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Abstract. We give a geometric definition of smooth toric Deligne-Mumford stacks
using the action of a ““‘torus”. We show that our definition is equivalent to the one of
Borisov, Chen and Smith in terms of stacky fans. In particular, we give a geometric inter-
pretation of the combinatorial data contained in a stacky fan. We also give a bottom up
classification in terms of simplicial toric varieties and fiber products of root stacks.
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Introduction

A toric variety is a normal, separated variety X with an open embedding 7 — X of a
torus such that the action of the torus on itself extends to an action on X. To a toric variety
one can associate a fan, a collection of cones in the lattice of one-parameter subgroups of
T. Toric varieties are very important in algebraic geometry, since algebro-geometric prop-
erties of a toric variety translate in combinatorial properties of the fan, allowing to test con-
jectures and produce interesting examples.

In [10] Borisov, Chen and Smith define toric Deligne-Mumford stacks as explicit
global quotient (smooth) stacks, associated to combinatorial data called stacky fans. Later,
Iwanari proposed in [22] a definition of toric triple as an orbifold with a torus action having
a dense orbit isomorphic to the torus!’ and he proved that the 2-category of toric triples is
equivalent to the 2-category of ““toric stacks” (We refer to [22] for the definition of “‘toric
stacks™). Nevertheless, it is clear that not all toric Deligne-Mumford stacks are toric triples,
since some of them are not orbifolds.

Then the generalization of the A-collections defined for toric varieties by Cox in [14]
was done by Iwanari in [23] in the orbifold case and by Perroni in [31] in the general case.

In this paper, we define a Deligne-Mumford torus .7 as a Picard stack isomorphic to
T x #G, where T is a torus, and G is a finite abelian group; we then define a smooth toric
Deligne-Mumford stack as a smooth separated Deligne-Mumford stack with the action of
a Deligne-Mumford torus .7 having an open dense orbit isomorphic to 7. We prove a
classification theorem for smooth toric Deligne-Mumford stacks and show that they coin-
cide with those defined by [10].

The first main result of this paper is a bottom-up description of smooth toric Deligne-
Mumford stacks, as follows: the structure morphism Z — X to the coarse moduli space
factors canonically via the toric morphisms

Q%'H%rig_)%can_)X

where 2 — 21 is an abelian gerbe over 28; Z'1¢ — 2" is a fibered product of roots of
toric divisors; and " — X is the minimal orbifold having X as coarse moduli space.
Here X is a simplicial toric variety, and 2"¢ and 2*" are smooth toric Deligne-Mumford
stacks. More precisely, this bottom up construction can be stated as follows.

Theorem L. Let X be a smooth toric Deligne-Mumford stack with Deligne- Mumford
torus isomorphic to T x #G. Denote by X the coarse moduli space of X. Denote by n the
number of rays of the fan of X.

D For the meaning of orbifold in this paper, see §1.2.
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(1) There exist unique (ay,...,a,) € (Nso)" such that the stack 2" is isomorphic, as
toric Deligne-Mumford stack, to

a /chan/%*can X grean + + + X grean an /Dzan/%can,

where D{*" is the divisor corresponding to the ray p;.

‘ A
(2) Given G = [] . There exist Ly, ..., Ly in Pic(Z") such that X is isomorphic, as
=
toric Deligne-Mumford stack, to

b\ll Ll/%ng X%-rig M X%-rig b\// L//gl‘rlg
Moreover, for any je{1,...,/}, the class [L;] in Pic(2"€)/b; Pic(Z"8) is unique.

In the process, we get a description of the Picard group of smooth toric Deligne-
Mumford stacks, which allows us to characterize weighted projective stacks as complete
toric orbifolds with cyclic Picard group (cf. Proposition 7.28). Moreover, we classify all
complete toric orbifolds of dimension 1 (cf. Example 7.31). We also show that the natural
map from the Brauer group of a smooth toric Deligne-Mumford stack with trivial generic
stabilizer to its open dense torus is injective (cf. Theorem 6.11).

The second main result of this article is to give an explicit relation between the
smooth toric Deligne-Mumford stacks and the stacky fans.

Theorem II. Let & be a smooth toric Deligne-Mumford stack with coarse moduli
space the toric variety denoted by X. Let X be a fan of X in Ng := N ®; Q. Assume that
the rays of ¥ generate Nq. There exists a stacky fan such that X is isomorphic, as toric
Deligne- Mumford stack, to the smooth Deligne-Mumford stack associated to the stacky fan.
Moreover, if X has a trivial generic stabilizer then the stacky fan is unique.

When the smooth toric Deligne-Mumford stack 2" has a generic stabilizer the non-
uniqueness of the stacky fan comes from three different choices. We refer to Remark 7.26
for a more precise statement. This result gives a geometrical interpretation of the combina-
torial data of the stacky fan. In fact, the stacky fan can be read off the geometry of the
smooth toric Deligne-Mumford stack just like the fan can be read off the geometry of the
toric variety. Notice that one can deduce the above theorem when 4 is an orbifold from
[31], Theorem 2.5, and [23], Theorem 1.4, and the geometric characterization of [24],
Theorem 1.3.

In the first part of this article, we fix the conventions and collect some results on
smooth Deligne-Mumford stacks, root constructions, rigidification, toric varieties, Picard
stacks and the action of a Picard stack. In Section 2, we define Deligne-Mumford tori. Sec-
tion 3 contains the definition of smooth toric Deligne-Mumford stacks. In Section 4, we
first define canonical smooth Deligne-Mumford stacks and then we show that the canonical
stack associated to a simplicial toric variety is a smooth toric Deligne-Mumford stack (cf.
Theorem 4.11). In Section 5, we prove the first part of Theorem I. In Section 6, we first
prove in Proposition 6.9 that the essentially trivial banded gerbes over 2" are in bijection
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with finite extensions of the Picard group of Z’; then, we show that the natural map from
the Brauer group of a smooth toric Deligne-Mumford stack with trivial generic stabilizer to
its open dense torus is injective (cf. Theorem 6.11). Finally, we prove the second statement
of Theorem I. In Section 7, we prove Theorem II and give some explicit examples. In
Appendix B, we have put some details about the action of a Picard stack.

Acknowledgments. The authors would like to acknowledge support from IHP,
Mittag-Leffler Institut, SNS where part of this work was carried out, as well as the Euro-
pean projects MISGAM and ENIGMA. We would like to thank Ettore Aldrovandi, Lev
Borisov, Jean-Louis Colliot-Théléne, Andrew Kresch, Fabio Perroni, Ilya Tyomkin and
Angelo Vistoli for helpful discussions; in particular Aldrovandi for explanations about
group-stacks and reference [11], Borisov for pointing out a mistake in a preliminary ver-
sion, Colliot-Thélene for [20], §6, Tyomkin for [9] and Vistoli for useful information about
the classification of gerbes.

1. Notations and background

1.1. Conventions and notations. A scheme will be a separated scheme of finite type
over C. A variety will be a reduced, irreducible scheme. A point will be a C-valued point.
The smooth locus of a variety X will be denoted by Xgp,.

We work in the étale topology. For an algebraic stack %', we will write that x is a
point of Z or just x € Z to mean that x is an object in Z'(C); we denote by Aut(x) the auto-
morphism group of the point x. We will say that a morphism between stacks is unique if it
is unique up to a unique 2-arrow. As usual, we denote G,, the sheaf of invertible sections in
Oy on the étale site of 4.

1.2. Smooth Deligne-Mumford stacks and orbifolds. A Deligne-Mumford stack will
be a separated Deligne-Mumford stack of finite type over C; we will always assume that its
coarse moduli space is a scheme. An orbifold will be a smooth Deligne-Mumford stack with
trivial generic stabilizer. For a smooth Deligne-Mumford stack %, we denote by &4 or just
¢ the natural morphism from 2" to its coarse moduli space X, which is a variety with finite
quotient singularities.

Let:: % — Z be an open embedding of irreducible smooth Deligne-Mumford stacks
with complement of codimension at least 2. We have that:

e The natural map 1* : Pic(Z) — Pic(%) is an isomorphism.

e For any line bundle L € Pic(%), the natural morphism * : H%(2', L) — H®(%,1"L)
is also an isomorphism.

The inertia stack, denoted by I(%), is defined to be the fibered product
(%) =% Xgxq Z. A point of I(%) is a pair (x,g) with x € Z and g € Aut(x). The inertia
stack of a smooth Deligne-Mumford stack is smooth but different components will in
general have different dimensions. The natural morphism 7(Z) — Z is representable,
unramified, proper and a relative group scheme. The identity section gives an irreducible
component canonically isomorphic to Z’; all other components are called twisted sectors.
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A smooth Deligne-Mumford stack of dimension d is an orbifold if and only if all the
twisted sectors have dimension < d — 1, and is canonical if and only if all twisted sectors
have dimension < d — 2.

Remark 1.1 (sheaves on global quotients). According to [33], Appendix, a coherent
sheaf on a Deligne-Mumford stack [Z/G] is a G-equivariant sheaf on Z, i.e., the data of a
coherent sheaf Lz on Z and for every g € G an isomorphism ¢, : Lz — g*Lz such that

(/)gh = h*(pq O @p-

Notice that if Z is a subvariety of C" of codimension higher or equal than two then
an invertible sheaf on [Z/G] is the structure sheaf () and a one dimensional representa-
tion of G, i.e., y: G — C". A global section of such an invertible sheaf on [Z/G] is a x-
equivariant global section of (/.

We end this subsection with a proposition extending to stacks a property of separated
schemes. We will prove it in Appendix A.

Proposition 1.2. Let & and % be two Deligne-Mumford stacks. Assume that X is
normal and % is separated. Let 1: WU — X be a dominant open immersion of the Deligne-
Mumford stack U. If F,G: % — % are two morphisms of stacks such that there exits a

2-arrow F o1 = G o1 then there exists a unique 2-arrow o : F = G such that o * id, = .

The previous proposition is well known for % a reduced scheme and % a separated
scheme. Nevertheless, if 2 is not a normal stack we have the following counter-example:
Let % be #u,. Let 2 be a rational curve with one node. Let F} : ' — % (resp. F») be a stack
morphism given by a non-trivial (resp. trivial) double cover of Z. Putting % = 2\ {node},
the proposition is false.

1.3. Root constructions. For this subsection we refer to the paper of Cadman [12]
(see also [2], Appendix B). In this part & will be a Deligne-Mumford stack over C (it is
enough to assume that 2" is Artin.)

1.3.a. Root of an invertible sheaf. This part follows closely [2], Appendix B. Let L

be an invertible sheaf on the Deligne-Mumford stack 2. Let b be a positive integer. We
denote by \/L/Z the following fiber product

YL]¥ —— BC*

J Dyh

xr —L . gc

where Ab: #C* — ZAC* sends an invertible sheaf M over a scheme S to M®”. More ex-
plicitly, an object of \/L/Z over f: S — 2 is a couple (M, p) where M is an invertible
sheaf M on the scheme S and ¢ : M®” = f*L is an isomorphism. The arrows are defined
in an obvious way.

The morphism y/L/Z — BC* corresponds to an invertible sheaf, denoted by L'/? in
(8], on \/L/Z whose b-th power is isomorphic to the pullback of L.
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The stack v/L/Z is a u,-banded gerbe over 2" (see the second paragraph of Subsec-
tion 6.1 below). The Kummer exact sequence

1= — Gy 2 Gy — 1

induces the boundary morphism 0 : H} (%, G,,) — HZ(Z, ). The cohomology class of the
t,-banded gerbe \/L/Z in HZ(Z', ) is the image by 0 of the class [L] € H. (2, G,,).

The gerbe is trivial if and only if the invertible sheaf L has a b-th root in Pic(2'). More
generally, the gerbe \/L/Z is isomorphic, as a u,-banded gerbe, to \/L'/Z if and only if
[L] = [L'] in Pic(Z) /b Pic(Z). We have the following morphism of short exact sequences:

0 ol Z Z/b7 —— 0

oo

0 —— Pic(Z) —— Pic(V/L/Z) — Z/bZ7 —— 0

where the first and second vertical morphisms are defined by 1 — L and 1 — L'/’ respec-
tively.

1.3.b. Roots of effective Cartier divisors. In the articles [12] and [2], the authors de-
fine the notion of root of an invertible sheaf with a section on an algebraic stack: here, we
only consider roots of effective Cartier divisors on a smooth algebraic stack, since this is
what we will use.

