̃λα(τ2, z) (5.28)

where w̃λα(τ2, z) is obtained from wα(h(τ2), z) by applying z((mλ
loc ◦ h)∗∇(e−1

−λ,KX))ρ + λ and is

an element of H ev(X)⊗ C[λ, z][[eτ2 ]]. On the other hand, by (5.26) again, the right-hand

side of (5.27) is

(ρ + λ)Leu,λ(m
λ
eu(τ2), z)

−1vλα(τ2, z)

= L(e∗λ,KX)( f(mλ
eu(τ2)), z)

−1(ρ + λ)vλα(τ2, z) (by Theorem 2.11(3))

= e−π
√−1ρ/zL loc,λ(h( f(mλ

eu(τ2))), z)
−1(ρ + λ)vλα(τ2, z) (by Remark 3.13). (5.29)

Comparing (5.28) and (5.29), we obtain

L loc,λ(τ
′
2, z)

−1w̃λα(τ2, z)= L loc,λ(τ
′′
2 , z)

−1(ρ + λ)vλα(τ2, z)
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with τ ′2 =mλ
loc(h(τ2)) and τ ′′2 = h( f(mλ

eu(τ2))). Since (ρ + λ)vλα(τ2, z), α = 0, . . . , s form a basis

of H ev(X) and w̃λα(τ2, z) does not contain negative powers of z, we find that

L loc,λ(τ
′
2, z)L loc,λ(τ

′′
2 , z)

−1

does not contain negative powers in z. By the asymptotics L loc,λ(τ, z)= id+ O(z−1), we

must have L loc,λ(τ
′
2, z)

−1 = L loc,λ(τ
′′
2 , z)

−1. The asymptotics L loc,λ(τ, z)−11= 1+ τ/z+ O(z−2)

shows that τ ′2 = τ ′′2 . The conclusion follows by taking the non-equivariant limit. �

Remark 5.22. Consider the family of connection ∇̌( n+1
2 +k) for k∈Z. Via the morphisms

Δσ , we have:

• for k∈Z≥0, ∇̌( n+1
2 +k) is isomorphic to ∇̌( n+1

2 ) as meromorphic connections;

• for k∈Z≥0, ∇̌(− n+1
2 −k) is isomorphic to ∇̌(− n+1

2 ) as meromorphic connections.

Theorem 5.16 above gives a geometric interpretation of these two connections.

It would be interesting to understand the intermediate connections ∇̌(k) for

k∈ {−n−1
2 , . . . , n−1

2 }. �

5.8 Hodge filtration for the second structure connection

The small quantum D-modules SQDM(e,K−1
X )(X) and SQDM(KX) restricted to z= 1 have a

natural filtration, called the A-model Hodge filtration [5, Section 8.5.4; 30, Lecture 7], and

these small quantum D-modules are variations of Hodge structure. In this section, we

identify the corresponding filtration on the second structure connection. See [22–24, 35]

for related studies on the Hodge structure for local quantum cohomology.

We follow the notation in Theorem 5.16 and write U ′
sm and U ′′

sm for large radius

limit neighbourhoods in H2(X) on which (respectively) the second structure connection

(F̌ , ∇̌(σ )) and our small quantum D-modules are convergent.

Definition 5.23. We define the subbundle F p of the trivial bundle H ev(X)×U ′′
sm →U ′′

sm

by

F p := H≤2n−2p(X)×U ′′
sm

and call it the A-model Hodge filtration. Because the small quantum product preserves

the degree:

deg(Tα •(e,K
−1
X )

τ2 Tβ)= deg(Tα)+ deg(Tβ)

deg(Tα •KX
τ2

Tβ)= deg(Tα)+ deg(Tα)
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the filtration satisfies Griffiths transversality with respect to the small quantum

connections:

∇eu
α (F

p)⊂ F p−1 and ∇loc
α (F p)⊂ F p−1

for α with |α| = 1. The Hodge filtration also satisfies the following orthogonality:

P (F p, F n−p+1)= 0

with respect to the pairing P in (5.21); in other words, the A-model Hodge filtrations on

SQDM(KX)|z=1 and SQDM(e,K−1
X )(X)|z=1 are annihilators of each other. �

Next we introduce a filtration on the second structure connection.

Definition 5.24. Consider the second structure connection (F̌ , ∇̌(− n+1
2 )) restricted to

the small parameter space U ′
sm × Cx. Define F̌ p

loc to be the OU ′
sm×Cx(∗Σ)-submodule of

O(F̌ )(∗Σ) generated by

{(∇̌(−
n+1

2 )

∂x
)kTα : |α| ≤ k≤n− p}.

