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Abstract  We first describe a mirror partner (B-model) of the small quantum orbifold coho-
mology of weighted projective spaces (A-model) in the framework of differential equations:
we attach to the A-model (resp. B-model) a quantum differential system (that is a trivial
bundle equipped with a suitable flat meromorphic connection and a flat bilinear form) and
we give an explicit isomorphism between these two quantum differential systems. On the
A-side (resp. on the B-side), the quantum differential system alluded to is naturally pro-
duced by the small quantum cohomology (resp. a solution of the Birkhoff problem for the
Brieskorn lattice of a Landau—Ginzburg model). Then we study the degenerations of these
quantum differential systems and we apply our results to the construction of (classical, limit,
logarithmic) Frobenius manifolds.
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1 Introduction

Mirror symmetry has different mathematical formulations: equality between the / and J
functions, equivalence of categories, isomorphisms of Frobenius manifolds efc... In this
paper, we first explore the differential aspect of this symmetry for weighted projective spaces
P(w) := P(wyp, wy, ..., wy), the A-model, where wq, wy, ..., w, are positive integers (to
simplify the exposition, we will assume that wy = 1). It will be encoded by the quantum
differential system on P! x M, that is tuples (M, H, V, S) where M is a complex manifold,
H is a trivial bundle on P! x M, V is a flat meromorphic connection with logarithmic poles
at {oo} x M and with poles of order less or equal to two at {0} x M, and § is a symmetric,
nondegenerate, V-flat bilinear form (for short a metric, even if there is no positivity consid-
eration here). More precisely, we attach a quantum differential system on P! x C* to the
small quantum orbifold cohomology of P(w) and we show that it is isomorphic to the one
associated with a suitable regular function (the Landau—Ginzburg model): this B-model will
be our mirror partner for the small quantum orbifold cohomology of weighted projective
spaces.
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The reason to work with quantum differential systems is very natural: first, on the A-side,
they arise classically as a “completion” of the quantum product to an absolute flat connection
(thanks to Dubrovin’s formalism), and we cannot expect much better. Second, on the B-side
(i.e in singularity theory), construction of quantum differential systems, independently of
mirror symmetry, is a long story (it goes back to Saito [34] and his theory of primitive forms)
and has motivated a lot of work: general statements in our framework (global case) can be
found in [12] (where one of the main tool is Hodge theory) and some significant class of
examples or situations are studied for instance in [9,10,13,30].

It is then reasonable to compare such objects, appearing in quite different areas of mathe-
matics: in particular, this enables us to understand the results of [7] in the light of singularity
theory. While computations of quantum differential systems are not so easy in general, they
can be explicitely done in our situation. This strategy could be useful in order to study more
generally the case of the small quantum cohomology of hypersurfaces (or complete intersec-
tions) in (weighted) projective spaces, for which the Landau—Ginzburg models are clearly
identified (see [17,23]) and not so far from the ones considered here.

In order to get this first result, we proceed as follows: following Iritani [24], we first attach
a quantum differential system to any proper smooth Deligne-Mumford stack using the quan-
tum orbifold cohomology. Thanks to the results recently obtained in [7], this construction
can be done very explicitely in the case of weighted projective spaces and yields, taking into
account an action of the Picard group, a quantum differential system

QA — (MA, ﬁA,sm, ﬁA,sm’ §A,sm,n)

where M4 = H2(P(w), C)/Pic(P(w)) ~ C*, the metric SA.sm being constructed with
the help of the orbifold Poincaré duality. We will call this quantum differential system the
(small) A-model quantum differential system. It should be noticed, and this will be a crucial
observation, that the usual sections 17, P/ of the orbifold cohomology are not global sections
of the bundle HA-5™ whereas the P*/’s (iteration j-times of P = c¢1(O(1)) under the small
quantum product) are global sections of it, see Remark 3.4.4.

We then look for a mirror partner of this A-model quantum differential system. Using the
methods developed in [13,28], we show how it is obtained from the Gauss—Manin system of
the function (this is our “Landau—-Ginzburg” model) F : U x Mp — C defined by

X
F(uy,...,up,x) =up +"'+”n+uw]7wn

1 e Up

where U = (C*)" and M p = C*. Indeed, a solution of the Birkhoff problem for the Briesk-
orn lattice of F gives a trivial bundle H? on P! x M p equipped with a connection with the
desired poles. We get in this way (see Sect. 4.3) a quantum differential system

08 = (Mp, HB, VB, SB n)

using a distinguished solution of the Birkhoff problem, closely related with the canonical
ones defined in [13] in the case x = 1. This will be our B-model quantum differential system.

We prove that the quantum differential systems Q4 and QF are isomorphic: the iso-
morphism is very explicit and identifies the sections P*/ (resp. 1 fi P7) in terms of suitable
sections of the Brieskorn lattice of F' (Theorem 5.1.1). At the end, we get an answer to the
following question, which was one of the first (chronologically) motivations of this work:
what should the mirror partner of the standard (orbifold) cohomology basis be? We discuss
the comparison between our result and Proposition 4.8 of Iritani [24] in Remark 5.1.2.
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Identifying these two models, we obtain finally a quantum differential system
Sy =WM,H,V,S, n) (1.1)

where M = C* (the index w recalls the weights wy, . .., w,) and, as a by-product, a Frobe-
nius type structure F,, on M in the sense of [10,21], that is a tuple

]Fw = (M» E» R(), R007 q)v Vs g)

the different objects involved satisfying some natural compatibility relations (coming from
the flatness of V). This Frobenius type structure will be the main tool in our construction of
Frobenius manifolds.

In the second part of this paper, we study the behaviour of these structures at the origin (this
kind of problem is also considered in [9], using another strategy and in a different situation).
We construct in Sect. 6.1.2 a limit quantum differential system (and thus a limit Frobenius
type structure Fy,)

Sw=(H,V,S,n)

on P! using Deligne’s canonical extensions of the connection involved. We explain how it
can be used to understand the correspondence between “classical limits”, that is between the
orbifold cohomology ring of P(w) and a suitable graded vector space: we hope that it will
shed new light on [28, Theorem 1.1].

The last part is devoted to the construction of classical, limit and logarithmic Frobenius
manifolds: we need a Frobenius type structure and a section of the corresponding bundle
such that the associated period map is invertible, in other words a primitive section, see for
instance [31, Chapitre VII]. To get such objects, we look, following [10,21], for unfoldings
of the initial data F, (in the classical case) and F,, (in the limit case): they will be obtained
from unfoldings of the quantum differential systems S,, and S,, (another reason to work
with quantum differential systems is that one can unfold them, see Sect. 7). In the best cases,
we use the reconstruction method presented in loc. cit. to get universal unfoldings. We show
first and in this way that

(1) the Frobenius type structure I, yields a Frobenius manifold on A x (C*~1, 0), A denot-
ing any open disc in M. We will use it to compare, using the arguments given in [10],
the canonical Frobenius manifolds attached to the functions F := F(.,x),x € A, by
the punctual construction given in [13];

(2) the limit Frobenius type structure F,, yields “limit” Frobenius manifolds, depending on
the weights wo, . . ., w,. For instance, we get a universal unfolding only in the manifold
case (i.e wo = --- = w, = 1) and, as a consequence of the universality, we obtain
a unique, up to isomorphism, limit Frobenius manifold. In the orbifold case, that is if
there is a weight w; greater or equal to two, we construct a limit Frobenius manifold for
which the product is constant, but we loose any kind of unicity: our limit Frobenius type
structure could produce other Frobenius manifolds, which can be difficult to compare.

This distinction between the manifold case and the orbifold case also appears in the con-
struction of logarithmic Frobenius manifolds. For instance, in the manifold case, we show
how our initial data F,, yields more precisely, as before via one of its universal unfold-
ings, a logarithmic Frobenius manifold with logarithmic pole along x = 0 in the sense of
[29]. This gives the logarithmic Frobenius manifold attached to P in loc. cit. by a different
method (Reichelt works directly with the whole Gromov—Witten potential; more generally,
he constructs a logarithmic Frobenius manifold from the big quantum cohomology of any
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smooth manifold). In the orbifold case, our metric degenerates at the origin and we get only
a logarithmic Frobenius manifold without metric. The construction of a logarithmic Frobe-
nius manifold using this method is still an open problem. We also explain why Reichelt’s
construction does not work in the orbifold case.

The paper is organized as follows: we define the quantum differential systems and the
Frobenius type structures in Sect. 2. The construction of the quantum differential system
attached to an orbifold (the A-model quantum differential system) is done in Sect. 3. It is
explained in the case of the weighted projective spaces. Section 4 is devoted to the construc-
tion of the B-model quantum differential system and the main theorem is stated in Sect. 5. We
compute the limits of our structures in Sect. 6 and we discuss the construction of Frobenius
manifolds in Sect. 7.