Let n be a positive integer. Consider the quotient stack [A”/(C*)"] where the action
of (C*)" is given multiplication coordinates by coordinates. Notice that [A”/(C*)"] is the
moduli stack of n line bundles with n global sections. Let a := (ay, ... ,a,) € (Nso)" be an
n-tuple. Denote by Aa: [A"/(C*)"] — [A"/(C*)"] the stack morphism defined by sending
x; — x;{" and 4; — A{" where x; (resp. 4;) are coordinates of A" (resp. (C*)").

Let 2 be a smooth algebraic stack. Let D := (D, ..., D,) be n effective Cartier divi-
sors. The a-th root of (2, D) is the fiber product

VD/E —— [A"/(C)]

xr —2— [A"(CY)).

The morphism +/D/Z — [A"/(C*)"] corresponds to the effective Cartier divisors
D := (Dy,...,D,), where D; is the reduced closed substack 7! (D;),.4. More explicitly, an
object of /D/Z over a scheme S is a couple (f, (D, ..., D,)) where f : S — 2" is a mor-
phism and for any i, D; is an effective divisor on § such that a;D; = f*D;.

We have the following properties:
(1) The fiber product of {/D;/% over Z is isomorphic to /D/% (cf. [12], Remark
2.2.5).
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(2) The canonical morphism +/D/Z — Z is an isomorphism over 2\ | D;.

(3) If Z is smooth, each D; is smooth and the D; have simple normal crossing then
/D/Z is smooth (cf. Section 2.1 of [8]) and D; have simple normal crossing.

(4) We have the following morphism of short exact sequences (cf. [12], Corollary
3.1.2)

o ——— z7n 7"

n
[1Z/aiZ —— 0

(14 | |

0 —— Pic(Z) —*— Pic(¢/DJT) —1~ [[Z/a:iZ — 0
i=1

where the first and second vertical morphisms are defined by e; — ¢(D;) and e; — (D)),
respectively. Every invertible sheaf L € Pic(y/D/Z) can be written in a unique way as

L=n"M® [[ O(k;D;) where M € Pic(Z) and 0 < k; < a;; the morphism ¢ maps L to
(kla oo 7kn)' =1

We finish this section with the following observation. Let D; and D, be two effective

Cartier divisors on Z such that Dy n D, # (. The stacks v/D; U D,/Z and “{/(Dy, D2)/%

are not isomorphic. Indeed, the stabilizer group at any point in the preimage of x € Dy n D,

in /Dy U D,/ % (resp. “V/(D1,D2)/X) is p, (resp. pt, X fig).

1.4. Rigidification. In this subsection, we sum up some results on the rigidification
of an irreducible d-dimensional smooth Deligne-Mumford stack . Intuitively, the rigidifi-
cation of 2 by a central subgroup G of the generic stabilizer is constructed as follows: first,
one constructs a prestack where the objects are the same and the automorphism groups of
each object x are the quotient Auty(x)/G; then the rigidification 2'//G is the stackification
of this prestack. For the most general construction we refer to [3], Appendix A (see also [1],
Section 5.1, [32] and [2], Appendix C).

We consider the union /2"(%) < I(%') of all d-dimensional components of 1(%); it is
a subsheaf of groups of 1(%') over 2" which is called the generic stabilizer. Most of the time
in this article, we will rigidify by the generic stabilizer. In this case, we write Z ™€ in order to
mean 2 /18" (%) and call it the rigidification.

The rigidification r : # — 2" has the following properties:

(1) The coarse moduli space of 2" is the coarse moduli space of Z'.

(2) 2" is an orbifold.

(3) If Z is an orbifold then 2" is 7.

(4) The morphism r makes 4 into a gerbe over 2 "¢,

We refer to [1], Theorem 5.1.5(2), for the proof of the following proposition.
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Proposition 1.5 (universal property of the rigidification). Let Z be a smooth Deligne-
Mumford stack. Let % be an orbifold. Let f: % — % be a dominant stack morphism.
Then there exists g : X8 — % and a 2-morphism o.: g or = f such that the following is 2-
commutative:

x — g

N

Y.

If there exists g’ : X"€ — % and a 2-morphism o' : g’ or = f satisfying the same property
then there exists a unique y : g' = g such that oo (y xid,) = o’.

1.5. Diagonalizable group schemes. In this short subsection, we recall some results
on diagonalizable groups.

Definition 1.6. A group scheme G over Spec C will be called diagonalizable if it is
isomorphic to the product of a torus and a finite abelian group.

We use multiplicative notation for diagonalizable group. For any diagonalizable
group G, its character group G¥ := Hom(G, C") is a finitely generated abelian group (or
coherent Z-module). The duality contravariant functor G — G induces an equivalence
of categories from diagonalizable to coherent Z-module. Its inverse functor is given by
F — Gp:= Hom(F,C"). Both G — G" and F — Gp are contravariant and exact.

1.6. Toric varieties. We recall some results on toric varieties that can be found in
[17] (see also [15]). The principal construction used in this paper is the description of toric
varieties as global quotients found by Cox (see [13]).

We fix a torus 7, and denote by M = TV the lattice of characters and by
N := Hom(M, Z) the lattice of one-parameter subgroups. A toric variety X with torus T’
corresponds to a fan £(X), or just X, in Ng := N ®, @, which we will always assume to be
simplicial.

Let py,...,p, be the one-dimensional cones, called rays, of X. For any ray p;, denote
by v; the unique generator of p;, " N. For any 7 in {1,...,n}, we denote by D; the irreduc-
ible T-invariant Weil divisor defined by the ray p;. The free abelian group of T-invariant
Weil divisor is denoted by L.

n
Let:: M — L be the morphism that sends m — >_ m(v;). If the rays span Ng (which
i=1
is not a strong assumption®), the morphism : is injective, and fits into an exact sequence in
Coh(7)

(1.7) 0—-MSLL—A4—0,

2 Indeed, if the rays do not span Ng then X is isomorphic to the product of a torus and a toric variety X
whose rays span Ng.

AUTHOR'S COPY | AUTORENEXEMPLAR



AUTHOR’'S COPY | AUTORENEXEMPLAR

Fantechi, Mann and Nironi, Deligne-Mumford stacks 209

where A is the class group of X (i.e., the Chow group A'(X)). We deduce that the short
exact sequence of diagonalizable groups

(1.8) l1-G4— G, —T— 1.

Let Zy = C" be the G, = (C*)"-invariant open subset defined as Zy := |J Z,, where

gEX

Z, :={x|x; £0if p;, ¢ 6}. The induced action of G, on Zy has finite stabilizers (by the
simpliciality assumption) and X is the geometric quotient Zs/G 4, with torus (C*)"/Gy
(see [13], Theorem 2.1). For any i € {1,...,n}, the T-invariant Weil divisor D; < X is the
geometric quotient

(1.9) ({x; = 0} N Zs)/Gs.

If X is smooth then the natural morphism L — Pic(X) given by e; — Ox(D;) is sur-
jective and has kernel M; in other words, it induces a natural isomorphism 4 — Pic(X).

If X is a d-dimensional toric variety, we will write X° for the union of the orbits
of dimension > d — 1; in other words, X° is the toric variety associated to the fan
Y. :={oeX|dimg < 1}. The toric variety X is always smooth and the toric divisors
DS are smooth, disjoint, and homogeneous under the T-action (with stabilizer the one-
dimensional subgroup which is the image of p).

1.7. Picard stacks and action of a Picard stack. Deligne defined Picard stacks in 7],
Exposé XVIII, as stacks analogous to sheaves of abelian groups. For the reader’s conve-
nience, we collect here a sketch of the definition and the main properties we need; details
can be found in [7], Exposé XVIII, and also in [26], Section 14.

Here we summarize the definition of a Picard stack. For the details we refer to Defi-
nition B.1.

Definition 1.10. Let ¢ be a stack over a base scheme S. A Picard stack 4 over S is
given by the following set of data:

e a multiplication stack morphism m : ¥ x ¥ — %, also denoted by
m(g1,92) = g1 - 92;
® an associativity 2-arrow (g1 - ¢2) - 93 = g1 - (92 - 93);
® a commutativity 2-arrow ¢gi - g = ¢» - g1.
These data satisfy some compatibility relations, which we list in B.1.

The definition implies that there also exists an identity e: S — ¢ and an inverse
i : %9 — % with the obvious properties; in particular, a 2-arrow ¢ : (e - g) = g¢.

Definition 1.11 (see [7], Section 1.4.6). Let %, %’ be two Picard stacks. A morphism
of Picard stacks F : 4 — %’ is a morphism of stacks and a 2-arrow o such that for any two
objects g1, g» in ¥, we have

F(g1-92) = Flg1) - Flg2)-
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Again we refer to Appendix B for the list of compatibilities satisfied by «. The Picard
stacks over S form a category where the objects are Picard stacks and morphisms are
equivalence classes of morphisms of Picard stacks.

Remark 1.12. To any complex G* := [G~! — G'] of sheaves of abelian groups, we
can associate a Picard stack ¢. In this paper, G* will be a complex of diagonalizable groups
and the associated Picard stack is the quotient stack [G~!/G"].

Proposition 1.13 (see [7], Proposition 1.4.15).  The functor that associates to a length
1 complex of sheaves of abelian groups a Picard stack induces an equivalence of categories
between the derived category, denoted by D108, Z), of length 1 complexes of sheaves of
abelian groups and the category of Picard stacks.

In particular, if G is any sheaf of abelian groups on the base scheme S, the quotient
[S/G], i.e. the gerbe #G, is naturally a Picard stack.

We finish this section with a sketch of the definition of an action of a Picard stack
on a stack. This is a generalization of the action of a group scheme on a stack defined by
Romagny in [32]. We refer to Definition B.12 for the details.

Definition 1.14 (action of a Picard stack). Let ¢ be a Picard stack. Denote by e the
neutral section and by e the corresponding 2-arrow. Let 2" be a stack. An action of ¥ on ¥
is the following data:

e a stack morphism a : 4 x & — %, also denoted by a(g,x) = g x x;
® a3 2-arrow e X x = X;
® an associativity 2-arrow (g; - g2) X x = ¢ X (g2 X X).

These data satisfy some compatibility relations, which we list in Appendix B.

2. Deligne-Mumford tori

In this section we define Deligne-Mumford tori which will play the role of the torus
for a toric variety.

We start with a technical lemma.

Lemma 2.1. Let ¢ : A° — A' be a morphism of finitely generated abelian groups such
that ker ¢ is free. In the derived category of complexes of ng'tely generated abelian groups
of length 1, the complex [A° — A'] is isomorphic to [ker ¢ — coker ¢)].

Proof. We have a morphism of complexes

PLEAYL N YUINKAIPLY

tor tor

induced by the quotient morphisms. As ker ¢ is free, we deduce after a diagram chasing that
this morphism is a quasi-isomorphism of complexes. In the derived category, we replace
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A'/A° with a projective resolution [Z/ L zivt ]. Then the mapping cone of the morphism

tor ~
of complexes [0 — A°/A% ] — [Q: 7/ — 7] is [[#Q] : A°/ AL x 7/ — 7?*’] which is

tor
quasi-isomorphic to [4°/42 = 4'/A42 ]. A morphism of free abelian groups f is quasi-

isomorphic to the complex [ker /' — coker f] and this finishes the proof. []J

The reader who is familiar with the article [10] has probably recognized part of the
construction of the stack associated to a stacky fan.

Remark 2.2. Let ¢ : A° — A' be a morphism of finitely generated abelian groups as
in the above lemma. Applying the contravariant functor Hom(-, C*) of Section 1.5 to the
complex 4% — 4!, we get a length 1 complex of diagonalizable groups [G i Gol. Ac-
cording to Remark 1.12, the associated Picard stack [G 40/G 41] is a Deligne-Mumford stack
if and only if the cokernel of ¢ is finite.

Example 2.3. Let wy,...,w, be in Nog. Let ¢ : Z""! — Z that sends (ay, ..., a,) to
> wia;. We have that ker ¢ = Z" and coker ¢ = Z/dZ where d := gcd(wy,...,w,). Hence,
the associated Picard stack is (C*)" x Zu,.

Definition 2.4. A Deligne-Mumford torus is a Picard stack over Spec C which is
obtained as a quotient [G40/G 1], where ¢ : A° — A' is a morphism of finitely generated
abelian groups such that ker ¢ is free and coker ¢ is finite.