Define F̌ p
eu to be the ǧ-orthogonal of F̌ n−p+1

loc , that is,

F̌ p
eu := {s ∈O(F̌ )(∗Σ) : ǧ(s, γ )= 0, 〉〉∀γ ∈ F̌ n−p+1

loc }.

These are decreasing filtrations. �

Lemma 5.25. The filtrations F̌ p
loc, F̌ p

eu satisfy the Griffiths transversality:

∇̌(− n+1
2 ) F̌ p

loc ⊂Ω1
U ′

sm×Cx
⊗ F̌ p−1

loc and ∇̌( n+1
2 ) F̌ p

eu ⊂Ω1
U ′

sm×Cx
⊗ F̌ p−1

eu . �

Proof. It suffices to prove the Griffiths transversality for F̌ p
loc. We write ∇̌ for ∇̌(− n+1

2 ) to

save notation. The inclusion ∇̌∂x F̌ p
loc ⊂ F̌ p−1

loc is obvious. We prove ∇̌β F̌ p
loc ⊂ F̌ p−1

loc for β with

|β| = 1. Take α and k∈Z≥0 satisfying |α| ≤ k≤n− p. We have

∇̌β(∇̌∂x)
kTα = (∇̌∂x)

k∇̌βTα = (∇̌∂x)
k
(
μ+ n

2

)
((E•τ )− x)−1Tβ •τ Tα

=−(∇̌∂x)
k+1Tβ •τ Tα. (5.30)

Since ρ = c1(X) is nef, the small quantum product Tβ •τ Tα is a linear combination of

classes of degree less than or equal to 2|α| + 2. Therefore, the expression (5.30) lies in

F̌ p−1. �
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Theorem 5.26. There exists a small neighbourhood U ′
sm of the form (5.1) such that we

have

ψloc(F̌
p

loc)= F p, ψeu(F̌
p

eu)= F p

over U ′
sm × {|x|> c}, where ψloc, ψeu are the isomorphisms in Theorem 5.16 and F p is the

A-model Hodge filtration of SQDM(e,K−1
X )(X)|z=1 or of SQDM(KX)|z=1. �

Proof. Since the A-model Hodge filtration satisfies the orthogonality, it suffices to show

that ψloc(F̌
p

loc)= F p. When |α| ≤ k≤n− p, we have

ψloc((∇̌∂x)
kTα)= (−1)|α|((π∗loc∇)∂x)

k−|α|wα(τ2 − ρ log x+ π√−1ρ,1)

where ∇̌ = ∇̌(− n+1
2 ). This belongs to F p by the Griffiths transversality for the A-model

Hodge filtration. Considering the case k= |α|, we can see that these sections

span F p. �

Remark 5.27. It follows from the above theorem that the filtrations F̌ p
loc, F̌ p

eu are

subbundles over U ′
sm × {|x|> c} with U ′

sm sufficiently small. It would be interesting

to study where they are not subbundles, and how we can extend them along the

singularity Σ . �

Let Z ⊂ X be a smooth anticanonical hypersurface. The small ambient part quan-

tum D-module SQDMamb(Z) also admits the A-model Hodge filtration

F p= H≤2(n−1)−2p
amb (Z)×U ′′

sm.

Combined with Corollaries 3.17 and 5.20, we obtain the following corollary.

Corollary 5.28. Suppose that an anticanonical hypersurface Z of X satisfies one of the

conditions in Lemma 3.15. Under the isomorphism

(ι∗ ◦ πeu)
∗SQDMamb(Z)∼= Im(Δ : (F̌ , ∇̌( n+1

2 ))→ (F̌ , ∇̌(− n+1
2 )))

in Corollary 5.20, the A-model Hodge filtration F p on SQDMamb(Z) corresponds to

Δ(F̌ p+1
eu ), which is contained in F̌ p

loc. �

6 Quintic in P4

In this section, we make our result explicit in the case of X = P4 and E =O(5). This

example was also studied by Dubrovin [9, Section 5.4]. Let H = c1(O(1)) ∈ H2(P4) be the
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Quantum Serre Theorem as a Duality Between Quantum D-Modules 53

hyperplane class and let t denote the co-ordinate on H2(P4) dual to H . We use the basis

{T0, T1, T2, T3, T4} = {1, H, H2, H3, H4}

of H ev(P4). The small quantum connection of P4 is given by

∇(σ−1)
∂t

= ∂t + z−1(H•t), ∇(σ−1)
z∂z

= z∂z− z−15(H•t)+ (μ+ 1
2 − σ)

where

H•t=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 et

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, μ=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−2 0 0 0 0