This paper is a revised version of the preprint [11] and supersedes it.

2 Quantum differential systems and Frobenius type structures

Definition 2.1 Let M be a complex manifold, n be a positive integer. A quantum differential
system of weight ntonP! x Misa tuple (M, H, V, S, n) where

e H is a trivial bundle over P! x M,

e V is a meromorphic, flat connection on H with poles along {0, oo} x M, logarithmic
along {oo} x M, of order less or equal to 2 along {0} x M this implies that the connection
has locally the form

noe s [a4®
. 1(@) ©) 1(@) @) .
v_d+( + Ag ()Z ;} - ——= + Ay () )dai Q2.1)

where z is a coordinate on P!, q= (q1, - .., qs) are coordinates on M and the matrices
involved are holomorphic in ¢y, . .., ¢;.
e Sisa V-flat, nondegenerate C-bilinear form, satisfying

S:HXI*H = "Opiy
where H is the sheaf of sections of H, z is a fixed coordinate on P! < {co} and
i:P'xM—>P xM
sends (z,t) to (—z, t).

Definition 2.2 Two quantum differential systems (M, Hy, V1, S, n1) and (M3, Ha, V3, $2,
ny) are isomorphic if there exists an isomorphism (id, 7) : P! x M; — P! x M; and an
isomorphism of vector bundles y : H; — (id, t)* Hy compatible with the connections and
the metrics, i.e such that

e V3y(s) = y(Vys) for any section s of Hj,
e S5(y(e), y(f)) = Si(e, f) for any sections e and f of H; (in particular ny = ny),

V3 (resp. S3) denoting the connection (resp. the metric) on (id, 7)* Hy induced by V3 (resp.
$2).

N quantum differential system is also sometimes called a tr(7 L E P)(n)-structure, see [22, Section 5.2]
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Definition 2.3 A Frobenius type structure* on M is a tuple
(M, E, v, Ro, Roo, ®, 8)
where

E is alocally free sheaf of Oy/-modules,

v/ is a connection on E,

Ry and R, are Oyy-linear endomorphisms of E,

& E— QYUM)® E is a Oy -linear map,

g is a Oy-bilinear form, symmetric and nondegenerate (a metric) on the sheaf of sections
of E,

these objects satisfying the relations
V2 =0, V(Roo) = 0. & A & =0, [Ry, @] =0,

V(®) =0,V(Ry) + P =[P, Ro],
v(g) =0, ®* = ®, RE = Ry, Roo + R, =rid

for a suitable constant r,* denoting as above the adjoint with respect to g.

Remark 2.4 (1) A quantum differential system on P! (i.e M = {point}) will be denoted
by (H,V, S, n).
(2) A Frobenius type structure on a point is a tuple

(E, Ro, Reo, &)

where E is a finite dimensional vector space over C, g is a symmetric and nondegenerate
bilinear form on E, Ry and R being two endomorphisms of E satisfying R§ = Ro and
Roo + R}, = rid for a suitable complex number r,* denoting the adjoint with respect to g. ¢

A quantum differential system yields a Frobenius type structure (see for instance [31, VI,
paragraphe 2.c p. 214]). Indeed, let (M, H, V, S, n) be a quantum differential system on
P! x M, o1, ..., 0, be abasis of global sections of H. Define

E :=H |jojxm and Eoo := H |{c0}xm (E and E are canonically isomorphic),
Roloi] := [zzvazai], fori =1, ..., r where [-] denotes the class in E,

goil, loj]) :==z27"S(0;,0j) fori, j=1,...,r,

®¢[o;] := [2Veo;] for any vector field £ on M.

The connection 77 and the endomorphism R, are defined analogously, using the restriction

Eso: we put, with 7 = z~1,

o Reoloi] :=[Vzy,0i]
o veloi] :=[Vgoil.

Proposition 2.5 (see [31]) The tuple (M, 7, E, Ry, Reo, D, g) is a Frobenius type structure
on M.

Notice that the characteristic relations of a Frobenius type structure is the counterpart of
the integrability of the connection of the associated quantum differential system.

2 This terminology is borrowed from [21]
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3 A-model

Let X be a smooth proper Deligne-Mumford stack of finite type over C of complex dimen-
sion n. In this section, we construct a quantum differential system on P! x M, where
My = H}, (X, C) (aquantum D-module in the sense of [24]; a similar notion, called semi-
infinite variation of Hodge structure is defined by Barannikov in [2,3]). This will be our big
A-model quantum differential system. We restrict it to H2(X, C) and we quotient the result
by an action of the Picard group of X to get the small A-model quantum differential system.
Finally, we explain this construction for weighted projective spaces.

Our general references will be [26] and [35, Appendix] for Deligne-Mumford stacks and
[1,5,6] for orbifold cohomology.

3.1 The big A-model quantum differential system

First, we recall some basic facts about orbifold cohomology. The inertia stack, denoted by
IX = X Xxxx &, is the fiber product over the two diagonal morphisms X — X x X.
The inertia stack is a smooth Deligne-Mumford stack but different components will in gen-
eral have different dimensions. The identity section gives an irreducible component which
is canonically isomorphic to X'. This component is called the untwisted sector. All the other
components are called rwisted sectors. We thus have

IX:Xu|_|X,,

veT

where T parametrizes the set of components of the twisted sectors of ZX'.
The orbifold cohomology of X is defined, as vector space, by H:rb (X,C) :=H*(ZX,C).
We have

(X, ©) = H*(X,C) & P H*(X,, O).

veT

We will put M4 := H}, (X, C) in what follows.

To define a grading on My, we associate to any v € T a rational number called the
age of X,. A geometric point (x, g) in ZX is a point x of X and g € Aut(x). Fix a point
(x, g) € Xy,. As g acts on the tangent space T, X, we have an eigenvalue decomposition of
T, X.Forany f € [0, 1], we denote (T, X)  the sub-vector space where g acts by multipli-
cation by exp(2+/— 17 f). We define

age(v) := Y  f.dimc(TeX);.
felo.1

This rational number only depends on v. Let «,, be a homogeneous cohomology class of X,.
We define the orbifold degree of o, by

deg®® (ay) := deg(ar,) + 2 age(v).

Let ¢o, ..., ¢n be a graded homogeneous basis of H}, (X, Q) such that ¢g € H(x, Q)

and ¢1,...,¢5 € H2(Xx, Q). Notice that the cohomology classes ¢1, ..., ¢s are in the
cohomology of X i.e in the cohomology of the untwisted sector. We will denote by ¢ :=
(t0, ..., ty) the coordinates of M4 associated to this basis.
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3.1.1 The trivial bundle and the flat meromorphic connection

Let HA be the trivial vector bundle over P! x M4 whose fibers are H rb(X C). Fori e
{0, ..., N}, we see ¢; as a global section of the bundle H A
Define the vector field, called the Euler vector field,

N orl
@:Z(l deg b(¢t ) 10; +Zrl ;.

i=0
where the r; are rational numbers determined by the equality ¢1 (T X) = Zle ri¢; and 0;
denotes the vector field 3"71

The big quantum product® denoted by o;, endows the sheaf of sections of the vector bun-
dle H4 with a product. We define a Oy ,-linear homomorphism which will turn out to be a
Higgs field (ie. ® A ® = 0 see Proposition 3.1.1)

®:TMy — End(H*) by ®(3;) = ¢ e, .

In coordinates, we have

N
@ => oO()ds

i=0

where ®@(¢) is the endomorphism ¢; o
Define, on the trivial bundle H4, the connection

1 1 d

where 7 : P! x M4y — My is the projection and R is the semi-simple endomorphism
whose matrix in the basis (¢;) is

deg®™® (¢) deg“b(m))
A .

The proposition below is well-known. Some parts and ideas of the proof can be found in
[8,31,22,27].