Let G be a finite abelian group. Notice that #G is a Deligne-Mumford torus. Recall
that by Proposition 1.13, T' x #G has a natural structure of Picard stack.

Definition 2.5. A short exact sequence of Picard S-stacks is the sequence of mor-
phisms of Picard S-stacks associated to a distinguished triangle in DI=1.9(S).

Proposition 2.6. Any Deligne-Mumford torus 7 is isomorphic as Picard stack to
T x BG where T is a torus and G is a finite abelian group.

Proof. Let 7 =[G0/G] with ¢ : A% — A" as above. The distinguished triangle
[ker Gy — 0] — [G 41 = G 4] — [0 — coker G,) in the derived category D=1 (Spec C) in-
duces an exact sequence of Picard stacks 1 - #G — 7 — T — 1 where T := G,40/G 1.
Proposition 1.13 and Lemma 2.1 imply that there is a non-canonical isomorphism of Picard
stacks 7 = 4G x T. [

Note that the scheme T in the previous proof is the coarse moduli space of 7.

3. Definition of toric Deligne-Mumford stacks

Definition 3.1. A smooth toric Deligne-Mumford stack is a smooth separated
Deligne-Mumford stack 2 together with an open immersion of a Deligne-Mumford torus
1:9 — & with dense image such that the action of 7 on itself extends to an action
a:T x¥ —-2%.

As in this paper all toric Deligne-Mumford stacks are smooth, we will write toric
Deligne-Mumford stack instead of smooth toric Deligne-Mumford stack. We will see later
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in Theorem 7.24 that our definition a posteriori coincides with that in [10] via stacky fans.
It seems natural to define a toric Deligne-Mumford stack by replacing smooth with normal
in the above definition. All the definitions and results in this section apply also in this case,
with the exception of Proposition 3.6 and Lemma 3.8. Ilya Tyomkin is currently working
on this. A toric orbifold is a toric Deligne-Mumford stack with generically trivial stabilizer.
A toric Deligne-Mumford stack is a toric orbifold if and only if its Deligne-Mumford torus
is an ordinary torus. Hence, the notion of toric orbifold is the same as the one used in [22],
Theorem 1.3.

Remark 3.2. (1) Separatedness of 2" and Proposition 1.2 imply that the action of 7
on % is uniquely determined by z.

(2) Notice that we have assumed in Section 1.2 that the coarse moduli space is a
scheme. Without this assumption, if the coarse moduli space X of a toric Deligne-Mumford
stack is a smooth and complete algebraic space then the main theorem of Bialynicki-Birula
in [9] implies that X is a scheme. We don’t know whether such an assumption is necessary
in general.

(3) A toric variety admits a structure of toric Deligne-Mumford stack if and only if it
is smooth.

Proposition 3.3. Let 2 be a smooth Deligne-Mumford stack together with an open
dense immersion of a Deligne-Mumford torus 1 : 7 — X such that the action of I on itself
extends to a stack morphism a : 7 x X — X. Then the stack morphism a induces naturally
an action of 7 on X

Proof.  We will define a 2-arrow 7 : a o (e,idy) = idy and a 2-arrow
g:ao(midy) = ao (idy,a)

such that they verify conditions (1) and (2) of Definition B.12. We will only prove the
existence of # because the existence of ¢ and the relations (1) and (2) follow with a similar
argument.

Denote by e : SpecC — 7 the neutral element of 7 and by m: .7 x 7 — 7 the
multiplication on 7. Denote by ¢ the 2-arrow mo (e,ids) = id». As the stack mor-
phism a extends m, we have a 2-arrow o : a o (ids, 1) = 1o m. Denote by f the 2-arrow
(e,idy) o1 = (ids,1) o (e,id5 ). Consider the two stack morphisms:

iy
gl .ox z.
ao(e,idy)
Applying Proposition 1.2 with the composition of the following 2-arrows

. id,+f . . axide id 7) . id, e . .
ao(e,idy) o1 =——= ao (ids,1) o (e,idy) =——= 10mo (e,idy) —= 10idy =idy o1,

we deduce the existence of 7 : a o (e,idy) = idy. [
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Definition 3.4. Let 2 (resp. 2”) be a toric Deligne-Mumford stack with Deligne-
Mumford torus 7 (resp. 7). A morphism of toric Deligne-Mumford stacks F : & — X' is
a morphism of stacks between 2 and 2’ which extends a morphism of Deligne-Mumford
tori 7 — 7"

Remark 3.5. The extended morphism F in the previous definition is unique by Pro-
position 1.2. Moreover the definition of morphism between Picard stacks and Proposition
1.2 provide us the following 2-cartesian diagram:

- FFl7)

AXxT — X'xT
al 0 la’
x r 7.

Proposition 3.6. Let & be a toric Deligne-Mumford stack with Deligne-Mumford
torus 7. Let X (resp. T) be the coarse moduli space of X (resp. 7). Then X has a structure
of simplicial toric variety with torus T where the open dense immersion1: T — X and the
action a: T x X — X is induced respectively by 1: T — X anda: T x ¥ — X.

Proof. The morphisms : and a induce morphisms on the coarse moduli spaces
7:T— Xanda: T x X — X, by the universal property of the coarse moduli space. It is
immediate to verify that 7 is an open embedding with dense image and & is an action, ex-
tending the action of 7T on itself. On the other hand, since X is the coarse moduli space of
Z, it is a normal separated variety with finite quotient singularities. Therefore X is a toric
variety, and it is simplicial by [21], §7.6, p. 121 (see also [15], Theorem 3.1, p. 28). [

Remark 3.7 (divisor multiplicities). According to [26], Corollary 5.6.1, the structure
morphism ¢: % — X induces a bijection on reduced closed substacks. For each
i=1,...,n, denote by 2, = Z the reduced closed substack with support ¢ !(D;).
Since D; N Xy is a Cartier divisor, there exists a unique positive integer «@; such that
e Y (D N Xm) = a (@i N E*I(Xsm)). We call a = (ay, ..., a,) the divisor multiplicities of Z .

Let Z be a toric Deligne-Mumford stack with Deligne-Mumford torus 7 = T x 4G.
By Appendix B, we have that ZG acts on 2. Proposition B.15 implies that we have an étale
morphism j : G X & — [&"(X).

Lemma 3.8. Let & be a toric Deligne-Mumford stack with Deligne-Mumford torus
T =T x BG. The morphism j: G x X — [5(Z) is an isomorphism.

Proof.  As the stack 2 is separated, we have that the natural morphism /(%) — 2
is proper. As the projection G x & — % is a proper morphism, the morphism j is also a
proper morphism. Its image contains the substack 7(7) = I¢"(7") which is open and
dense in 78"(%'). We deduce that the morphism j is birational. As the morphism j is étale,
it is quasi-finite (cf. [19], Exposé I, §3). The morphism j is proper hence closed and as its
image contains the open dense torus, j is surjective. The morphism j is a representable,
birational, surjective and quasi-finite morphism to the smooth Deligne-Mumford stack %
The stacky Zariski’s main theorem C.1 finishes the proof. [
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4. Canonical toric Deligne-Mumford stacks

In §4.1 we define the canonical smooth Deligne-Mumford stack associated to a
variety with finite quotient singularities and we show that a canonical smooth Deligne-
Mumford stack satisfies a universal property (Theorem 4.6). This should be well known,
but we include it for the reader’s convenience.

In §4.2, we characterize the canonical toric Deligne-Mumford stack via its coarse
moduli space.

4.1. Canonical smooth Deligne-Mumford stacks. In this subsection, we do not as-
sume that smooth Deligne-Mumford stacks are toric. First, we define canonical smooth
Deligne-Mumford stacks and then we prove their universal property.

We recall a classical result.

Lemma 4.1. Let S be a smooth variety, and T be an affine scheme. Let S' = S be an
open subvariety such that the complement has codimension at least 2 in S. Let f : 8" — T be
a morphism. Then the morphism f extends uniquely to a morphism S — T.

Proof. The morphism f corresponds to an algebra homomorphism
K[T] - F(S/, (QS/).

Since the complement has codimension 2, the restriction map I'(S, Os) — T'(S’, Us/) is an
isomorphism. []

Definition 4.2. (1) A dominant morphism f :V — W of irreducible varieties is
called codimension preserving if, for any irreducible closed subvariety Z of W and every
irreducible component Zy of f~'(Z), one has codimy Zy = codimy Z.

(2) A dominant morphism of orbifolds is called codimension preserving if the induced
morphism on every irreducible component of the coarse moduli spaces is codimension
preserving.

Remark 4.3. For any Deligne-Mumford stack, the structure morphism to the coarse
moduli space is codimension preserving. Every flat morphism and in particular every
smooth and étale morphism is codimension preserving. A composition of codimension
preserving morphisms is codimension preserving.

Definition 4.4. Let 2 be an irreducible d-dimensional smooth Deligne-Mumford
stack. Let ¢ : Z — X be the structure morphism to the coarse moduli space. The Deligne-
Mumford stack Z will be called canonical if the locus where ¢ is not an isomorphism has
dimension < d — 2.

Remark 4.5. Let 2 be a smooth canonical stack

(1) The locus where the structure map to the coarse moduli space ¢ : Z — X is an

isomorphism is precisely ¢! (Xm ), where Xy is the smooth locus of X.
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(2) The composition of the following isomorphisms
A'(X) S A" (Xgm) = Pic(Xgm) — Pic(e™!(Xam)) — Pic(Z)
is the map sending [D] to O(¢~'(D)).

Theorem 4.6 (universal property of canonical smooth Deligne-Mumford stacks). Let
% be a canonical smooth Deligne-Mumford stack, ¢ : % — Y the morphism to the coarse
moduli space, and f : X — Y a dominant codimension preserving morphism with & an orbi-
fold. Then there exists a unique, up to a unique 2-arrow, g : ¥ — % such that the following
diagram is commutative:

Jlg
%’

N

Proof. We first prove uniqueness. Any two morphisms g, g making the diagram
commute must agree on the open dense subscheme f ! (Ysm). Putz: f -1 (Ysm) — Z. Since
% is assumed to be separated, by Proposition 1.2, there exists a unique « : ¢ — § such that
o *id, = id.

By uniqueness, it is enough to prove the result étale locally in %/, so we can assume
that % = [V'/G] where V is a smooth affine variety and G a finite group acting on V" with-
out pseudo-reflections. It is enough to show that there exists an étale surjective morphism
p: U— % with U a smooth variety and a morphism g: U — % such that fop==¢og.
In fact, g is defined from g by descent, with the appropriate compatibility conditions
being taken care of by the uniqueness part. In this case Y = V' /G, and Yy := V,)/G where
Vo = V is the open locus where G acts freely. Let Up:= (f o p) ' (Yo). As [Vo/G] is
isomorphic to Yj, we have a natural morphism Uy — [V/G]. This morphism defines a
principal G-bundle Py on Uy and a G-equivariant morphism sy : Py — V.

Vo

(4.7)

Y =V/G
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Since the U\U, has codimension = 2, the principal G-bundle P, extends uniquely to a
principal G-bundle P over U, and by Lemma 4.1 (since V is affine) the G-equivariant
morphism sy : Py — V) extends to a morphism s: P — V' which is again G-equivariant,
yielding a morphism g: U — [V/G]. The construction above is summarized in the 2-
commutative diagram (4.7) where the squares are 2-cartesian. []

Corollary 4.8. Let &' (resp. %) be a canonical smooth Deligne-Mumford stack with
coarse moduli space X (resp. Y). Let f : X — Y be an isomorphism. Then there is a unique
isomorphism f : X — % inducing f.

Proof. 1t is enough to apply the theorem twice, reversing the role of Z and %. []

Remark 4.9. One can use the corollary to prove the classical fact that every variety
Y with finite quotient singularities is the coarse moduli space of a canonical smooth
Deligne-Mumford stack unique up to rigid isomorphism, which we denote by #“*" (do
it étale locally and then glue). If Y is the geometric quotient Z/G where Z is a smooth
variety and G is a group without pseudo-reflections acting with finite stabilizers, then
@ = [Z/G]. Notice that this is the case of simplicial toric varieties (cf. Section 1.6).

We finish this section with a corollary that will play an important role.

Corollary 4.10. Let % be a smooth Deligne-Mumford stack with coarse moduli space
e: X — X. There is a unique morphism & — X" through which ¢ factors.

Proof. Apply the theorem with ¥ = X, % = 2" and f =e. [

4.2. The canonical stack of a simplicial toric variety. In this section, we study the
canonical stack associated to a simplicial toric variety.