0 −1 0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 0 0 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

6.1 Fourier–Laplace transformation

We illustrate the Fourier–Laplace transformation in Section 5.3 for the small quantum

connection of P4. We write ∂t, z∂z for the action of the small quantum connection ∇(σ−1)
∂t

,

∇(σ−1)
z∂z

, respectively. We have

∂tT0 = z−1T1, z∂zT0 =−5z−1T1 − (σ + 3
2 )T0

∂tT1 = z−1T2, z∂zT1 =−5z−1T2 − (σ + 1
2 )T1

∂tT2 = z−1T3, z∂zT2 =−5z−1T3 − (σ − 1
2 )T2

∂tT3 = z−1T4, z∂zT3 =−5z−1T4 − (σ − 3
2 )T3

∂tT4 = etz−1T0, z∂zT4 =−5 etz−1T0 − (σ − 5
2 )T4

Under the Fourier–Laplace transformation z∂z= x∂x + 1 and z−1 =−∂x, we have

∂tT0 = (−∂x)T1, x∂xT0 = 5∂xT1 − (σ + 5
2 )T0

∂tT1 = (−∂x)T2, x∂xT1 = 5∂xT2 − (σ + 3
2 )T1

∂tT2 = (−∂x)T3, x∂xT2 = 5∂xT3 − (σ + 1
2 )T2

∂tT3 = (−∂x)T4, x∂xT3 = 5∂xT4 − (σ − 1
2 )T3

∂tT4 = et(−∂x)T0, x∂xT4 = 5 et∂xT0 − (σ − 3
2 )T4 (6.1)
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These formulas define the second structure connection ∇̌(σ ):

∇̌(σ )∂t
= ∂t + 1

55 et − x5

(
μ− 1

2
− σ

)
⎛
⎜⎜⎜⎜⎜⎜⎜⎝

54 et 53 etx 52 etx2 5 etx3 etx4

x4 54 et 53 etx 52 etx2 5 etx2

5x3 x4 54 et 53 etx 52 etx2

52x2 5x3 x4 54 et 53 etx

53x 52x2 5x3 x4 54 et

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

∇̌(σ )∂x
= ∂x − 1

55 et − x5

(
μ− 1

2
− σ

)
⎛
⎜⎜⎜⎜⎜⎜⎜⎝

x4 54 et 53 etx 52 etx2 5 etx3

5x3 x4 54 et 53 etx 52 etx2

52x2 5x3 x4 54 et 53 etx

53x 52x2 5x3 x4 54 et

54 53x 52x2 5x3 x4

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

The second structure connection has poles along the divisor Σ = {55 et − x5 = 0}. We

replace all the ∂x-actions in the second column of (6.1) with the ∂t-actions using the

first column and deduce:

e−tx∂tT4 = (5∂t + σ + 5
2 )T0

x∂tT0 = (5∂t + σ + 3
2 )T1

x∂tT1 = (5∂t + σ + 1
2 )T2

x∂tT2 = (5∂t + σ − 1
2 )T3

x∂tT3 = (5∂t + σ − 3
2 )T4

From this we find the following differential equation for T0:

((x∂t)
5 − et(5∂t + σ + 13

2 )(5∂t + σ + 11
2 )(5∂t + σ + 9

2 )(5∂t + σ + 7
2 )(5∂t + σ + 5

2 ))T0 = 0. (6.2)

A direct computation on computer (we used Maple) shows the following lemma.

Lemma 6.1. Let F̌ denote the trivial H∗(P4)-bundle over C2 = H2(P4)× Cx. Suppose that

σ /∈ {− 3
2 ,− 1

2 ,
1
2 ,

3
2 }. Then the second structure connection (O(F̌ )(∗Σ), ∇̌(σ )) is generated by

T0 = 1 as an O(∗Σ)〈∂t〉-module and is defined by the relation (6.2). �

6.2 Euler-twisted and local (small) quantum D-modules

Recall from Theorem 5.16 that the second structure connection corresponds to the

(e, K−1
P4 )-twisted theory for σ = 5

2 and to the local theory for σ =− 5
2 . For these cases,
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the differential Equation (6.2) specializes, respectively, to

Deu := (x∂t)
5 − et(5∂t + 9)(5∂t + 8)(5∂t + 7)(5∂t + 6)(5∂t + 5) (for σ = 5

2 ),

Dloc := (x∂t)
5 − et(5∂t + 4)(5∂t + 3)(5∂t + 2)(5∂t + 1)(5∂t) (for σ =− 5

2 ).