R = Diag (

Proposition 3.1.1 (see Sect. 2.2 in [24]) The meromorphic connection V4 is flat.
3.1.2 The pairing

The vector space Hj, (X, C) is endowed with a nondegenerate pairing which is called the
orbifold Poincaré pairing (see [6]). We denote it by (-, -). It satisfies the following homoge-
neity property:

if (¢i. ¢;) # 0 then deg™(¢) + deg”™(¢;) = 2n (3.
where n = dimc X'. We define a pairing S* on the global sections ¢y, ..., ¢y of HA by

SA(gi, ;) =" pi, D))

3 Usually, working on quantum cohomology, one has either to add the Novikov ring (see Section 8.1.3 of
[8]) or to assume that the quantum product converges on some open of M 4 (see Assumption 2.1 in [24]). But
we will mainly consider the small quantum product of weighted projective spaces, for which the convergence
problems are solved.
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and we extend it by linearity using the rules

a(z, NS, ) = sMa(. - ) =S4 a(=z.1)) (3.2)
forany a(z, 1) € Opiypy,-
Proposition 3.1.2 The pairing S*(-, -) is nondegenerate, (—1)"-symmetric and V* -flat.

Proof As the orbifold Poincaré duality is nondegenerate, the pairing S* is nondegenerate
and (—1)"-symmetric by (3.2). The VA-flatness is equivalent to

2051, ¢)) = S* (V61 85) + 54 (40, V24,07 (3.3)
oS (i, 0)) = S* (Vi 97) + 5% (60, Vike) (3.4)

Using the rules (3.2), we have
20:8M (¢, ¢) = nS* (i, ¢))
1
S (Viddin 8)) = ~SH@© @), 6) + $* (R, 67)

Z

1
$* (6. V,07) =~ 8101 2©@) + 5" 6. Rct))

We denote by R, the adjoint of Ro, with respect to SA(-, -). The following equalities (which
follow from [1, Section 7.6])

(O o i, D)) = (Di, Pk ¢ D)) (3.5)
Roo + R:o =nid 3.6)

(to be compared with the homogeneity property (3.1)) imply (3.3). The left hand side of
(3.4) vanishes because S (¢;, ¢ ;) does not depend on the coordinates ¢. The equalities (3.5)
implies that the right hand side also vanishes. O

From propositions 3.1.1 and 3.1.2 we get

Corollary 3.1.3 The tuple (M4, H*, VA, S4, n) is a quantum differential system on P! x
May.

Definition 3.1.4 The quantum differential system (M4, H A vA SA n) is called the big
A-model quantum differential system associated to X .

Remark 3.1.5 Tritani defines also a A-model quantum differential system (which he calls a
“A-model D-module” [24, definition 2.2], the distinction between these two terminologies
will become clear later, see Remark 4.4.3) and his definition is very similar to ours. There are
some mild differences: the first one is that Iritani considers the opposite of our Higgs field
and, in order to identify H?A with 7T M4, he uses ¢; — 9; whereas we use ¢; — —9; (we
choose the minus sign because usually the infinitesimal period map on the B-side is defined
with a minus sign). The second one is that Iritani considers the matrix Ro, — % id which has
symmetric eigenvalues with respect to 0 (in our case, the eigenvalues are symmetric with
respectton/2). ¢

@ Springer



196 Geom Dedicata (2013) 164:187-226

3.2 The small A-model quantum differential system

On a manifold X, the small quantum product is the restriction of the big one to H 2(X , ©), that
is o, where t € H 2(X, C). The classes in H>(X, C) play a special role because they satisfy
the divisor axiom for Gromov—Witten invariants. For orbifolds, the divisor axiom works only
for classes in the second cohomology group of the untwisted sector (see Theorem 8.3.1 of
[1]), thatis H?(X, C) (and not H2, (X, C)).

3.2.1 Restriction of the big A-model quantum differential system

We first restrict the big A-model quantum differential system (M4, HA, VA, 84, n) to
MY = H (X, C) and we get a quantum differential system on P! x M3" denoted by

sm A,sm A,sm gA,sm
(MA ) H ) % ) S ’ n)'

Let ™ := (11, ..., ;) be the coordinates on M§". The restricted connection is
1 1 d
VASY = dypm + dpt — —* O™ + (fcbsm(ez““) + Roo) = (3.7
z z b4

where ®5™ (resp. ¢5™ ) is the restriction of ® (resp.€¢) on T MS™. In coordinates, we have
p P A

N N
O =" dW(™)dy; and €™ =D 10
i=1 i=1
Notice that €™ is uniquely determined by c¢1 (7 X) and that ®5™ (&™) is the small quantum
multiplication by ¢ (T X).

3.2.2 An action of Pic(X)

For manifolds, the quantum product is equivariant with respect to the action of the Picard
group. In this section, following Iritani [24], we extend this action to the orbifold case.

Let L be a line bundle on the orbifold X. For any point x € X, we have an action of
Aut(x) on the fiber of L at x denoted by L, that is an element on GL(L,). Hence, for any
point (x, g) € Xy C ZX, we have an element f;,(L) € QN [0, 1[ such that the action of g on
L, is the multiplication by e2V=17fo(L) The rational number fv(L) dependsonlyonv € T
(see [1, Section 7]).

Remark 3.2.1 1If X is a toric orbifold, then we have X = [Z/G] where G := Hom(Pic(X),
C*) and Z is a quasi-affine variety in some C” (cf. [4,14] for a more precise definition).
The inertia stack is parametrized by a finite subset 7" of G. A line bundle L on X is given
by a character x; of G (see [14]). In this special case, f,,(L) is defined by the equality
xL(v) = 2TVTIAD) g

We define now an action of Pic(X') on (M}", HAsm yAsm gA.sm 4y q¢ follows:

(1) on the fibers of HA™, for @ @& P, 7 oy € H*(X,C) ® @,y H*(Xy, C) the action
is given by

L- (Ol ® @av) =a® @ehﬁf“a‘)(xv (3.8)

veT veT
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(2) on M$™ = H?(X, C) we define

Pic(X) x H>(X,C) — H?*(X,C) (3.9)
(L, Zfiqbi) — (Zlﬂﬁi) —2nN/—lei(L) = Z(li —27/—1L;)¢;
i=1 i=1 i=1

where ¢1(L) = >/, Li¢;.

Proposition 3.2.2 (see proposition 2.3 of [24]) (1) The small quantum product is equivariant
with respect to this action: for any classes a, B € Hjyy (X, C), for any point t*" € H*(Xx,0)
and for any L € Pic(X), we have

(L-a)eppm (L-B)=L-(aewm f).
(2) The pairing S*S™(-, -) is invariant with respect to this action.

Proof Recall that we denote by ¢' the Poincaré dual of ¢;. By definition of the small quantum
product, we have

N
(L@ oppm (L-f)= D DAL a,L-B.di)osadeliln=2mV"Tr0),

deHy(X,Q) i=0

By definition of the Poincaré duality, we have that L - ¢/ = L~! . ¢;. Using the proof of
Proposition 2.3 in [24], we deduce that

N
(L) opm(L-B) = D DAL-a LB L ¢z (L ¢')elillm=2mVTer)

deHy(X,Q) i=0
N
= > D hdona(L¢) et
deH,(X,Q) i=0
=L-(aer,p).

For the second statement, we show that for any «, € H*(X,, C), for any o, € H*(Xy, C)
and for any L € Pic(X), we have :

S(L - ay, L -ay) = S(ay, ay).

We have that S(ay, o0yy) 7 0 implies that the involution of /X sending (x, g) — (x, g’l)
maps &, to X, (see the definition of the orbifold Poincaré duality in [6]). This implies that
fo(L) + fuw(L) € {0, 1}. Hence, we have

S(L-ay, L-ay) = TR S (0 0,) = S, ).
[}

Remark 3.2.3 By the divisor axiom, the variables corresponding to H 2(Xx, C) appear as
exponential in the genus 0 Gromov—Witten potential. For i € {1, ..., s}, we have indeed

terms of the form e” Jp9i for B € Hy(X, Q) and the action above acts on these terms as
follows

L. eXiztliJgbi _ st fy¢i =27V fped) (3.10)
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Since, for orbifolds, the classes § and the Chern classes are rational, the action of the Picard
group is not trivial. So the multiplication by exp(—2m+/—1 / g€l (L)) has to be corrected by
a natural action on the fibers of H4-5™ on the twisted cohomology classes in order to get the
proposition above. For manifolds, the homology class 8 and the Chern classes are integral,
hence the action (3.10) is trivial: the quantum product for manifold is invariant with respect
to this action. ¢

3.2.3 The quotient structure

It follows from Proposition 3.2.2 that the quantum differential system (MS$™, HA-Sm §4.sm
n) is Pic(X)-equivariant. Hence, it defines a quotient quantum differential system denoted
by
SA — (MA ﬁA,sm %A,sm 'S’A,sm n)
where
My = H*(Xx, C)/ Pic(X) ~ (C*)*.
Corollary 3.2.4 The tuple S* is a quantum differential system on on P! x M 4.

Definition 3.2.5 The quantum differential system (M4, HAS™, VASm GAsm )y i called
the small A-model quantum differential system.