The main result of this section is the following theorem.

Theorem 4.11. Let X be a simplicial toric variety with torus T. Its canonical stack
Z " has a natural structure of toric orbifold such that the action a®®® : T x X" — X" lifts
the actiona : T x X — X.

Proof. Denote by X the fan in N ®; Q of the toric variety X. Without loss of gen-
erality, we can assume that the rays of ¥ generate N ®; Q, so that X = Zz/G4 (cf. §1.6).
The subvariety of points where G4 acts with non-trivial stabilizers has codimension = 2.
Remark 4.9 implies that the canonical stack Z“" is isomorphic to [Zz/G,4]. Let
T := (C*)"/G4 be the torus of the toric variety X. Notice that 7 “** = [(C*)"/G,4] is open
dense and isomorphic via | ,«n to 7. Proposition 3.3 and the universal property (see The-
orem 4.6) of the canonical stack imply that the action of 7" on X lifts to an action of 7" on
%can' D

Remark 4.12. (1) Under the hypothesis of Theorem 4.11, we have that the restric-
tion of the structure morphism ¢ : 2" — X to 7 “*" is an isomorphism with 7.

(2) Let 2 be a canonical toric Deligne-Mumford stack with Deligne-Mumford
torus J =T with coarse moduli space the simplicial toric variety X. Denote by
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Y < Ng := N ® Q the fan of X. Assume that the rays of X generate Ng. The proof above
shows that 2 = [Zs/G 4] where G, = Hom(A'(X),C") = Hom(Pic(%),C") (cf. Remark
4.5(2)).

Corollary 4.13. Let Z be a canonical toric Deligne-Mumford stack with torus 7 =T
and coarse moduli space the simplicial toric variety X. Denote ¥ = Ng the fan of X.

(1) The boundary divisor Z\T is a simple normal crossing divisor, with irreducible
components, denoted by 9;. Moreover, if the rays of X generate Nq, then the divisor 9; is
isomorphic to [Z;/G4| where Z; = {x; = 0} n Zs.

(2) The composition morphism L — A'(X) 2 Pic(Z) sends e; to Oy (Z;).

Proof.  The first point of the corollary follows from the fact that the inverse image
inside Zs of the torus 7' = (C*)"/G4 is (C*)".

The second part of the corollary follows from the exact sequence (1.7) and Remark
45(2). O

Remark 4.14. Let 2 be a canonical toric Deligne-Mumford stack with coarse mod-
uli space X.

(1) Denote by X the fan of X in Ng. If the rays of X span Ng, from the corollary and
the exact sequence (1.7), we have the exact sequence

0—-M— L— Pic(2)— 0.

(2) Foranyie{l,...,n}, the divisor Z; is Cartier. Hence it corresponds to the inver-
tible sheaf (/(Z;) with the canonical section s;. Using Remark 1.1, the invertible sheaf
0(2;) is associated to the representation G, — G, = (C*)" 25 C* where p; is the i-th pro-

jection. Moreover, the canonical section s; is the i-th coordinate of Zs.

(3) Let 2 be a canonical toric Deligne-Mumford stack, then all divisor multiplicities
of 2 are equal to 1 (for the definition of divisor multiplicity see Remark 3.7).

5. Toric orbifolds

In this section, we only consider toric Deligne-Mumford stacks with trivial generic
stabilizer that is toric orbifolds.

Let Z be a smooth Deligne-Mumford stack with coarse moduli space X. By Proposi-
tion 3.6 and Theorem 4.11, the canonical stack 2°“*" has an induced structure of toric
orbifold. Denote by ¢y : ' — X (resp. egen : " — X) the morphism to the coarse
moduli space. Theorem 4.6 implies that there exists a unique f : % — Z“" such that
ggem o [ =éq.

Proposition 5.1. Let Z be a toric orbifold with torus T and coarse moduli space X.

The canonical morphism f : % — X" is a morphism of toric Deligne-Mumford stacks
where " is endowed with the induced structure of toric orbifold.
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Proof. The universal property of the canonical stack (cf. Theorem 4.6) applied to
id : T — T implies that f|, : T — 7. O

Notice that the morphism f|; : T — 7 ““" in the proof above is an isomorphism be-
cause Z is a toric orbifold.

Denote D" := (D{*", ..., D*") (cf. Section 1.3.b).

Theorem 5.2. (1) Let X be a simplicial toric variety with torus T. Denote by X a fan
of X. For each ray p; of £, choose a; in Nsy. Denote a:= (ay,...,a,) € (Nso)". Then
/DX has a unique structure of toric orbifold with torus T such that the canonical
morphism 7 : /D" /X — X is a morphism of toric Deligne-Mumford stacks with
divisor multiplicities a.

(2) Let Z be a toric orbifold with coarse moduli space X. Let a := (ay,...,ay,) be its
divisors multiplicities. Then X is naturally isomorphic as toric Deligne-Mumford stack to

/D XN defined in (1).

Proof. (1) Let 7 " < 2™ be the inverse image of 7' (which is isomorphic to T').
Note that 7~ !(T) < /D" /2" is isomorphic to .7 “" by property (2) of Section 1.3.b.
Let j: T — /D" /2" be the dominant open embedding. We need to prove that 7'
acts on /D" /2" compatibly with j. We know that 7 acts on Z“". To define
T x /D)X — /D" /X" we use the universal property and the fact that

D" < 2" is T-invariant.

(2) Foranyie {l,...,n}, denote by D;, Df*", 2,(Z’) the divisor corresponding to the
ray p; in respectively X, 2" and 2. Theorem 4.11 implies there exists a unique morphism
f X — X such that ggen o f = g4. By definition of the divisors multiplicities, for any
ray p;, we have f 1D = 4;%,(Z). The Cartier divisors Z(Z) := (21(Z), ..., Zu(Z)) de-
fine a morphism 2" — [A”/(C*)"] such that the following diagram is 2-commutative:

x 2 Ay
(53) f Aa

J/ Dcan J/*n

aem 22 Ay

where the morphism Aa is defined in Section 1.3.b. By the universal property of fiber prod-
uct, we deduce a unique morphism g : Z — /D" /2" such that the following diagram is
strictly commutative:

SO

%‘ can
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We will use the Zariski’s main theorem (cf. Theorem C.1) to prove that g is an iso-
morphism. We first notice that /D" /Z " is smooth for property (3) in §1.3.b. As, the
restriction of g over 2" — ) Dj*" n D{*" is an isomorphism, the morphism g is birational.

i,j
Notice that |JDf* n Df*" is a subset of codimension = 2. The morphism g is proper,

i.j
hence closed, so we deduce that g is also surjective because its image contains the dense
torus. Let us show that g is representable and étale. Let S be a scheme. Consider the fol-
lowing 2-cartesian diagram:

Let U — % be an étale atlas of %. First we observe that the morphism U — S, denote it by
g, must be flat, so that the morphism g¢ is flat too. To verify this we can apply [27], Thm.
23.1, using that both S and U are smooth and the dimension of the fibers of g is constantly
zero. To prove that the dimension of the fibers is zero we just need to observe that both z
and f are quasi-finite, since they are morphisms from a stack to its coarse moduli space,
and f factors through ¢ so that it must be quasi-finite too. We now note that the morphism
U — S is ¢tale away from a codimension = 2 subset, so we can apply the theorem of
purity of branch locus (cf. [5], Theorem 6.8, p. 125) and deduce that U — S is étale, i.e.,
g:% — S is étale. Without loss of generality we can assume that S is actually an atlas;
we assume that % is a stack and we prove that it must be actually a scheme. First of all we
observe that it cannot have generically non-trivial stabilizer, since the morphism % — & is
representable it must induce an injection of the stabilizer at each geometric point [4], but &
is an orbifold so that % must be an orbifold too. There exists an ¢tale representable map
[V/K] — % where V is a smooth variety and K is a finite group. Hence the induced map
V' — S is étale. By the universal property, it factors via the coarse moduli space V'/K, and
the map ¥ — V/K is not injective on tangent vectors unless K is acting freely, hence
V' — V /K cannot be étale unless % has trivial stabilizers everywhere. We now observe
that the morphism /K — S is still birational surjective and quasi-finite, using Zariski’s
main theorem for schemes we can deduce that it is an isomorphism, in particular it is étale
and this implies that V' — V/K must be étale. We conclude that % is a scheme, i.e., g is
representable and étale. So it is also quasi-finite (cf. [19], Exposé I, §3).

As the morphism ¢ is representable, surjective, birational and quasi-finite, the stacky
Zariski’s main theorem C.1 implies that g is an isomorphism. []

The following corollary is a consequence of property (3) of Section 1.3.b and Theo-
rem 5.2.

Corollary 5.4. Let Z be a toric orbifold with coarse moduli space X. The reduced
closed substack Z\T is a simple normal crossing divisor.

Remark 5.5. Let 2 be a toric orbifold with coarse moduli space X. Diagram (1.4)
and Theorem 5.2 imply that we have the following morphism of exact sequences:
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0 z" z" P7/a7 — 0

(5:6) | | | N

n
0 —— Pic(z™) -1 Pic(?) —— Pz/az — 0
i=1

where the vertical morphisms send 1 — O(Df*") and 1 — 0(Z;).

6. Toric Deligne-Mumford stacks

In this section we will show that each toric Deligne-Mumford stack is isomorphic to a
fibered product of root stacks on its rigidification. To prove this theorem, we will recall in
Section 6.1 the relation between banded gerbes and root constructions. Then we will show
in Theorem 6.11 that any toric Deligne-Mumford stack is an essentially trivial gerbe on its
rigidification. In Section 6.3, we will prove the main result in Theorem 6.25.

6.1. Gerbes and root constructions. First, we recall some general notion on banded
gerbes (gerbes liées). We refer to [18], chapter V.2, for a complete treatment and to [16],
Section 3, for a shorter reference. Let 2 be a smooth Deligne-Mumford stack. Let G be an
abelian sheaf of groups® and ¥ — 2 a gerbe. For every étale chart U of 2" and every ob-
jectx e 9(U) let o, : G|, — Auty(x) be an isomorphism of sheaves of groups such that the
natural compatibilities coming from the fibered structure of the gerbe are satisfied. The col-
lection of these isomorphisms is called a G-banding. A G-banded gerbe is the data of a gerbe
and a G-banding. Two G-banded gerbes are said to be G-equivalent if they are isomorphic
as stacks and the isomorphism makes the two bandings compatible in the natural way. Gir-
aud proved in [18] (Chapter 1V, 3.4) that the group HZ(Z', G) classifies equivalence classes
of G-banded gerbes.

Remark 6.1. We anticipate some observations about the banding which will be use-
ful in the following:

(1) The b-th root of a line bundle on %" is a gerbe which is banded in a natural way by
the constant sheaf y,; the banding is the canonical isomorphism between the group of auto-
morphisms of any object and .

(2) Given ¥ — 2 a G-banded gerbe, every rigidification of % by a subgroup H of G
inherits a (G/H)-banding from the G-banding of %.

Here we introduce the concept of an essentially trivial gerbe which will play an im-
portant role in this section. The Kummer sequence

1= 5 Gy LGy — 1

3 The non-abelian case has a richer structure but for the sake of simplicity we just skip all these additional
features and refer the interested reader to [18].
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induces the long exact sequence
(62) = HY, Gy) S HE(T ) > HAX, ) —

Definition 6.3. A ,-banded gerbe in HZ(Z', 1) is essentially trivial if its image by 1,
is the trivial gerbe in H2(Z', G,n).

Remark 6.4. (1) It follows from Section 1.3.a that a u,-banded gerbe is essentially
trivial if and only if it is a b-th root of an invertible sheaf on %

(2) As the uy-banded gerbe /L ® M® /% is isomorphic to v/L/Z, we deduce a
bijection between essentially trivial x,-banded gerbes and Pic(%) /b Pic(%).

Lemma 6.5. There is a natural bijection between essentially trivial gerbes in HZ (X, ;)
and elements in Ext! (Z/b7,Pic(X)).

Proof. By Remark 6.4(2), it is enough to show that Ext'(Z/bZ,Pic(Z)) is isomor-
phic to Pic(%) /b Pic(Z). This follows from the exact sequence

Hom(Z, Pic(Z)) 22 Hom (Z, Pic(Z)) — Ext' (Z/b, Pic(Z)) — 0. [

Let G be a finite abelian group. Fix a decomposition G = H ty,- We deduce an iso-
morphism

/
(6.6) %maegﬁwﬁx
j=
o= (O, ..., 0).