The I -functions in Definition 5.11 are given by

I eu
0 (t, z)=

∞∑
d=0

e(d+H/z)t

∏5d
k=1(5H + kz)∏d
k=1(H + kz)5

,

I loc
0 (t, z)=

∞∑
d=0

e(d+H/z)t

∏5d−1
k=0 (−5H − kz)∏d

k=1(H + kz)5
.

The mirror maps (5.11) are given by

meu(t)= t+ g1(et)

g0(et)
, mloc(t)= t+ g2(e

t)

where we set

g0(e
t)=

∞∑
d=0

edt (5d)!

(d!)5
, g1(e

t)=
∞∑

d=1

edt (5d)!

(d!)5
5

(
5d∑

m=d+1

1

m

)
, g2(e

t)= 5
∞∑

d=1

edt(−1)d
(5d− 1)!

(d!)5
.

We define, as in (5.13),

πeu(t, x)=meu(t− 5 log x)= t− 5 log x+ g1(etx−5)

g0(etx−5)
,

πloc(t, x)=mloc(t− 5 log x+ 5π
√−1)= t− 5 log x+ 5π

√−1+ g2(−etx−5).

These maps converge when |etx−5|< 5−5. Theorem 5.16 and Lemma 6.1 together give the

following isomorphisms:

π∗euSQDM(e,K−1
P4 )
(P4)|z=1

∼= (O(F̌ ), ∇̌( 5
2 ))∼=O〈∂t〉/O〈∂t〉Deu,

π∗locSQDM(KP4)|z=1
∼= (O(F̌ ), ∇̌(− 5

2 ))∼=O〈∂t〉/O〈∂t〉Dloc

over the region {(t, x) ∈C2 : |etx−5|< 5−5}.

6.3 The small quantum D-module of a quintic

Recall from Theorem 3.14 and (5.23) that we have a natural morphism:

5H : π∗euSQDM(e,K−1
P4 )
(P4)→ π∗locSQDM(KP4)
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By Theorem 5.19, this corresponds to the map Δ between the second structure connec-

tions. SinceΔmaps T0 in (F̌ , ∇̌( 5
2 )) to (−∂x)

5T0 = e−t∂5
t T0 in (F̌ , ∇̌(− 5

2 )), the above morphism

corresponds to the map:

δ : O〈∂t〉/O〈∂t〉Deu →O〈∂t〉/O〈∂t〉Dloc, [ f(t, x, ∂t)] �→ [ f(t, x, ∂t) e−t∂5
t ].

This is well-defined since Deu e−t∂5
t = ∂5

t e−tDloc. By Corollary 5.20, we have

π∗euSQDMamb(Z)∼= Im(δ).

for a quintic hypersurface Z ⊂ P4. We can therefore view SQDMamb(Z) either as a quo-

tient of the Euler-twisted quantum D-module or as a sub-D-module of the local quantum

D-module. The former viewpoint yields a presentation:

π∗euSQDMamb(Z)∼=O〈∂t〉/O〈∂t〉(x(x∂t)
4 − 5 et(5∂t + 9)(5∂t + 8)(5∂t + 7)(5∂t + 6))

and the latter yields a (more familiar) presentation:

π∗euSQDMamb(Z)∼=O〈∂t〉/O〈∂t〉(x(x∂t)
4 − 5 et(5∂t + 4)(5∂t + 3)(5∂t + 2)(5∂t + 1)).

6.4 Solutions

For the Euler-twisted theory (σ = 5
2 ), the cohomology-valued function

ϕ(t, x)= (−∂x)
4x−1 I eu

0 (t− 5 log x,1)=
∞∑

d=0

et(H+d)

x5H+5d+5

∏5d+4
k=1 (5H + k)∏d
k=1(H + k)5

is a solution to the differential equation Deuϕ = 0; for the local theory (σ =− 5
2 ), the

cohomology-valued function

ϕ(t, x)= I loc
0 (t− 5 log x+ 5

√−1π,1)= e5π
√−1H

∞∑
d=0

et(H+d)

x5H+5d

∏5d−1
k=0 (5H + k)∏d
k=1(H + k)5

is a solution to the differential equation Dlocϕ = 0. These functions are the images of T0,

respectively, under the maps Ǩ ( 5
2 ,1) and e5π

√−1H Ǩ (− 5
2 ,0) in Proposition 5.9. In terms of the

quantum D-modules, these solutions correspond, respectively, to Leu(πeu(t, x),1)−1 and