Remark 3.2.6 Fori € {0, ..., N} (N + 1 is the dimension of the full orbifold cohomology),
¢; is a global section of H*-5™ We have

¢; is a global section of HA™ e L. ¢; = ¢;, YL € Pic(X).

We deduce that the classes ¢; in the cohomology of the untwisted sector are global sections
of H4*™ Notice that if s; and s, are global sections of H45™, then so is 5| o;sm 57. To find
a basis of global section of H4-5™, we will look for quantum product of global sections i.e.
51 ®sm 57, @

In the following, we define coordinates on M 4 (which depend on a choice) and then we
want to write the connection VA+5™ in these coordinates (see Formula (3.12)).

Fori € {1, ..., s}, we put g; := exp(t;). However, the ¢ := (q1, ..., ¢s) are not coordi-
nates on M 4 because they are not Pic(X')-invariant. To be precise for any L € Pic(X), we
have

L-g =g ¥V Ik G.11)
where L; are rational numbers* defined by ci(L) = Zle Li¢; € HZ(X, Q), see (3.9).
However if we choose Ly, ..., Ls as generators of of Pic(X’)/ torsion(Pic(X ))5 and put
¢; := c1(L;), then the L;’s are now integers i.e, (q1,~. .., (qs) are coordinates® on My. In
such a choice of coordinates on M 4, the connection V4™ is given by
~1 1~ 1~ ~ d
VAS — dag, + dpt — —O™ + (fcpbm(ezsm) + Roo) = (3.12)
z z z

4 Ifthe L ; are integers then the ¢’s are Pic(X')-invariant i.e. they are coordinates on M 4.
5 Observe that the first Chern class of a torsion line bundle vanishes.

6 For manifolds, the situation is easier because one can choose ¢; as an integral cohomology class. Since
c1(L) is an integral cohomology class, the L;’s are integers.
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where

s

~. ~dqi ~. il ad
QM = ZCD(Z)% and ¢*" = Zriqi?.
i=1 4 i=1 ai

Remark 3.2.7 We first restrict the big A-model quantum differential system (M4, H A A,
§4,n) to P! x H*(X, C) and then we quotient it by the action of Pic(X). In [24], Iritani
defines a global action, called Galois action, of Pic(X) on (M, H4, VA, S4, n), giving a
quantum differential system on M4/ Pic(X). If we restrict it to M4 = H2(X, C)/ Pic(X)
we get the small A-model quantum differential system above. ¢

3.3 Combinatorics

In order to describe the small A-model quantum differential system and its mirror, we intro-
duce some combinatorics.

Let wg, wi, ..., w, be positive integers. Put u := wo + - - - + w, (we use the letter
because this will be the Milnor number on the B-side). Denote by

Y4
F = f|0§€§wi—1,05i5n]~

l

We denote by fi, ..., fi the elements of F arranged in increasing order:
0:f1 <f2<--- <fk <fk+1 = 1.
For f € Q, we define

Spi={jlw;f €z} C{0,....n}andm; == [ w;. (3.13)
JESF;

The multiplicity, denoted by d;, of f; is the positive integer defined by d; := #S, . In particular
we have Sp; ={0,...,n},m; = wo---w, and d; = n + 1. Notice that

dy+---+dip=p.

Letcop, c1, ..., cu—1 be the sequence
fioos o oo Sl s S
— —— —
dp d dy

arranged in increasing order. It can be obtained as follows (see [13, p. 3]): define inductively
the sequence (a(k), i(k)) € N+ q0, ..., n) by a(0) = (0,...,0),i(0) =0and

a(k +1) = a(k) + 1;) where i (k) := min{i|a(k); /w; = mina(k);/w;}.
J

In particular, a(1) = (1,0,...,0),a(n +1) = (1,..., 1),a(n) = (1, wy,...,w,) and
> pa(k); = k. Then we have:

ck = a(k)igy/wik)-

1

Lemma 3.3.1 We have co = -+ = ¢, = 0,¢cp41 = T and ¢ + cyyn—r = 1 for
k>n+1.
Proof See [13, p. 2]. O
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Define now, fork =0, ..., u — 1, o := k — uck.
Corollary 3.3.2 We have g =0, - -+ , a0, = n, ag4+1 < a + 1 for all k,
U + Apyn—k =N
fork=n+1,...,u—1land
o + oy =n
fork=0,....n

The oy ’s will give the spectrum at infinity of a certain regular function on the B-side (see
Sect. 4) and half of the orbifold degree on the A-side see Proposition 3.4.2. Notice that these
numbers are integers if and only if w;|u fori =0, ..., n.

Example 3.3.3 Letwg =1, w; = 2, wy = 2. We have :

e u=25,

o fi=0.dy=3,fr=4.d=25;,=1{012}and Sy, = {1,2},

e a(0)=1(0,0,0),a(l)=(1,0,0),a2)=(1,1,0),a3) =(1,1,1), a(4)_(1 2, 1)
[ ] C0—61—62—063—C4—;ando{0—0 al_l 052—2 ()(3—2,014—2

We will follow this example all along this paper.

3.4 The small A-model quantum differential system for weighted projective spaces

We describe in this section the small A-model quantum differential system
— (MA ﬁA,sm §A,sm EA,sm I’l)

associated with the weighted projective space P(w) := P(wyo, ..., w,), where wo, ..., w,
are positive integers with wo = 1. The index ,, recalls these weights.

3.4.1 The toric description

We use here the notations and the definitions given in Sect. 3.3. Recall that we assume
wo = 1. We follow the definition of [7] for weighted projective spaces, that is with negative
weights,’

P(wo, wi, ..., wy) = [C"F — {0}/C*] (3.14)

where the action is given by A(xg, ..., X,) := (A" 0xg, ..., A7 %"x,).
It is a toric Deligne—-Mumford stacks in the sense of [4,14]. Its stacky fan is given by

the lattice N := Z".
the morphism S : Z"*t! — N that sends the canonical basis ¢; to (0, ...,0,1,0,...,0)
and eg to (—w1q, ..., —wy).

e the fan ¥ in N is the complete fan where the rays are generated by SB(e;).

Remark 3.4.1 (1) The Picard group of P(w) is Z and it is generated by the line bundle
o(l).

7 In this paper, we use negative weights as [7] because the mirror formula are easier for negative weights
namely in (5.1) of Sect. 5.1 we will have P®/ — o ;- In [28, Section 6.c], the second author took positive
weights and the correspondence was a bit more tricky.
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(2) Fori € {0,...,n}, each B(e;) corresponds to a toric divisor D;. This toric divisor is
simply the canonical inclusion of P(wo, ..., Wi, ..., w,) <> P(w). The line bundle
associated to the toric divisor D; is O(wj;). The situation when wy = 1 is particularly
nice, because the toric divisor Dy is O(1) which generates the Picard group. We denote
by P := c1(O(1)) € H>(P(w), Q) C Hozrb(IP’(w), C). ¢

For any subset I = {iy,...,i¢} C {0,...,n}, we put P(wy) := P(w;,, ..., w;,). Recall
the sets F and Sy defined in (3.13). Following [7,28], the inertia stack is

IP(w) == | | P(ws,)

feF

For any f € F, denote by 1/ the image of the cohomology class 1 € HO(IP(wa), C) in
HZ, (P(w), C). Abasis of the orbifold cohomology H, (P(w), C), which is a C-vector space
of dimension p, is given by the elements

j—times

. —
1P/ :=17Uom P Uotb - Uor P, for i€{l, ..., kJand j€{0,...,d; —1}. (3.15)

The orbifold degree is now defined by

n
deg™ 1 P/ :=2j +2 > (—wy fi}
k=0
where {r} := r — |r] is the fractional part of r. The orbifold Poincaré duality (see [28]) is
given by

I/m; if fi+fjeNandk+¢€=d; —1

) (3.16)
0 otherwise

<1ﬁ.Pk,1ij‘f>=[

where m; = Hjesf. w; (see (3.13)). Notice that if f; + fj € Nthen Sy, = Sy, so that the

right hand side of (13‘16) is symmetric in i and j.