Definition 6.7. Let G be a finite abelian group. A G- banded gerbe associated to
aeH Z(I G) is essentially trivial if there is a decomposition of G = H 1y, such that for any
je{l,...,/}, the Hy,-banded gerbe o is essentially trivial. J=1

Remark 6.8. Being essentially trivial does not depend on the choice of a decomposi-
tion of G.

Proposition 6.9. Let G be a finite abelian group. Fix a decomposition of G = H M-
There are bijections between

{Essentzally trivial gerbes in @ HZ(Z )}

]_

& {Fibered products over X of bj-th roots of invertible sheaves}
1 L /
& 1 Pic(2) /b Pic(Z) £ T] Ext! (Z/b;Z, Pic(Z)).

J=1 J=1
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Remark 6.10. To be more concrete, let us explicitly describe the last bijection. For
the sake of simplicity, we consider the case j = 1. To the class [Lo] in Pic(Z) /b Pic(%Z), we
associate the extension

0— PIC(%) g PIC(%) XPic(Z)/b Pic(7) Z/bZ — Z/bZ — 0

where the fiber product is given by the standard projection Pic(2) — Pic(2)/b Pic(Z’) and
the morphism Z/bZ — Pic(Z') that sends the class of 1 to the class [Lo]. The first morphism
in the extension sends the invertible sheaf L to (L®?,0).

Let 0 — Pic(2) — A — Z/b — 0 be an extension. We consider the projective resolu-

tion 0 - 723577 /b — 0. There exists f and f such that the following diagram is a
morphism of short exact sequences:

0 i z Z/b —— 0

ool

0 —— Pic(Z) — A4 —— Z/b —— 0.

The class [ f(1)] in Pic(Z) /b Pic(Z') is the element that corresponds to the above extension.

Notice that different liftings f, f lead to different elements in Pic(%) with the same class in
Pic(%Z')/bPic(¥).

The two maps defined above are inverse to each other.
Proof of Proposition 6.9. Most of the proposition is a direct consequence of Remark
6.4 and Lemma 6.5. The only non-trivial fact to prove is that an essentially trivial gerbe
/
defined by o = (a1, ...,0/) € P HZ(Z, Hy,) is given by a fiber product of the gerbes defined
j=1

by the o;’s. Without loss of generality, we can assume that « = («;,y); the general case is
proved by induction. The gerbe defined by «; (resp. o) is isomorphic to the rigidification
Y/, (resp. % /i, ). Hence we have the following 2-commutative diagram:

G,
d
4 x
N7
G, -

Remark 6.1(2) implies that ¥ — 4//u, (resp. 9 — 9/lw,,) is a u, -banded gerbe (resp.
Uy, -banded). By the universal property of the fiber product we are given a morphism
Y — G/Ju,, <o 9/Ju,,. Two gerbes banded by the same group over the same base 2
are either isomorphic as stacks or they have no morphisms at all; this completes the

proof. []
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6.2. Gerbes on toric orbifolds.

Theorem 6.11. Let 2 be a toric orbifold with torus T. Denote by 1: T — X the
immersion of the torus. Then the morphism

" HA(Z,Gp) — HA(T, Gy)
is injective.

Notice that in the following proof we will use that a toric orbifold is a global quotient
[Zs/Gy] where Gy := Homy (Pic(Z), C*). This will be proved in Theorem 7.7 and does
not depend on the results of this subsection.

We first proof some preliminary results.

Lemma 6.12 (Artin). Let S be a smooth quasi-projective variety, S, < S a closed
subscheme of codimension = 2. Then the natural map Héit(S, Gm) — Hgt(S\Sz, Gn) is an
isomorphism for all i.

Proof. The statement is obvious if we replace sheaf cohomology with Cech coho-
mology. To prove the lemma, we just apply [6], Corollary 4.2, p. 295 (see also [28], Theo-
rem 2.17, p. 104). O

Lemma 6.13 (Olsson). Let 2 be an Artin stack and X, an atlas. Denote by
X, = Xo Xg -+ Xg Xo. Let F be an abelian sheaf of groups on X and F, its restriction to
X,. There is a spectral sequence with E{(Z) := H{(X,, ) that abuts to H. (%, F).

Proof. This lemma follows immediately from [30], Corollary 2.7, p. 4 and Theorem
4.7, p.13. OO

Proof of Theorem 6.11. Let Z be a toric orbifold with coarse moduli space a simpli-
cial toric variety X. Denote by £ — Ng the fan of X. Without lost of generality, we can
assume that the rays of X generate Ng.

By Theorem 5.2 in the case of orbifolds and Lemma 7.1, we have that Z = [Zy/ G|
where Gy := Homyz (Pic(Z),C*). Denote by n the number of rays of the fan X. Put

Z 2_{2622CC”|Vi€{17--~7n}7HZj_0}
J*i

the union of T-orbits in Zs, of codimension = 2. The closed subscheme Z, of Zs is of codi-
mension 2. Hence the quotient stack [(Zx\Z>)/G«] is a closed substack of codimension 2 of
Z.Foranyie{l,...,n}, put

U:={zeZs cC"|Vje{l,...,n}\{i},z; + 0}.

We have that U; is isomorphic to A! x (C*)"~" and that the natural morphism
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is étale and surjective. We deduce that [[ [U;/Gy] — [(Zs\Z)/Gy] is étale and surjec-

ie{l,..,n

}
tive. Put Xo:= ][] U The natural morphism Xy — [(Zz\Z>)/Gy] is an étale atlas.
ie{l,. n}

Denote X, = Xy x4 --- Xz Xo. From Lemma 6.13 we have a spectral sequence
EYN(Z) := H{(X,, Gul|y,) abutting to H!"([(Zs\Z>)/G#], Gy). Using this spectral se-
quence and Lemma 6.12 we obtain that the natural morphism

HL(%, Gn) = H (((Z:\22)/ G, G)

is an isomorphism for i = (0, 1,2). Finally, the theorem follows from Lemmas 6.14 and
6.15. O

Lemma 6.14. We have the following morphism of short exact sequences:

0 — EX@Z) —— HiZ,G,) — EX(Z) — 0

L

0 — E}%7) — HX(T,G,) — E*(7) —— 0.

Lemma 6.15. The vertical maps o : E3(Z) — E*(7) and B : EX*(X) — EX(T)
are injective.

Proof of Lemma 6.14. To prove the lemma, we are just interested in ELY(Z) for
p + g = 2. We start by proving that we have

(6.16) 0 — EX(2) — HA(Z,G,) — E®(Z) — 0.
Hilbert’s Theorem 90 (cf. [28], Proposition 4.9) implies that
Hélt(X[” Gm) = HZIariski(XP7 @;p) = PIC(XP)

Using the notation of the proof of Theorem 6.11, for any ray i € {1,...,n}, we have that
[U;/ Gy) is isomorphic to [A! /u,] x (C*)"~" where a; is the multiplicity along the divisor &,

(cf. Remark 3.7). Hence, we have that X, = I Ui,-..;, where
i0yeyip €{1,...,m}
. P+l i = =1
Uiguiy = {Um X M= =
T otherwise.

Hence, for any p we have that E/' (2) = E%) (%) = HL(X,, G,,) = 0. We deduce the exact
sequence (6.16).

We now show that E2(%Z) = EZ°(Z) and E2(Z) = E*(Z).
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q q
LA A . .
" “%‘ N
0 e m@ e 0 -----=0 o, ©@. o o
b
1253
d d, d TN
P ~ p

Figure 1. Terms E(Z') and EY'(Z)

®

Figure 2. Terms EY (%) and E}* (%)
In Figures 1 and 2, the circled terms mean that they will stay constant that is they are
equal to E2(Z). We deduce that E2(Z) = E3°(Z) and E®(Z) = E(Z).
The same argument for 7" proves the lemma. []

Proof of Lemma 6.15. First, we show that the morphism o : E;°(2) — E}(T) is
injective. From Figures 1 and 2, we have that

(6.17) EP (%) = ker(ds : E°(%) — E* (),
(6.18) EP(T) =ker(ds : E5°(T) — E3*(T)).

Moreover, we have that

(6.19) EX(%) = ker(d, : H3(Xo, Gy) — Hz(X1,G)),

(6.20) EP(T) = ker(di : H3(To, Gy) — Hz(T1,Gy)).

Recall that U; ~ A' x (C*)"! and T, = (C*)". By Grothendieck’s Exposés on the Brauer
group [20], §6, p. 133, we have the following long exact sequence:

6.21) - — HZ

0

,TO(XO; Gm) - Hézt(XOa G’m) - Hézt(TOa Gm) —
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Moreover, we have that:

e The spectral sequence FJ4 ::Hl’((Xo\TO), XO\T (X0, Gy)) converges to
Hx)\1,)(Xo0, G).

o H(OXU\TO)(XO, Gpm) = H(ZXO\TO>(XO, Gm) = 0 and HX 1) (X0, G) = Z.

This implies that F20 = F2 = 0. As Xo\Tp = (C*)""", we have that
F)' = H' (X)\Ty,Z) = 0.

The spectral sequence F3? implies H&)\T())(Xo, Gn) = 0. Hence, sequence (6.21) and
equalities (6.17), (6.18), (6.19) and (6.20), imply that « is injective.

Let us prove that § : ES*(%) — E3*(T) is injective. Recall that EY*(%) = ker d>/Im d,
and EY*(T) = kerd,/Imd,. We have the following commutative diagram:

HO(Xth) L HO(X27Gm) L} HO(X37(G’m)

[, f

H(T),G) —2 HYT,Gp) —2s HO(Ts, Gy,

As Ty — Uy is open and dense, the vertical maps are injective. Notice that these maps
are isomorphisms except on U; and Uy. Let ye H O(Til-,Gm) such that there exists

x e H(Uy, G,,) that lifts 51()7), i.e., we have the following diagram:

X

1
y —— o).

The morphism 52|T,~,~ . HO(Tiia Gm) — HO(Tm', Gm) is deﬁned, for any JN/ € HO(T,',', Gm) and
any t,g,h € Ty = Ti X pt,, X ft,,, by

52|T( )(t g7h) = f(hl‘,g)j/(t,h)/j/(l,gh)

The divisor U; \T is a principal divisor associate to the rational function ¢. For any g € u,,

the functlon ¥ is rational on Uy, = U; x {g}. Hence there exists a unique n(g) in N* such
that 9" is a regular functlon on U; x {g}. As p(ht,g)y(t,h)/y(t,gh) is a regular func-
tion, we deduce that ¢"@)+7(-n9h) — 1 Hence, the function # : U, — Z 1s a group homo-

morphism, therefore n(g) = 1 for every g. We deduce that y is a regular function on U;
which implies that the morphism f : EY*(2) — EY*(7) is injective. [

6.3. Characterization of a toric Deligne-Mumford stack as a gerbe over its rigidifica-
tion. Let 2 be a toric Deligne-Mumford stack with Deligne-Mumford torus . isomor-
phic to 7 x BG and coarse moduli space X. Denote by 2’ the rigidification of 2" (cf. Sec-
tion 1.4) which is by definition an orbifold with coarse moduli space X. The universal
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property of the rigidification and of the canonical stack (see Proposition 1.5 and Corollary
4.10) imply that we have the following strictly commutative diagram:

g I~ grg

(6.22) fl %

%can.
Section 1.4 and Lemma 3.8 imply that we can define Z//G.

Lemma 6.23. Let % be a toric Deligne-Mumford stack with Deligne-Mumford torus
T isomorphic to T x BG.

(1) The orbifold X"8 is canonically isomorphic to 4 [|G.

(2) There is a unique structure of toric orbifold on & e \ith torus T such that the mor-
phism r: X — X" is a morphism of toric Deligne-Mumford stacks induced by 5 — T.

Remark 6.24. Let 2 be a toric Deligne-Mumford stack with Deligne-Mumford
torus 7 isomorphic to 7" x G and coarse moduli space X.

(1) Proposition 5.1 implies that the morphism f"¢ : '8 — 2°4" is a morphism of
toric Deligne-Mumford stacks. Hence we deduce that the commutative diagram (6.22) is
a commutative diagram of morphisms of toric Deligne-Mumford stacks.