L loc(πloc(t, x),1)−1.
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Table 1. Gromov–Witten Invariants Nd= 〈H3, 1̃〉(e,K
−1
X )

0,2,d

d Nd

1 −650

2 −160,625

3 −337,216,250/3

4 −217,998,840,625/2

5 −125,251,505,498,880

6 −479,299,410,776,921,825/3

7 −1,531,227,197,616,745,455,000/7

8 −1,260,949,629,604,284,268,280,625/4

6.5 Mirror maps and f

Recall from Lemma 5.18 that the two mirror maps are related as follows:

mloc(t+ 5π
√−1)= f̄(meu(t))+ 5π

√−1

πloc(t, x)= f̄(πeu(t, x))+ 5π
√−1

where f̄ is the map appearing in Lemma 3.2:

f̄(t)= t+
∞∑

d=1

edt〈H3, 1̃〉(e,K−1
X )

0,2,d .

Consider the exponentiated mirror maps and exp( f̄):

Meu(e
t) := exp(meu(t)), Mloc(e

t) := exp(mloc(t)), F̄ (et) := exp( f̄(t)).

These maps are related by Mloc(−q)=−F̄ (Meu(q)). Surprisingly, they have Taylor expan-

sions in q= et with integral coefficients [26, 37]:

Meu(q)= q + 770q2 + 1,014,275q3 + 1,703,916,750q4 + 3,286,569,025,625q5 + · · ·

Mloc(q)= q − 120q2 + 63,900q3 − 63,148,000q4 + 85,136,103,750q5 + · · ·

F̄ (q)= q − 650q2 + 50,625q3 − 5,377,000q4 − 49,529,975,000q5 + · · · .

We can also deduce the Gromov–Witten invariants Nd := 〈H3, 1̃〉(e,K−1
X )

0,2,d as in Table 1.
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6.6 Hodge filtration

Recall from Section 5.8 that we have Hodge filtrations on the second structure connec-

tions (F̌ ,∇( 5
2 )) and (F̌ ,∇(− 5

2 )) denoted, respectively, by F̌ p
eu and F̌ p

loc. They are given by

F̌ 0
loc = F̌ , F̌ 0

eu = F̌

F̌ 1
loc = 〈T0, ∂xT0, ∂

2
x T0, ∂

3
x T0〉, F̌ 1

eu = (F̌ 4
loc)

⊥

F̌ 2
loc = 〈T0, ∂xT0, ∂

2
x T0〉, F̌ 2

eu = (F̌ 3
loc)

⊥

F̌ 3
loc = 〈T0, ∂xT0〉, F̌ 3

eu = (F̌ 2
loc)

⊥

F̌ 4
loc = 〈T0〉 F̌ 4

eu = (F̌ 1
loc)

⊥

where ⊥ means the orthogonal with respect to the second metric ǧ(γ1, γ2)=
∫

P4 γ1 ∪
(5H •t −x)−1γ2 and ∂x means ∇(−

5
2 )

∂x
in the first column. Using Maple, we find that

F̌ 4
eu = 〈T̃0〉, F̌ 3

eu = 〈T̃0, ∂xT̃0〉, F̌ 2
eu = 〈T̃0, ∂xT̃0, ∂

2
x T̃0〉, F̌ 1

eu = 〈T̃0, ∂xT̃0, ∂
2
x T̃0, ∂

3
x T̃0〉

where ∂x=∇(
5
2 )

∂x
and

T̃0 := T0 − 125
3 x−1T1 + 2125

3 x−2T2 − 5,625x−3T3 + 15,000x−4T4,

∂xT̃0 =−5x−1T0 + 565
3 x−2T1 − 8975

3 x−3T2 + 22,875x−4T3 − 60,000x−5T4,

∂2
x T̃0 = 30x−2T0 − 1,030x−3T1 + 15,500x−4T2 − 115,500x−5T3 + 300,000x−6T4,

∂3
x T̃0 =−210x−3T0 + 6,610x−4T1 − 95,300x−5T2 + 697,500x−6T3 − 1,800,000x−7T4,

∂4
x T̃0 = 1,680x−4T0 − 48,680x−5T1 + 679,000x−6T2 − 4,905,000x−7T3 + 12,600,000x−8T4.

One can check that T̃0 corresponds to a multiple of the twisted I -function I eu
0 under the

solution in Section 6.4: we have Ǩ ( 5
2 ,1)(T̃0)= 24x−5 I eu

0 (t− 5 log x,1).
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