3.4.2 Description of the small A-model quantum differential system

Let 1; be the coordinate on H2(P(w), C), q = exp(t;) and C Orb(q) be the matrix of the
endomorphism Pe, of H:rb(]P)(w), C) in the basis (1, PJ). This matrix is computed in [7]
(see also [20]): we have

0 0 0o ... 0 aﬂq17°'”*1
ag'’=® 0 0 - 0 0
c—c .
Corb(q) — 0 aq~1 0
: - 0 :
0 A .. 0 aﬂ_lqcu—l—clkz 0

where

3.17)

I/m; ifi=d +---+d;
a; =
' 1 otherwise.
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Following the Remark 3.2.6, we define, fori € {0, ..., u — 1},

(P*1) := P e, --- o, P with (P*)0 .= 1.

i times
Lemma 3.4.2 (See [7]) (1) We have
(P*)" = q‘isi1, P" (3.18)
where r(i) == #k | k < iandcy = ¢} and si = [[i—o wk—FCin. In particular, for

each q # 0, the cohomology classes ((P'q)i)oiifu_l form a basis of the vector space
Hr (P(w), C). ‘ _
(2) For every i, degorb(P'fl)’ = deg"rb 1. P = 2u; (c.f Sect. 3.3 for the definition of a’s).

Proof The only part of the proof that is not in [7] is that deg®™® 1., P"® = 2a;.

n n
%degorh 1, PO =Y (—ciwj} +r(i) = = D {ciwj} +n+ 1 —dj +r()
j=0 j=0
n
—cip+ ZLciij +n+1—d +r@)
j=0
=—cpntdi+ - +di1+r@)=—cpnti=o

The following proposition refines the Remark 3.2.6 for weighted projective spaces.

Proposition 3.4.3 The Picard group Pic(P(w)) acts on the two basis (15, P7Y and ((P*9)")
of H}, (P(w)) via the following formulas:

T
Od) -1, PF = e V=11 PX and O(d) - (P*0)| = (P*OWa)l.
forany d € Z. Forr € Q, we have also O(d) - q" = qre—hﬁdr_

Proof Because we take the definition of weighted projective spaces with negative weights
(see Formula (3.14)), the line bundle O(d) corresponds to the character y : C* — C* which
sends 7 — 7. Using Remark 3.2.1, the action of O(d) on 1y P* follows from the defini-
tion of the action (see formula (3.8)). For the action on ¢, it follows from the definition (see
formula (3.9) and (3.11)). The action on (P*?)’ follows from Proposition 3.2.2.

Remark 3.4.4 From (3.18), we put s(q) := (P*0)! = qCis;1., P"®. We have
s(O(d) - q) = (O(d) - ¢)sile, P
= qcie_zﬂﬁdcis,- 1, pr®
=g%s; (0@) -1, P"®)
= 0(@d) - s(q).

As expected from Remark 3.2.6, fori € {0, ..., N}, the section~(P°q)i is a Pic(P(w))-equi-
variant section, hence it induces a global section of the bundle H Asm_ o
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As shown by the previous proposition, we prefer the basis ((P*)’) because it provides a
basis of global sections of the small A-model quantum differential system. We first compute
the pairing S4-5™ (., -) in this basis.

Proposition 3.4.5 The pairing S5 (-, -) in the basis (P*1)!) is
1

N . ' "my ifi+j=n
st (oo, (po) = L tmilqu ifik j=n 4
0 otherwise

— —W;
where w™" = [[/_qw; """

Proof Recall that SAS™(-, ) := z"(-, -). We will use the formulas (3.16) and (3.18). The first
case follows from the equivalence betweeni + j = nand ¢; = ¢; = 0. From [28, Proposition
6.1.(3)], we have thati + j =n + pis equivalenttoc; +cj = land r(i) +r(j) =d; — 1.
We conclude using the fact that s;s; = w™" HkgéSq. wk_1 ifci+cj=1. ]

Remark 3.4.6 Notice that if wy = --- = w, = 1 the bases ((P‘q)i)ogig,, and (1, P are
equal and that the pairing does not depend on g. 4

Put
1
A i= 5 Diag(deg®™® 1, deg”™® P, ..., deg®®(P*¢)* 1) = Diag(ay, ..., @;—1)

The following proposition completes the description of the small A-model quantum differ-
ential system S

Proposition 3.4.7 (1) The matrix of the connection V4™ in the basis 1y, PJ) is
1 d 1 d
— )™ (fuC"rb(q) + Aoo) = (3.19)
z q z <

(2) The matrix of the connection VASM iy the basis ((P*)) is

(—M—AerH)d—qu(“C(q) +Aw)ﬁ
g z

z
where H := Diag(0, ..., u — 1) and

000---0gq/w”

100--0 0

010---0 0
Cg) =

00.---1 0

Proof (1) Since c1(TP(w)) = P by [28, Lemma 3.21], we have
~ d - ~ ~
M = (Pe)=L, &M = 1P and T (E™) = p(Pe,).
q

The proposition then follows from the definition of yA.sm (see Eq. (3.12)).
(2) Follows now from a straightforward computation via the change of basis (3.18). O
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Remark 3.4.8 (1) As we have seen in Proposition 3.4.3, the cohomology class 1y, PJ does
not define a global section of the small A-model quantum differential system, whereas
(P*a)! does. This explains the fact that the matrix C(q) (resp. C(g)) contains rational
(resp. integer) powers of g.

(2) Another way to measure the difference between the bases (1, PJ7) and (P*) is to
consider the restriction 17 of Vs o {oo} x M 4. We have :

o v(;P))=0,
o V(P =R(P)HT.

where R := p~1(—Ax+H) = Diag(co, ..., ¢;—1) is the residue matrix of 7 (see Corollary
4.3.6). In other words, the basis (15, P/) is v-flat whereas ((P*)") is not. ¢

Remark 3.4.9 The matrix C°™(0) is the matrix of the endomorphism PUqp and does not
generate the orbifold cohomology ring in general: from the matrix C°™(0), we can not get
all the orbifold products 17, P/ Ug, 17, PE. ¢

Example 3.4.10 For P(1, 2, 2) we have

00 0 0
10 0 0
c@) =101 0 0
003920
00 0 1

g2

N

SO OO

In particular,

00000
10000
c0)=101000
00000
00010

and we can not get the equality 11,2 Uop 112 P = P2 (see Example 6.2.2 below) from C (0).

4 B-model
4.1 The setting

Givental in [16,17] and Hori and Vafa in [23] have offered a mirror partner for toric manifolds

[15] and Iritani [24] has explained how to construct a mirror candidate for a toric orbifold. We

briefly recall this construction in the case of the weighted projective space P(1, wy, ..., wy).
We start with the following exact sequence

0 —> Pic(P(w)) —> 2" P> N — 0

where 8 : Z"t! — N is the map defined via the stacky fan (see Sect. 3.4.1). Applying the
functor Homz (-, C*), we get :

1 — (" — ! 5o — 1
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This gives our mirror candidate to P(w),

((C*)nJrl F >~C
T
Mp :=C*
where F(ug, ..., uy) = St oui and 7w(uo, ..., up) = uouy' - u,". Denote by x the
coordinate on M p. As all the fibers of 7 are isomorphic to the torus U := (C*)", we can
also consider

F:UxMp—C

defined by
X
Fup, ..., X) =uy 4+ ity + ——r- 4.1
u] ..‘u”
which is a deformation of f : U — C defined by
1
flu, o oup) =ur+ -+ up + 50—
ul .-.un
We will write
1
o= —wi  wn-
ul ...un
Remark 4.1.1 If we identify the monomial [}, u?i with the point (ag, ..., a,) € 2",

we see that each monomial u; corresponds to the point S(e;) € N where e; is the canonical
basis of Z"t1. We interpret B(e;) as the toric divisor D; (see Remark 3.4.1). In particular,
the monomial uq corresponds to Do = O(1) and we can expect that the multiplication by uq
corresponds to the multiplication by P := ¢ (O(1)): this will be shown in Sect. 5.4

4.2 Gauss—Manin systems and Brieskorn lattices

Let
QU)x, x~ 1 T, v
(dy — tdy F) AQI1 ) [x, x7 1 7,771

be the (Fourier-Laplace transform of the) Gauss—Manin system of F, and

_ Q" U)[x,x~ ' 71
T (7, —d,F) A QL U)[x, x7 L o

Go

be (the Fourier-Laplace transform of) its Brieskorn lattice, where the notation d,, means that
the differential is taken with respect to the coordinates u = (uy, ..., u,) of U only. The
Clx, x~1, 7, t7']-module G is equipped with a flat connection V2 defined by

: , : : . OF
VE(wit) =iwi v — Foyt' and VB (with) = L5, (017" — a—wi‘c""] 4.2)
T X x

where £ denotes the Lie derivative. Assume moreover that Gy is free over C[x, x 1, t71].
We will say that a basis w of Gg over Clx, x~ 1, 717 is a solution of the Birkhoff problem
for G if the matrix of V2 in the basis  is
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(AT + B(X))dTt + (C(x)t + D(x))dx

where A(x), B(x), C(x) and D(x) are matrices with coefficients in C[x,x~'] (see for
instance [31, Chapitre VI.2]).
The Gauss—Manin system of f and its Brieskorn lattice are respectively defined by

B Q") t7 1
T d—tdf) AN O[T, T

o

and
- Q" (U)[r"]
O @ ld—dfy AQUNU) [ 1

G is also equipped with a flat connection V¢ defined by
V(i) = iot T = faiT!