(2) Let H be a subgroup of G. The stack #//H is a toric Deligne-Mumford stack
with Deligne-Mumford torus isomorphic to 7 JH ~ T x %#(G/H). Moreover, the natural
morphisms 2 — Z//H and Z//H — Z//G are morphisms of toric Deligne-Mumford
stacks.

(3) Note that we did not use the non-canonical isomorphism . = T x #G but only
the short exact sequence of Picard stacks | - #G — 7 — T — 1.

Proof of Lemma 6.23. (1) As .7 [/G is isomorphic to the scheme 7" which is open and
dense in Z'//G, the stack Z//G is an orbifold which is canonically isomorphic to 2 ™¢.

(2) The morphisms 7: .7 — 2 and a : 7 x 2 — % induce morphisms on the rigid-
ifications 1€ : 7 /G ~ T — 2" and a"¢: T x 2" — 2" by the universal property of
the rigidification (see Proposition 1.5). It is immediate to verify that a"¢ is an action, ex-
tending the action of 7" on itself. As r~!(T') is isomorphic to .7, we deduce that this is the
only toric structure on 2" which is compatible with the morphism r. [

Since the morphism r : Z — 2" is étale, the divisor multiplicities of Z and 2™ are
the same.

Theorem 6.25. (1) Let % be a toric orbifold with Deligne-Mumford torus T. Let
X — ¥ be an essentially trivial G-gerbe. Then 4 has a unique structure of toric Deligne-
Mumford stack with Deligne-Mumford torus isomorphic to T X G such that the morphism
X — % is a morphism of toric Deligne-Mumford stacks.
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(2) Conversely, let Z be a toric Deligne-Mumford stack with Deligne-Mumford torus
T ~T x BG. Then X — X" is an essentially trivial G-gerbe.

Proof. (1) The inverse image of 7 in Z, denoted by 7, is open dense. The restric-
tion of the essentially trivial G-banded gerbe # — % to T is the essentially trivial G-banded
gerbe 7 — T. Remark 6.4(1) implies that the gerbe 7 — T is trivial. The action of 7" on
% induces by pullback an action of . on Z. This is the only structure of toric Deligne-
Mumford stack on Z compatible with the morphism Z — %.

(2) Denote by o € H2(2™, G) the G-banded gerbe 2 — 2. By Proposition 2.6,
the restriction of « on the Deligne-Mumford torus g is the trivial G-banded gerbe in

HZ(T,G). Fix a cyclic decomposmon of G = H ty,- By the isomorphism (6.6), the class
is sent to (ap,...,0/) € @HZ (S{'“g,,u ). We have that for any j e {1,...,/}, the class of

oj restricts to the trivial class in HZ(T, ty,)- Theorem 6.11 states the injectivity of * in the
following diagram:

Hy (27, Gp) ——— HZ(A™, 1) ——— HL(X™, Gy)

| l §

ree = Hézt(T,,ubj) —— H(T,G,).
A simple diagram chasing finishes the proof. []

Corollary 6.26. Let X be a toric Deligne-Mumford stack with Deligne-Mumford
torus  isomorphic to T x AG.

(1) Given G = H ty,- There exists L; in Pic(Z 88 such that X is isomorphic as G-

banded gerbe over X fig Zo

by / : by [ :
\ Ll/%rlg X?]vrig"' X%rig ( L(/%rlg.

‘ _ 4
Moreover, the classes ([Li], ..., [L]) in ] Pic(Z™®)/b; Pic(Z"®) are unique.
=1

(2) The reduced closed substack Z\7 is a simple normal crossing divisor.
The first part of the corollary is very similar to [31], Proposition 2.5.

Remark 6.27. Let 2 be a toric Deligne-Mumford stack with Deligne-Mumford
‘
torus 7 isomorphic to 7' x #G and G = [] w, . Diagram (1.3) and the corollary above

j=1
imply that we have the following morphism of short exact sequences:
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xb

4
0 yAd 7 —— P7/h7 — 0

w 7

0 —— Pic(2"e) — Pic(?) —— PZ/bZ — 0
j=1
where the vertical morphisms sends ¢; — L; and ¢; — le/ b
Proof of Corollary 6.26. Theorem 6.25(2) implies that 2 — 2™ is an essentially
trivial G-banded gerbe. The first statement follows from Proposition 6.9.

By Corollary 5.4, we have that the reduced closed substack 2 rig\ 7718 i5 a simple nor-
mal crossing divisor. As the morphism 2 — Z"# is ¢tale, we deduce the second statement
of the corollary. []

7. Toric Deligne-Mumford stacks versus stacky fans

In this section, we will show that the toric Deligne-Mumford stacks that we have
defined correspond exactly with those of [10].

In the first subsection, we show that our toric Deligne-Mumford stacks with a span-
ning condition are global quotients. The second subsection makes the correspondence with
the article of [10].

7.1. Toric Deligne-Mumford stacks as global quotients. Let Z be a subvariety in C”
of codimension equal or higher than two. Let G be an abelian group scheme over C that
acts on Z such that [Z/G] is a Deligne-Mumford stack. According to Remark 1.1, a line
bundle on [Z/G] is given by a character y of G. Hence the data of an invertible sheaf L with
a global section s on [Z/G] give a morphism of groupoids between [Z/G] and [A!/C*].
Explicitly, this morphism is given by (s,7) : Z x G — Al x C* and 5 : Z — Al

In the following lemma, we use a slightly more general notion of a root of Cartier
divisors that is a root of invertible sheaves with global sections. All the properties of Section
1.3.b are still true (see [12] or [2]).

Lemma 7.1. Let Z be a scheme. Let G be an abelian group scheme over C that acts
on Z such that [Z/G) is a Deligne-Mumford stack. Let (L,s) := ((Ly,s1), ..., (Lk,s))
be k invertible sheaves with global sections over the quotient stack [Z/G]. Denote by
x:=(x1,---,2x) the representations associated to the invertible sheaves L. Let
d:=(d\,....d) be in (Nso)~.

(1) We have that </(L,s)/[Z]G] is isomorphic to [Z/G) where Z and G are defined
by the following cartesian diagrams:

Z — A G — G
l O l/\d J/w O l/\d

7z - Af ¢ 25 GK
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The action of G on Z is given by
(g7 (ila s 7}~k) ’ (Z7 (xlv‘ e ,Xk))) = (gZ, (llxla' . 7/1kxk))
for any (g, (il,...,/lk)) e G and (z, (x1, ...,xk)) eZ.

(2) We have that \/L/|Z/G] is isomorphic to [Z/ G] where G is defined above. The
action of G on Z is given via ¢.

Proof. It is a straightforward computation on fibered products of groupoids. []

k
Remark 7.2. (1) We have that ker ¢ is isomorphic to ] #,. Notice that the action of

- i=1

G on Z in the second part of the proposition above implies that the kernel of ¢ acts trivially

~ k
on Z. Hence, [Z/G]is a [ uy-banded gerbe over [Z/G].
=1

1

5 k
(2) In both cases we have that G € Ext! <G, H1 ,ud,_>.

]

k
Lemma 7.3. Let A be an abelian group of finite type. Let E in Ext! <@ Z/d;7, A). If
we have a morphism of short exact sequences i=1

k
S T E ) TR Y 2 a—;
i=1
Lol
k
0 A E —— @7/dZ —— 0

i=1
then the left square is cocartesian.

Remark 7.4. Diagrams (5.6) and (6.28) imply that we have the following cocartesian
diagrams:

Z/ xb Z/ Z” xXa Zn

I A T

Pic(2) —— Pic({/L/Z), Pic(Z) —— Pic(y/D]/7).

Proof of Lemma 7.3. Denote by P the push-out of Z¥ — Z* and 7Z*¥ — A. Using the
universal property of co-cartesian diagrams we deduce a morphism f from P to E and the
following morphisms of extensions:

(25 e k

0 gk e 7k D7/d7 ——— 0
[ i=1

0 A N & coker(qg) ——— 0

s $

k

0 A E — ®7/dZ —— 0.
i=1
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Notice that the composition f o « is the isomorphism in Lemma 7.3. By simple diagram
chasing, we deduce that f is an isomorphism. []

Remark 7.6. Let 2 be a toric Deligne-Mumford stack with coarse moduli space X.
Proposition 3.6 implies that X is a simplicial toric variety. Denote by X a fan of X. Assume
that the rays of X generate Ng. As explained in Section 1.6, we have that X is the geometric
quotient Zy /G, where G, := Hom(A4'(X),C*). Put Gy := Hom(Pic(Z), C*). Notice that
G+ acts on Zs via the dual (in the sense of Section 1.5) of the morphism 7" — Pic(% rig)
The group G4 acts on Zs via the dual of the morphism Pic(Z ") — Pic(%). Consider the
quotient stack [Zs/G#]. The quotient stack [(C*)"/Gy] is a Deligne-Mumford torus which
is open and dense in [Zz/Gy]. As the natural action of (C*)" on Zz extends the action of
(C*)" on itself, we deduce a stack morphism a : [(C*)"/Gy] x [Zs/Gx] — [Zs/Gy] that ex-
tends the action of [(C*)"/Gy]| on itself. Proposition 3.3 implies that the stack morphism «
induces a natural action of the Deligne-Mumford torus on [Zsz/Gy| that is [Zz/Gy] is a
toric Deligne-Mumford stack.

Theorem 7.7. Let 4 be a toric Deligne-Mumford stack with coarse moduli space X.
Denote by X the fan associated to X. Assume that the rays of £ generate N ® Q. Then &
is naturally isomorphic, as a toric stack, to [Zs/Gy| where Gy := Hom (Pic(Z),C").

Remark 7.8. Removing the spanning condition of the rays gives the following result.
Let 2 be a toric Deligne-Mumford stack with torus .7 (isomorphic to 7' x #G) and with
coarse moduli space the simplicial toric variety X. Denote by £ < Ng the fan of X. From
the footnote 2 of Section 1.6, we deduce that the toric variety X is isomorphic to XxT
where X is a simplicial toric variety whose the rays of its fan ¥ span Ng. Notice that the
dimension of T is tk(Ng) — rk(Ng). The previous theorem implies that 2 is isomorphic, as
toric stacks, to [Zs/Gz] x (T x AG).

Proof of Theorem 7.7. If Z is 2", the theorem follows from Remark 4.12(2). If &
is "8, the theorem follows from the right cocartesian square of diagram (7.5) and Lemma
7.1(1). For a general %, it follows from the left cocartesian square of diagram (7.5) and

Lemma 7.1(2). [

7.2. Toric Deligne-Mumford stacks and stacky fans. First we recall the definition of
a stacky fan from [10].

Definition 7.9. A stacky fan is a triple X := (N, X, f) where N is a finitely generated
abelian group, X is a rational simplicial fan in Ng := N ®; Q with n rays, denoted by
Pls- -5 Py, and a morphism of groups f : Z" — N such that:

(1) The rays span Ng.

(2) Foranyie{l,...,n}, the element §(e;) in Ng is on the ray p; where (e, ..., e,) is
the canonical basis of 7" and the natural map N — Ng sends m — m.

Remark 7.10. Let X := (N,X,f) be a stacky fan.

(1) As the rays span Ng, we have that f has finite cokernel.
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(2) For any ie{l,...,n}, denote by v; the unique generator of p; N (N/Nior)
where Ny is the torsion part part of N. Denote by ™ the composition of f followed
by the quotient morphism N — N/N;. There exists a unique a; € N.o such that
p"€(e;) = ajv;. Denote L™ := (N /Ny, X, f¢). There exists a unique group homomor-
phism " : 7" — N /Ny such that we have the following commutative diagram:

AR

(711) diag(al,...,a,,)‘ Xﬂgl ‘

Denote X" := (N /Nior, Z, f7).

In [10], Remark 4.5, the authors define the notion of morphism of stacky fans. The
commutative diagram (7.11) provides us the morphisms of stacky fans X — X" — X",

(3) To the fan X, we can associate canonically the stacky fan X",
Construction 7.12 (construction of the Deligne-Mumford stack associated to the
stacky fan X). Now we explain how to associate a Deligne-Mumford stack Z'(X) to a

stacky fan X following [10], Sections 2 and 3. Denote by d the rank of N. Choose a projec-
tive resolution of N with two terms that is

07’274 N 0.

Choose a map B:Z" — 79 lifting the map f:Z" — N. Consider the morphism
[BQ] : 7" — 7%’ Denote DG(f}) := coker([BQ]"). Denote by " : (Z")* — DG(p) the
group morphism that makes the following diagram commute:

@) =—n @)

o~ |

DG(p) := coker[BQ]".