(see for instance [12, Section 2]). There is of course a Birkhoff problem for G{: a solution
will be a basis w” of G over C[r~"] in which the matrix of V5-? is (A%t + Bo)dr—f where
A? and B? are two constant matrices (and we assume here that G{ is free of finite rank on
Clz=1.

4.3 A B-model quantum differential system

We look for a trivial bundle on P! x Mg, equipped with a connection and a flat pairing,
isomorphic to the one considered in Sect. 3. In general, a solution of the Birkhoff problem
for the Brieskorn lattice G yields such objects. However, such a solution is not unique and,
on this side, we have to take care of some choices: for instance, two different solutions could
produce two residue matrices along T = 0 (the matrix B(x) with the notations above) which
are not conjugate. This has motivated the definition of canonical solutions in [12], given by
Hodge theory using M. Saito’s method (see [13, Section 5] for a precise description in our
setting). It should be emphasized that the best solution in our context, i.e the one which fits
mirror symmetry (see Theorem 5.1.1), is closely related with the canonical solutions of the
Birkhoff problem for G given in [13] (see Remark 4.3.4 (1) below).

4.3.1 A trivial bundle

Let
FCo={O1,....y) eR"y1+---+y, =1}
and
0 +-+
=u7 PRI u .
X0 13141 naun
w
rj= [()’17~-~a)’n)ER"D’I+"'+yjfl+(1_K)}’j+"'+)’n:1]
J
and

0
Xj=ulg— - Fuj-

a a
11— = PR
oup ujq +( wj)uj ou;j + +un8un
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for j =1,...,n.The I';’s are the faces of dimension n — 1 of the Newton polyhedron of f
at infinity (see [25]). We define, for j =0, ..., n,

hj :Xj(F)—F.

Wethushave ho = —pxupandhj = —t-u;if j = 1,..., n.Lastweput,for g = u' ceew
J

po(g) =ri+---+nr
and, for j =1,...,n,

"w
d’j(g)=r1"'+i’j_1+<1—w—)rj+...+rn_
J

We will write 9, instead of VaB, for short.

Lemma 4.3.1 Let wg be the class of du—"ll Ao A %ﬂ in G. One has, for any monomial g,
the equality

(T + ¢j(g))gwo = thjgwo

in G, where gwy denotes the class ofg% Ao A

du,

Up

in G. In particular, To;wy = Thowy.
Proof This formula follows from the definition of 9, (see Eq. (4.2)). ]

This lemma is the starting point in order to solve the Birkhoff problem for Gy, as it has
been the starting point to solve the one for G in [13, Section 3]. Set w1 := xuowo: then

——T0;wo = Twy
"

because 1d;wg = Thowy. One can iterate the process. Recall the rational numbers «; and
the multi-indices a(k) = (a(k)g, a(k)1, ...,a(k),) € Nt! defined in Sect. 3.3 (notice that
a(k)o = 1 for k > 1 because wg = 1).

Lemma 4.3.2 Let

x a(k)

- x L atk,
@k = atk), 1ot Up @0
wl cee Wy,

fork =1,..., u— 1. Then we have, in G,
1
—;(far + ap)wp = T4

fork=0,...,u—2and

1 X
—— (0 +oy—Dwy—1 = Twp.
" M " wllul -'-w,l,U"

Proof This is done as in [13, Section 2 and Proof of Proposition 3.2], using Lemma 4.3.1.0

We will put ud®) = uoutll(k)' . ~uz(k)": for instance, u®" = ug and u?™ = 1 because ug is
defined by the equation uou}" - - u," = 1.
Let

Ax = Diag(ap, ..., 0p—1),
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and, for x € Mg,

000---0 pux/w®
n00---0 O

OpuO0---0 O
Apry=| "
00.---pn O
where w% = w;‘” -~ wy. We will preferably express our results in the variable 6 := 77!,
also denoted on the A-side by z.
Theorem 4.3.3 The classes wy, ..., w,—1 form a basis  of Gy over Clx, x~ 1, 01. In this

basis, the connection V7 is

Ap(x) dx Ap(x) de
(457 - am ) e (P57 0 40) T

where H = Diag(0, 1, ..., 0 —1).

Proof One shows that Gy is finitely generated as in [13, p. 7], with the help of Lemma 4.3.2.
To show that it is free notice that a section of the kernel of the surjective map

(Clx,x LoD - Gy — 0

is given by p Laurent polynomials which vanish everywhere because, for every x € Mg,
the sections defined in Lemma 4.3.2 yield the basis of the Brieskorn lattice of Fy := F(. , x)
given by [13, Proposition 3.2]. This gives the first assertion. Let us show the second one: the
assertion about Vai is clear, thanks to the definition of the wy’s. The action of VBB; is defined,
for n € Go, by

Vi) = —uond ™" + L, ()

and we have, for n = uou!' - - - u; wo,

1 1 .
uon = —Fn——~0 Zri—wi n.
mx L
We deduce from this, because szif; is induced by the multiplication by F, that

Ao(x) _ 1 z "
Véia)k:—uixe l(wk)—I-M(M—{—Za(k)i—;wi—ak Wy

i=1

Now, one has >7_; a(k); =k — 1 (see Sect. 3.3) and >_/_; w; = o — 1 so that

n n
pot D alk)i =D wi— o =k~ oy
i=1 i=1

[}

Remark 4.3.4 (1) Put x = 1. Lemma 4.3.2 yields the canonical (in the sense of [13,

Section 5]) solution 0’ = (wg, ..., w:’k ) of the Birkhoff problem for the Briesk-
orn lattice of f given by [13, Propositions 3.2 and 5.2]: the logarithmic lattice
E = C[7] < a)f)’, R wﬁ_l > is in one -to-one correspondence with M. Saito’s
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canonical opposite filtration to the Hodge filtration on the space of vanishing cycles.

(2) The deformation F can be seen as a 'rescaling’ of the function f and it is possible to
present the proof of the previous proposition in a slightly different way. However, we
prefer to keep our more direct approach because it emphasizes the multiplication by
uo (see the last part of Sect. 4.1) and gives the general way to proceed if one wants to

compute other examples, e.g F(u1, uz, x) = uy +uz + - 1:42 + %
14

(3) Inorder to make the link with the J-function and quantum differential operators, notice
that

i=1

“w
|iw"@" H(XVGX —¢) — xj| wy =0
(compare with [7, Corollary 1.8]). ¢

Remark 4.3.5 (Various generalizations)

(1) The case wg # 1 can be handled using the presentation of the Gauss—Manin sys-
tem considered in [9]. This is longer but yields the same result: one has to replace
wﬁl(k)l By wg(k)o wf(k)l - w®n in the definition of the wy’s and wi e wy”
by wyw(’ - - wy," in the definition of Ag(x).

(2) One could start more generally with the function

1
f(ul,...,un) :bllll +-~-+bnun+ﬁ
ul DY un
where b1, ..., b, are complex numbers such that by - - - b, # 0 and would obtain analoguous

results. The Laurent polynomial considered in [13] is obtained putting b; = wj; for all i in
f. But, if we keep in mind mirror symmetry, only the case b; = 1 will be really relevant. ¢

The basis w has another remarkable property: it yields a canonical extension of G to
C* x C. To see this, put R := /fl (H — Ay). It follows from Sect. 3.3 that

R = Diag(co, ..., cpu—1)
and from Theorem 4.3.3 that the matrix of xV£ in the basis w is given by

_1Ao(x)
—_— l —
2 0 +
Let £ be the C[x, 8, 6~ !]-submodule of G generated by w: xvg induces a map on L/xL

whose eigenvalues are contained in [0, 1[, because Ag(0) is a Jordan matrix and because
cy € [0, 1[fork =0, ..., u — 1. Thus we get

R.

Corollary 4.3.6 The lattice L is Deligne’s canonical extension of the Gauss—Manin system
G to C* x C such that the eigenvalues of the residue of Viﬁ are contained in [0, 1[. O

Theorem 4.3.3 says that the basis w gives an extension of G as a trivial bundle H% on
P! x Mp (the module of its global sections is generated by wy, . . . , wy—1) equipped with a
connection V# with logarithmic pole at T := 6~ = 0 and pole of order less or equal to two
at 0 = 0 (see for instance [32, Section 2.1]). These are the first ingredients of our quantum
differential system.
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4.3.2 Flat and orbifold bases

Let A be an open disc in C* and, for x € A, oMt .= xR ot g a local basis of
G§" := Oa ® G and we will call it a flat basis, flat with respect to the restriction v of vB

at {6 = oo} x C*. The connection V5 in the basis »f1?! is

Aﬂat d Aﬂat 46
- 0“)x+(0<“+Aw

0  ux 0 0
where
0 0 O0--- 0 x ==t /v
x¢t= 0 0--- 0 0
Aty =pf OO0 L
0 0 s
the ¢;’s being defined in Sect. 3.3.
Fori € {0, ..., u — 1}, we denote
a)?rb = sl-_la)lﬂat = x_c"si_la)i (4.3)

where the s; are defined in (3.18). The connection V¥ in the basis w°® is

Aorb d Aorb do
_o<”x+(o<”+Aw

0  ux 0 0
where
0 0 0-- 0 a,x! =
apxc1—co 0 0-- 0 0
Q= (...
Agrb(x) _ 0 arx 0 0 0 ’
0 0 Ay xCn-1mn=2 0

the a;’s being defined in (3.17).
4.3.3 The pairing
We define in this section a nondegenerate, symmetric and V2-flat bilinear form on Gy. The
lattice G is equipped with a nondegenerate bilinear form
$°:Gj x Gg — C[o10",

VB2 flat and satisfying , for p(0) € C[0],

p@O)S°(, ) =S%(p@®)-, ) =8°C, p(—=0)).
More precisely, in the basis w’ = (a)g e, a)z_l) of G8 considered in Remark 4.3.4 (1),
one has

§(wp, wp) € C*0" if0 <k <nandk + € =n,

S (wp, @) = w8 (wf, ©) ifn+l1<k<u—landk+£=pu+n,
0 otherwise
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where w% = wf”l -..wy" as above. This is shown as in [13, Section 4]. From now on, we
will choose the normalization $?(wg, @;) = 1/m 160" (recall that m; = w1 - - - wy).
We define, in the basis w given by Theorem 4.3.3,

0"m;! if0<k<nandk+¢€=n,
S w) =1 0"m xw " ifn+1<k<p—landk+€=p+n, (4.4)
0 otherwise

This gives
§8: Gy x Go — Clx, x~', 610"
by linearity, using the rules
a(x,0)S(-, ) = Sax,0)-, ) =S, alx,=0))

fora(x, 0) € C[x, 0]. Flatness is defined by Egs. (3.3), (3.4) (replacing z by 6 and i by 9,).
The following lemma justifies the definition of S5:

Lemma 4.3.7 The bilinear form SB is VB-flat.

Proof We work in the basis w: it follows first from the definition of Ag(x) and S® that one has
(Ap(x))* = Ag(x) where * denotes the adjoint with respect to S. The symmetry property
of the numbers «y (see Corollary 3.3.2) shows also that Ay, + A%, = nl. This gives Eq.
(3.3). Now, Eq. (3.4) reads

28,8 (i, ) = SP(R(@1), ) + 87 (@i, R(@)))
but this follows once again from Lemma 3.3.2. O
Corollary 4.3.8 We have

ml_]G" if0<k<nandk + ¢ =n,
SP(@®, i) = { m 0" ifdy + - +di sk <dy+-- +digandk+ €= p+n,
0 otherwise

Proof By Lemma 4.3.7, S% is constant in the basis o thus in the basis w°® and the
result follows from the definitions, using the fact that m; = m; if i + j = k + 2 and
mip---myp = w”. m}

Remark 4.3.9 (1) The coefficient of 0" in S8 (e, ), €, n € Go, depends only on the classes
of ¢ and n in Go/60Go. We will denote it by g([¢], []). This defines a nondegenerate
bilinear form g on Go/60Gy, see [31, p. 211].

(2) The bilinear form S defines a bilinear form (also denoted by S%) on the trivial bundle
H?E (see for instance [32, Section 1.4]). ¢

4.4 Résumé (the B-model quantum differential system)

We have constructed a trivial bundle HZ (Sect. 4.3.1), equipped with a flat meromorphic
connection V2, and a VZ-flat pairing S8 (Sect. 4.3.3). Summarizing, we get

Theorem 4.4.1 The tuple
SB = (MB,HB,VB, SB,n)

is a quantum differential system.
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Definition 4.4.2 We will say that S? is the small B-model quantum differential system.

Remark 4.4.3 TIritani’s B-model D-module (see [24, Definition 3.16]) is different (compare
with Remark 3.1.5), as he deals only with bundles on C x Mp: in particular, he doesn’t
consider the Birkhoff problem at all. ¢

5 The mirror partner of the small quantum orbifold cohomology of P(w)
5.1 Correspondence

Let us first summarize the results obtained. On both sides we have a trivial bundle over a
base isomorphic to P! x C*. The free C[q, ¢~ ']-module Hy of global sections of HA-™ js
generated by (P*)/ for j =0, ..., u — 1 whereas the free C[x, x~']-module Hp of global
sections of H B is generated by (w;). The following theorem gives an explicit isomorphism
between the small A-model quantum differential system and the small B-model quantum
differential system and a precise form of the mirror theorem for weighted projective spaces.

Theorem 5.1.1 The map
y:Hy — Hp
defined by
y(P*) = ;. (5.1)

gives an isomorphism between H and Hpg, after identifying P! x M4 and P! x Mg via
the map (z,q) +— (0, x). It yields an isomorphism between the small A-model quantum
differential system

(MA I’_‘I'A,sm ﬁA,sm ’S’A.sm l’l)
and the small B-model quantum differential system
Mg, H?, VP, S8 ).

Remark 5.1.2 ldentify M = M4 = Mp. Proposition 4.8 of Iritani [24] implies that our
two D-modules are isomorphic over C x M. So our result above is about the compatibility
of the extensions over P! x M. Namely, the natural extension on the A-side (recall that the
small A-model D-module is naturally defined over P! x M) corresponds to the solution of
the Birkhoff problem given in Theorem 4.3.3. More precisely, the isomorphism over C x M
of Proposition 4.8 of Iritani [24] for the A-side (for the B-side, one has to take V? and replace
the unit ¢ by wp) is the following :

Clg*, 21(zqd,) /(Tw) — (ﬁA,sm’ gA,sm)

P(q.2.2499) —> P(q.2. Vigi")o

where T, = Hf‘z 1(zqd4 — z¢i) — qw™" (see Corollary 1.8 in [7]). The natural choice of

,,,,

this extension will not give a quantum differential system because the connection does not
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have a priori a logarithmic pole along {z = 0o} x M (see formula (2.1)). Indeed the matrix
of the connection is the companion matrix associated to

0
Ty = (2q0)" + D (=) oi(cr. ... cu)(2gd)" ™ — qu™
i=1
where o; are elementary symmetric polynomials. As ¢; = --- = ¢, = 0, we have

oi(ct,...,cy) = O foriin{u —n+1,...,u}, so, in the basis (621’;:1)%0, we have

~ 1 o
V;é;m:qaq+2371(4)+Bo(!])+~-~+z“ "By n-1(q)

which is not of the form (2.1). In the case P(1, 2, 2) we can verify for instance that B (q) is
not the zero matrix (it has a coefficient % on the last column). Notice that Guest and Sakai
consider an analogous problem in [20] and they solve it using the so-called “Birkhoff fac-
torization” (see [18] or chapter 6 in [19]). In general finding the good extension is a difficult
problem but in our case, it can be done. 4

Proof of Theorem 5.1.1 From Proposition 3.4.7 and Theorem 4.3.3, the matrices of the con-
nections in the bases (P*/) and (w;) are the same. For the pairing, it is enough to notice
that

§A,sm(Poi, Poj) — SB()/(P.i), )/(P.j))
but this follows from the formula (4.4) and Proposition 3.4.5.

Remark 5.1.3 The definition of y in (5.1) identifies P*/ <> wjforjef0,...,u—1}L This
also implies that the flat sections wlf’rb (see (4.3)) are identified with the flat sections 1, pr
(see Remark 3.4.8) where r (i) :=#{k | k < i and cx = c¢;}. ¢

We can thus identify the A-model quantum differential system S;! and the B-model quan-
tum differential system S2: the result is a quantum differential system which will we denote
by

Sy =M, H,V,S, n).
We also get, with the help of Proposition 2.5, a Frobenius type structure
Fy =W, E, v, Ry, Reo, D, 8)
on M where E := Go/0Go = Q" (U)[x, x " /d,F A Q"N (U)[x, x~ .