Let Zs be the quasi-affine variety associated to the fan X (see Section 1.6). Define the
action of Gy := Homy (DG(/)’), C*) on Zs as follows. Applying the functor Homz(—,C*)
to the morphism g : (Z")* — DG(p), we get a group morphism Gy — (C*)". Via the nat-
ural action of (C*)" on C”, we define an action of Gy on Zs. Finally, the stack associated
to the stacky fan X := (N, X, ) is the quotient stack Z'(X) := [Zz/Gy].

Notation. We will later see that the group Gy, is isomorphic to
Gz := Hom(Pic(%),C").

By [10], Proposition 3.2, we have that [Zz/Gy| is a smooth Deligne-Mumford
stack.
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Remark 7.13. In [24], Iwanari defined a smooth toric Artin stack over any scheme
associated to a stacky fan X"8,

Remark 7.14. As it was observed in [10], Section 4, the condition that the rays span
Ng in Definition 7.9 is not natural. Indeed a Deligne-Mumford torus (C*)¢ x #G where G
is a finite abelian group can not be produced as a stack 2'(X) for X a stacky fan with the
condition that the rays span Ng. Nevertheless, it is not really true to say that toric Deligne-
Mumford stacks are a “generalization” of the stacks Z'(X). Indeed, as for toric variety, we
will see that a toric Deligne-Mumford stack is a product of a Z'(X) by a Deligne-Mumford
torus.

Lemma 7.15. Let X := (N,X,[5) be a stacky fan.
(1) The stack Z (X) is a toric Deligne-Mumford stack.

(2) The stack Z (X) is a toric orbifold if and only if the finitely generated abelian group
N is free.

(3) The stack Z (X) is canonical if and only if & = X",

Proof. (1) The group morphism Gy — (C*)" defined in Construction 7.12 defines
the quotient stack [(C*)"/Gx] which is by definition a Deligne-Mumford torus. As the
open dense immersion (C*)" < Zs is Gy-equivariant, we have that the stack morphism
[(C*)"/Gx] — [Zs/Gx] is an open dense immersion. Using the same arguments of Remark
7.6, we have that the action of the Deligne-Mumford torus [(C*)"/Gx] on itself extends to
an action on [Zy/Gy]. That is Z(X) is a toric Deligne-Mumford stack.

(2) The stack Z'(X) is a toric orbifold if and only if Gy — (C*)" is injective, if and
only if 8" is surjective, if and only if N is free.

(3) Assume that X = X" As the coarse moduli space X of Z'(X) is the geometrical
quotient Z-Z/GAI(X-) where G 41(x) = Hom(Al(X),(D*), we have that L%”C"m.: [Zs/G 410x)]-
Construction 7.12 implies that Gy is G 41 (x). Conversely, if £ # X" then either N has tor-
sion (i.e., Z'(X) is a gerbe) or there exists a divisor D associated to a ray such that any ge-
ometric point of D has a non-trivial stabilizer. []

Remark 7.16. Let Z'(X) be a canonical stack (i.e., X = X"). The proof of the third
statement of Lemma 7.15 implies that DG(S") = Pic(Z'(X)).

Theorem 7.17. Let & be a toric orbifold with coarse moduli space X. Denote by X
a fan of X in Ng := N ®z Q. Assume that the rays of £ span Ng. Then there is a unique
P Z" — N such that the stack associated to the stacky fan (N,Z,p) is isomorphic as toric
orbifold to X .

Remark 7.18. An arbitrary toric orbifold is isomorphic to a product Z(X) x (C*)¥,
Proof of Theorem 7.17. Denote by a := (ay,...,a,) the divisor multiplicities of %

We define the morphism of groups ff : Z" — N by sending ¢; — a,;v; where v; is the genera-
tor of the semi-group p; N N. Denote by X the stacky fan (N, X, f).
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Theorem 7.7 states that 2" is isomorphic to [Zz/Gy]. In order to prove that the two
stacks are isomorphic, we will show that G4 is isomorphic to Gy such that the two actions
on Zs are compatible. From diagram (7.11), we deduce a morphism of exact sequences:

0O — 2" —— (2" — PZ/aZ —— 0

| |

0 —— Pic(Z) —— DG(f) — DZ/a;7 — 0.
i=1

The right cocartesian square of diagram (7.5) implies that Gy, is isomorphic to G such that
the actions of Gy and G4 on Zy are compatible.

The uniqueness of § follows from the geometrical interpretation of the divisor multi-
plicities. []

Remark 7.19. (1) The proof shows also that Pic(Z') is isomorphic to DG(f).

(2) Marking a point a;v; on the ray p; N N corresponds geometrically to putting a
generic stabilizer x, on the divisor &; associated to the ray p;.

Proposition 7.20. Let X := (N,X,B) be a stacky fan. There is a unique o in
Ext! (Ntor,Pic(.%" (E”g))) such that the essentially trivial Hom(Nyor, C*)-banded gerbe over

2 (X"8) associated to o is isomorphic as banded gerbe to X' (X).

‘
Proof.  Fix a decomposition N = Z? ® @ Z/b;Z. 1t follows from Construction 7.12
that we have the following diagram: =1

From Remark 7.19, we have that Pic(X (X)) is isomorphic to DG(S"). The first line
of diagram (7.21) is an element o € Ext' (N, Pic(%(X£"))). By Proposition 6.9, the

‘ _ ,
element o induces an element ([Li],...,[L/]) € [] Pic(Z"¢)/b; Pic(Z ™). The last row of
j=1
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the diagram above is a projective resolution of @ Z/b;. Hence, we deduce that there exists
a morphism of short exact sequences J=1

0 — (7)) —— (72/) — é;Z/b,Z — 0

j=1
(7.22) l 7 | lf / ‘

0 —— Pic(2") -~ DG(f) —— DZ/bZ — 0.
j=1

The morphism f is the same as the choice of L,...,L, in Pic(Z™8) in the classes
[Li],...,[Ls]. By the left cocartesian square of diagram (7.5), we deduce that Gy is isomor-
phic to Gy. We conclude that " is isomorphic to Z'(X). The uniqueness of o follows from
Proposition 6.9. []

Remark 7.23. Denote by 2 and by %5 respectively the stacks associated to
stacky fans (X, N,p,) and (£, N,f,). The stacks 2; and %, are isomorphic, as toric
Deligne-Mumford stack, if and only if the extensions defined in diagram (7.21) in
Ext' (Nior, Pic(Z'(Z"8))) are isomorphic.

Theorem 7.24. Let 2 be a toric Deligne-Mumford stack with coarse moduli space
X. Denote by X a fan of X in Ng. Assume that the rays of X span Nq. There exist N and
P Z" — N such that the stack associated to the stacky fan (N,Z,p) is isomorphic as toric
Deligne- Mumford stacks to % .

Remark 7.25. Let X be a stacky fan. Corollary 6.26 and the theorem above imply
that 2'(X) is isomorphic to a product of root stacks over its rigidification. This result was
discovered independently by Perroni (cf. [31], Proposition 3.2) and by Jiang and Tseng (cf.
[25], Remark 2.10).

Proof of Theorem 7.24. 1If Z is a toric orbifold then the statement was already
proved in Theorem 7.17.

Let Z be a toric Deligne-Mumford stack with Deligne-Mumford torus isomorphic to
T x #G. By Theorem 7.7, we have that %' is isomorphic to [Zz/Gy]. By Theorem 7.17,
there exists a unique stacky fan "¢ = (X, Z% ") where d := dim 2 such that 2’ is iso-
morphic to Z'(X"#).

There exist (b,...,b;) € (Nsg)’ such that G = H,ub Put N:=7® @Z/bZ
j= Jj=
Corollary 6.26 gives us / invertible sheaves Li,... L/ on Z" For any j, choose

Cljs---sCyj € Z such that L; = ®(O(@“g)"f where @™ is the Cartier divisor associated
to the ray p;. Put =1
/
p:7"— 7@ 17/b,
=1

e (B(e), feal, - ew])
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where [c;] is the class of ¢; modulo b;. It is straightforward to check that X (X) is isomor-
phicto . [

Remark 7.26. Let Z be a toric Deligne-Mumford stack with Deligne-Mumford to-
rus isomorphic to 7 x #G. The non-uniqueness of N and S comes from three different
kinds:

‘
(1) the decomposition of G in product of cyclic groups, i.e., G = [] w,,

=1
(2) the choice of the lift for the class [L;] € Pic(2"¢)/b; Pic(2 ") for j = 1,...,/, and

n .
3) the choice of the decomposition L; = @) O(Z;'®) (see Example 7.29 for such an
7 i
example). i=1

7.3. Examples.

Example 7.27 (weighted projective spaces). Let wp,...,w, be in N.j. Denote
by P(w) the quotient stack [C""'\{0}/C*] where the action of C* is defined by
X0, ..., %) = (A"xp,...,A""x,) for any 1€ C* and any (xo,...,x,) € C""\{0}. The
stack P(w) is a complete toric Deligne-Mumford stack with Deligne-Mumford torus
[(C*)"™1/C*] ~ C" x Bu, where d := ged(wy, . .., w,) (cf. Example 2.3).

We have that:

(1) The stack P(w) is canonical if and only if for any i€ {0,...,n}, we have that
ged(wo, ..., Wiy ..., wy,) =1 (e.g., the weights are well-formed).

(2) The stack P(w) is an orbifold if and only if ged(wo, ..., w,) = L.

(3) The Picard group of P(w) is cyclic. More precisely, we have

. Z if dimP(w) =1,
Pic(P(v)) = {Z/W()Z if P(w) = P(wy).

Proposition 7.28. Let 2 be a complete toric Deligne-Mumford stack of dimension
n such that its Picard group is cyclic. Then there exists unique up to order (wo, ..., wy) in
(N>0)"+1 such that Z is isomorphic to P(wo, ..., wy).

Proof. Denote by X the coarse moduli space of Z. Denote by X a fan of X. If
the Picard group is isomorphic to Z/dZ then Theorem 7.7 implies that 2 = [Zs/u,] with
Zs = C". Hence, the fan X has n rays. In this case, # is complete if and only if n = 0. We
deduce that 2 = #u, ~ P(d).

If the Picard group is Z, Theorem 7.7 implies that 2’ = [Zs/C*] with Zs = C"*!.
As X is complete, the fan X is complete. We deduce that Zy = C""1\{0}. The Deligne-
Mumford torus is isomorphic to [(C*)"*'/C*]. The action of C* is given by the morphism
C* — (C*)"™ that sends A — (4", ..., A") with w; € Z\{0}. Notice that if the w;’s do not
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have the same sign then 2 is not separated. If the w;’s are all negative then replacing / by

4

27" induces an isomorphism with a weighted projective space. []

Example 7.29. In this example, we give two isomorphic stacky fans for P(6,4)
which was considered in [10], Example 3.5. As we have seen in Section 7.2, N and X are
fixed whereas f is not unique. Let N be Z x Z/2. Let X be the fan in Ng = Q where the
cones are 0, Qxp, Q<o. Put

(7.30) Bi:7> =7 xZ)2, P,:7>—7x17)2,
€] — (27 1)7 ey — (Za 1),
€ — (_370)7 € — (_371)

One can check that the stack associated to (N, X, ) and (N,X, f,) is P(6,4).

Let us explicit the bottom up construction in this case. Its coarse moduli space is P'.
The rigidification of P(6,4) is P(3,2). Denote by xi, x, the homogeneous coordinates of

P!. We have that P(3,2) = “{/(Dy, D;)/P" where D; is the Cartier divisor (Cpi(1),x;).
We have that Opg32)(Z1) = Op3,2)(3), Op3,2(22) = Op3,2)(2) and 7 Opi (1) = Op32)(6)
where 7 : P(3,2) — P! is the structure morphism. The stack r : °(6,4) — P(3,2) is a u,-
banded gerbe isomorphic to /Up 2 (1)/P(3,2). In Pic(P(3,2))/2Pic(P(3,2)), the class
of Up3,5)(1) is also the class of Op(3 2)(Z1) or the class of Op(32)(Z1) ® Op3,2)(Z2). These
different choices lead to the two isomorphic stacky fans in (7.30).

Example 7.31 (complete toric lines). Here, we explicitly describe all complete toric
orbifolds of dimension 1. Notice that the coarse moduli space of a complete toric line is P!
Denote by xi, x; the homogeneous coordinates. Let D; be the Cartier divisor ((0(1), x,-). Let

ai, ap in N+o. Denote by d (resp. m) the greatest common divisor (resp. the lowest common
(ay,ay)

multiple) of a;, a;. The Picard group of the root stack 'y/(Di,D,)/P! is isomorphic
to Z x (Z/dZ). Notice that it is not a weighted projective space in general. As a global

quotient, the stack “"% (D1, Dy)/Plis [(C*\{0})/(C* x u,)] where the action is given by
(o) 132 o (70, 7y

. ki k 1
where k|, k> are integers such that a1 + 2
a b m

Appendix A. Uniqueness of morphisms to separated stacks
We prove Proposition 1.2.
Proposition A.1. Let & and % be two Deligne-Mumford stacks. Assume that Z is nor-
mal and % is separated. Let 1 : U — X be a dominant open immersion. If F\, F» : 4’ — % are

two morphisms of stacks such that there exits a 2-arrow f§ : F| o1 = F, o1 then there exists a
unique 2-arrow o, : Fy = F, such that o x id, = .
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Proof. Uniqueness: We first assume that % is a scheme, denoted by X, and # is
a global quotient [V//G] where G is a separated group scheme. Denote by U the scheme
U, open dense in X. For i in {1,2}, the morphism F; is given by an object x; which is a
G-torsor 7; : P; — X and a G-equivariant morphism P; — V. Let o,a’ : Py — P, be mor-
phisms between the objects x; and x; such that of 1) = o', 1y As G is separated, we
have that 7; is separated. We deduce that o = o'. ] ’

Now we prove the uniqueness of the proposition in the case where % = [V/G]. Let X
be an étale atlas of 2. By the previous point, we deduce that o|, = o'[,. As Mor(F1, F>) is
a sheaf on 2, we conclude that o = o,

For the general case, we reduce to the previous by covering % by global quotients and
then we use that Mor(Fy, F>) is a sheaf on 2.

Existence: It is enough to do it for an étale affine chart of #. By hypothesis, this
chart is a disjoint union of affine irreducible normal varieties. Hence, we can assume that
Z is an affine irreducible normal variety, denoted by X. Denote by U the scheme %
open dense in X. The morphism Fj o1: U — %, the 2-arrow f and the universal property
of the strict fiber product give a morphism f : U — U’. The existence of « is equivalent
to the existence of a morphism 4 : X -—» X’ such that 7y oA =id and ho1 = g o f. Denote
by A:% — % x % the diagonal. We can sum up the informations in the following dia-
gram:

1

u ——— X\
\ id 3
g \\ T
a U — X' - Y
l D\ lnl O JA
U ’ x Py

By definition of the separatedness of %, we have the A is proper. By [26], Lemma 4.2,
we have that A is finite and X’ is a scheme. We deduce that n; : X’ — X is finite. The
morphism go f: U — X' is a section of ;. By Lemma A.2, we deduce a morphism
h:X — X' such that o1 = go f. This completes the proof. []

Lemma A.2. Let X' be a scheme and X be an irreducible normal variety. Let
n: X' — X be a finite morphism. Let U — X be an open dense immersion. Let s : U — X'
be a section of m. Then the section s extends to a section§: X — X'.

Proof:  Denote by Uy the closure of the s(U) in the fiber product U' := U xy X'.
Denote by p: U’ — U and ¢: U’ — X' the morphisms induced by the fiber product
U'. Looking at the fractional fields, we deduce that the morphisms s: U — U, and
ply, : Up — U are birational morphisms. Denote by Xy the closure of U in X'. As the
morphism ¢ is an open embedding, we have that ¢|;, is dominant. We deduce that
7|y, : Xo — X is birational and quasi-finite. As X would be an irreducible normal variety,
the Zariski main theorem implies that 7|y is an isomorphism. Its inverse is the wanted
section of 7. [
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Appendix B. Action of a Picard stack
In this appendix, we recall the definition of a Picard stack. Then we define the action
of a Picard stack on a stack which extends the definition of Romagny in [32]. In [11], De-
finition 6.1, Breen defines the notion of a %-torsor over a stack where % is a Picard stack.
Our definition of the action is actually already included in that definition.

To define the notion of Picard stacks, we do not need the stacks to be algebraic.

Definition B.1 (Picard stacks [7], Exp. XVIII). Let S be a base scheme. A Picard
S-stack ¥ is an S-stack with the following data:

e (multiplication) a morphism of S-stacks:
Gxs9 g,
(91,92) = g1 92,
® (2-associativity) a 2-arrow 6 implementing the associativity law:
(B.2) Ogi. 92,95 (91 -92) - 93 = g1+ (92 93),
® (2-commutativity) a 2-arrow 7 implementing commutativity:
(B.3) Tgg: 19192 = G2+ g1
These data must satisfy the following conditions:

(1) For every chart U and every object g € 4(U) the map m, : 4 — % which multi-
plies every object by g and every arrow by id, is an isomorphism of stacks.

(2) (Pentagon relation) For every chart U and 4-tuples of objects g; € 4(U), we
have

(B'4) (idgl ’ 9g27g3,g4) °© 091792'93,{/4 © (391792’93 ’ idg4) = 991,921!}3'94 © 0!11'{/2793794'
(3) For every chart U and every object g € 4(U), we have 7, , = id,.,.
(4) For every chart U and every objects g1, 9> € 9(U), we have 1 , 4, © 7y, 4, = idg, 4,

(5) (Hexagon relation) For every chart U and every triple of objects gi, ¢2, g3 in
9(U), we have

(B'S) egl,gz,gs © Tgs,91-92 © 0!}3-,01,.612 = (idgl : Tgs-,gz) o 0017937.02 © (T.CB-,QI 'idgz)'

Remark B.6. The pentagon relation establishes the compatibility law between 2-
arrows 6 when expressing the associativity with 4 objects.

The third condition means that every object strictly commutes with itself.
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The last condition states compatibility between the 2-arrow of associativity and the
2-arrow of commutativity.

Remark B.7. It can be proved, see [7], Exp. XVIII, 1.4.4, that the previous definition
is enough to guarantee the existence of a neutral element in the group stack. More precisely
it is a couple (e,e) where e: S — @ is a section and €:e-e = e. A neutral element is
unique up to a unique isomorphism.

Definition B.8 (morphisms of Picard stacks [7], Exp. XVIII). Let (¥4,60,7) and
(A, p) be two Picard S-stacks. A morphism of Picard S-stacks is a morphism of S-stacks
F:% — o with a 2-arrow ¢, . : F(g1-92) = F(g1) - F(g2) for any g1, g2 objects of %
satisfying the following compatibility conditions:

e For every chart U and every couple of objects g1, ¢, € 4(U) we have

(B.9) PFg) F(g2) © Pi.00 = s © F(Tg1.00)-
e For every chart U and every triple of objects g1, 92,93 € 4(U) we have
(B.10) Byr a0 © (dr(gy) = By 1) © F (O, gs.45)
= VF(@). Fgn).Figs) © (Pr.g0 " 19F(05)) © P00
Remark B.11. (1) It should be observed that the morphism F maps the pentagon
relation (resp. the hexagon relation) for the Picard stack % to the pentagon relation (resp.

the hexagon relation) for 7.

(2) Denote by (es, €4) a neutral element of 4 and (e, cx) a neutral element of 7.
The couple (F (eg), F(eg) o ¢*1 is a neutral element of /#. By Remark B.7 there exists a

('%L"y)

unique 2-arrow 4 : F(e4) = e, such that 1o F(eg) o ¢,

- _ 2
g%eg) =€y 0.

(3) It can be useful to notice that given o : g; = ¢ and f: g3 = g4 morphisms in
%4(U) the following identities involving morphisms holds:

F(o- ) = gjm o (F(a)-F(B)) o e
Definition B.12 (action of a Picard stack). Let (¥4,7,0) be a Picard S-stack. Denote
by e the neutral section and by e the corresponding 2-arrow. Let 2° be an S-stack. An
action of 4 on Z is the following data:
¢ a morphism of S-stack:
Gxs A 5,
g, X +— g X X,

® a 2-arrow 7:

Ny:€X X=X,
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® a 2-arrow o:

Tggox (g1 -92) X X = g1 X (g2 X x).

These data must satisfy the following conditions:

(1) (Pentagon) For every chart U, every objects gi,g2,93 € 4(U) and every object
x e Z(U), we have

(idg, X Ggy.g3.x) © Ogy.grg3.x © (Ogy g0.g5 X 1dx) = Gy gy g3xx © Ogygy. g3 x-
(2) For any chart U and any object x € Z(U), we have
(ide X 77,) © G e x = (€ x 1dy).

Remark B.13. (1) If the Picard stack is a group-scheme then our definition of the
action is compatible with the one given by Romagny in [32].

(2) Let (9,m,0,7) be a Picard S-stack. The multiplication m defines an action of ¥
on itself.

Proposition B.14. Let 4, and 4, be two Picard S-stacks. Let F : % — %, be a
morphism of Picard stacks with the 2-arrow ¢, .. : F(g1-g2) = F(g1) - F(g2). Let Z be an
S-stack with an action of %, given by (a,n,a). Then the morphism F induces a natural action
of 9 on%.

Proof. The natural action is given by (4,7, &) where we put:
® g:=aokF.

e For every object x in 4, 7, := (nx o (A x idx)) where A is the 2-arrow defined in
Remark B.11.

e For every couple (g1,92) of objects of % and every x object of Z,
Tg1,g0,x 1= OF(g1),F(g2),x © (¢91,gz X idX)'

It is straightforward but tedious to check that the triple so defined satisfies all the properties
in Definition B.12. []

We finish this section with a proposition about actions on algebraic stacks. We refer
to [26], Definition 12.1, for the notion of étale site of a Deligne-Mumford stack.

Proposition B.15. Let & be a smooth Deligne-Mumford stack and G a finite abelian
group. An action of BG on X induces a morphism of sheaves of groups j : G x & — [5*"(%X)
on the étale site of &. Moreover, as morphism of stacks, j is étale.

Proof. We may assume Z to be irreducible and d-dimensional. First we produce

a stack morphism j:% x G — I*"(%) and we prove that j is ¢tale. Denote by
e : Spec C — #G the neutral section. Denote by A: 2 — 2 x Z the diagonal morphism.
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Denote by a : #G x  — 4 the action. Using the universal property of the fibered prod-
uct, we have the following 2-commutative diagram:

— X
(B.16) O JA
A rxa e
idxe T x BG

where p: & x G — % is the projection. The stack morphism j must be unramified since
it is a factor of the étale morphism p : Z x G — Z. Since every component of /(%) has
dimension at most ¢, the stack morphism j is actually étale and its image is contained in
I18(%).

Now, it remains to prove that j : 2 — [#"(Z) is a morphism of sheaves of groups on
the étale site of 2. The two upper triangles of diagram (B.16) are strictly commutative since
I1(%) is the strict fibered product. This implies that j is a morphism of sheaves of sets over
Z. Notice that on the étale site, the sheaf I(%) is 1&"(Z).

To finish the proof, we need to show that j is a morphism of sheaves of groups. Let us
check the compatibility between the composition law in /(%) and the multiplication of G.
This compatibility follows from the existence of a dashed arrow such that the upper square
in the following diagram is strictly commutative:

idxm

I xGxG X xaG

~ /
~ .
~ J
~

I(T) xq 1) — I(T)

| o |

I(Z) — X

s

*¥xaG P2

where the stack morphism c is the composition law of the inertia stack. The external square
of the diagram above is 2-cartesian and the stack morphismid x m : Z x Gx G —= X x G
is the identity on 2 and the multiplication in G. By the universal property of the strict fiber
product, we deduce the dashed arrow such that the upper square is strictly commutative.
This ends the proof. []

Appendix C. Stacky version of Zariski’s Main Theorem

Here, we prove a stacky version of Zariski’s Main Theorem. We did not find any ref-
erence in the literature for this version.
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Theorem C.1 (Zariski’s Main Theorem for stacks). Let Z', % be smooth Deligne-
Mumford stacks. Let f: X — % be a representable, birational, quasi-finite and surjective
morphism. Then f is an isomorphism.

Proof. Let Y — % be an étale atlas. Consider the following fiber product:

x L.y
| = |
,

X — %,

The morphism f : X — Y is proper, birational, surjective and quasi-finite between smooth
varieties. Hence, the Zariski Main Theorem (see for example [29], p. 209) implies that f is
an isomorphism. This implies that f : Z — % is an isomorphism. []
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