Definition 5.1.4 (1) The tuple S,, is called the w-quantum differential system.
(2) The tuple F, is called the w-Frobenius type structure.

We will use these objects in order to get Frobenius manifolds.

5.2 The small quantum product and the Jacobian ring

Using Theorem 5.1.1 we can give an interpretation of the small quantum product in terms of
a product on a Jacobian ring, that is in terms of commutative algebra.
Fork =0,...,u — 1, put wx = gxwp where go = 1 and

—_r ek
k= i

@ Springer



214 Geom Dedicata (2013) 164:187-226

fork =1,..., u — 1 (see Sect. 4.3). We define now the product x on E := Go/6Gg by
[wi] *x [w;] := [gigjwo] (5.2)
where [ ] denotes the class in E, which we identify, using wo, to the Jacobian ring

- -1
Clr, x Mup, uy 'y oo, uy ']
oF oF
dup’ "' duy,

Proposition 5.2.1 Leti, j € {0,...,u— 1} Ifi + j > u, wedenotei + j :=1i+ j — 1.
(1) We have, in E,

iyl fitj=p—-1
T, [wi] = o 5.3
[wi] x[a)]] [u“fw[%]lfl'f']ZM (-3)
In particular, [w;] = [0 =[] %y - - - *x [@1].
——— —
i times
(2) We have, in H}, (P(w), C),
4 (Pt iy i<p— 1,
2o P i+ >
Proof (1) Because uou’f)l .. .unw" =1 and, fori > 1, %wo = xi71M6w0 inE.
(2) Follows from Proposition 3.4.7.
O

Notice that the matrix iAo (x) in Theorem 4.3.3 represents the endomorphism [w ], in
the basis [w].
At the end, we get the announced relationship:

Corollary 5.2.2 The product *, is the mirror partner of the small quantum product e;: we
have

[y (P*)] #x [y (P*)] = [y(P* o4 P*))].

Proof Follows from Proposition 5.2.1 and the definition of y. O

6 Limits

Up to now, we have worked on M = C* and we want now to define a limit at O of the
structure Sy, (resp. Fy,). This should be of course a quantum differential system (resp. a
Frobenius type structure) on P! (resp. on a point), as canonical as possible. This limit will be
constructed with the help of the Kashiwara—Malgrange V -filtration at the origin. The desired
limit Frobenius type structure (on a point) will be then obtained using Proposition 2.5.

Usually on the A-side, one recovers the cup product from the quantum product setting
q = 0. This works nicely in the basis (1, P7). Nevertheless, when one works with the quan-
tum differential system, like we do, the natural basis is not (1, P7) but (P*/) (see Remark
3.4.8). As (P*/) depends on ¢, it make no sense to set directly g = 0. For example the
matrix C(g = 0) is not the endomorphism PUg,. So to recover the limit at “q=0", we need
to give a grading by the Kashiwara—Malgrange V -filtration (see fi. [12, 2.e and A.b.3] for
the definition of this filtration).
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6.1 Canonical limits of the structures S, and F,

We apply the recipe announced above. For convenience reasons, we start from the B-model
and we use the notations of Sect. 4, forgetting the index B.

6.1.1 The V-filtration at x = 0

Recall the basis @ = (wo, ..., w,—1) of Gg over C[x, x~1, 6], which is also a basis of G over
Clx,x~ 10,07 ".Putv(wg) = - - - = v(wy) = Oand, fork = n+1, ..., u—1, v(wg) = cx.
Define, for0 < a < 1,

VeG = > Cll6. 6 ok +x D Clxll6. 6 o,

a=<v(wg) a>v(wy)

VG = Z Clx1[60, 0wy + x Z Clx1[6, 0 oy

a<v(wg) a>v(wg)
and VPG = xP VG for p € Z and o € [0, 1[. This gives a decreasing filtration V* of G
by C[x][6, 6~ 1]-submodules such that
VeG = ClO, 0 N wr|v(wk) = o) + VUG,
Notice that the lattice £ (see Sect. 4.3.1) is equal to VOG and that £/x£ = VOG/V'G. We
will put G* :== V*G/ V%G and G := @yef0,11G*-

Lemma 6.1.1 (1) Foreach o, (xVy, — ) is nilpotent on G*.

(2) Let N be the nilpotent endomorphism of G which restricts to (xVy, — ) on G*. Its
Jordan blocks are in one to one correspondence with the maximal constant sequences
in (co, ..., cu—1) and the corresponding sizes are the same.

(3) The classes [ao], ..., [wy—1] give a basis [®] of G over C[0, 611

Proof (1) It suffices to prove the assertion for « € [0, 1[. It follows from Theorem 4.3.3 that
we have

1
xVy, o = @kt

fork=0,...,n—1land xVy w, € V>9G. Moreover we have, fork = n + 1,...,0u=2,

1
(xVy, — ci)wr = g @kt

and this is equal to 0 in GV@o) if Ck+1 > ck. Last,

1 .
(xVy, —cpu—Dwpu—1 = —gxwfwwo €x Z Clx]wyx C V= 1G.
v(wy—1)=v(wk)
(2) follows from (1) and (3) follows from the definition of V'°. m}
The matrix of N in the basis [w] is B6O~! where Bij =0ifi #j+1,Bjy1,; = —1if

¢i =ci—1and Biy1; = 0if ¢; # ci—1 (notice that —u B = All*(0)).
Corollary 6.1.2 The filtration V* is the Kashiwara—Malgrange filtration at x = 0.

Proof By the previous Lemma, the filtration V'* satisfies all the characteristic properties of
the Kashiwara—Malgrange filtration. O
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6.1.2 Limits

The free C[6, 6~ !]-module G is equipped with a connection V in the basis [w] is

A A do
0 iy
where Ag = —uB and Ao, = Diag(ap, ..., a;,—1). We now need a limit bilinear form. Let

G be the C[6]-submodule of G generated by [wo], . .., [w;—1] and define
S:Gox Gy — C[A]9"

by
_ 1 ;
S([wr], log—t]) = ———0
wl . e wn
fork =0, ..., n (in which case ¢y = ¢, = 0),
q 1 n
S([wk], [wp+n—k]) = WQ
fork =n+1,..., u—1(in which case ¢y +cyqn—r = 1) and S([wil, [w;]) = 0 otherwise.

The pairing S is induced by S on G (hence it is indeed a limit): this is shown as in [33,
Remark 3.6] (with only mild modifications) because

S(VPG, VI7PG) c xC[x, 0,67 ]

if B # 0 (and thus the induced bilinear form on the graded pieces is obtained taking the
coefficient of x) and

S(voG, vG) c Clx, 0,67 ]

where V* is the Kashiwara-Malgrange filtration at x = 0 defined above.
As in Sect. 4.3, we get an extension of G as a trivial bundle H on P!, equipped with a
connection V and a pairing S.

Theorem 6.1.3 The tuple S,, = (H, V, S, n) is a quantum differential system on P'.

Proof Tt is remains to show that S is V-flat, and it is enough to show that (A9)* = Ag and
Ao + (Ax)™ = nid. The second equality follows easily from Lemma 3.3.1 and from the
definition of S. To show the first one, use moreover Lemma 6.1.1, the key point being that
S(Ao([wn]), [@;]) = 0 = S([wu], Ao([w;])) because, by Lemma 6.1.1, Ag([w,]) = 0 and
because [wo] does not belong to the image of Ay. O

Remark 6.1.4 1t should be emphasized that the conclusion of the previous theorem is not
always true if we work directly on £/x L, that is if we forget the gr". ¢

Definition 6.1.5 The tuple S,, is the limit quantum differential system.
Define now E = G(/0Gy and let [[w] be the basis of E induced by [w]. As explained in

Sect. 2, E is thus equipped with two endomorphisms R( and R (with respective matrices
Ap and —A ) and with a nondegenerate bilinear form g obtained from § as in Remark 4.3.9.
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Corollary 6.1.6 The tuple

Fy = (E, R, R, 8)
is a Frobenius type structure on a point.
Definition 6.1.7 T, is the limit Frobenius type structure.

Remark 6.1.8 Let (E, A, B, g) be a Frobenius type structure on a point. We will say that an
element e of E is a pre-primitive section if (e, A(e), ..., A*~1(e)) is a basis of E over C
and that e is homogeneous if it is an eigenvector of B. Recall that [[wo]] denotes the class
of wp in E. Then [wo] is a pre-primitive and homogeneous section of the limit Frobenius
type structure (E, Ro, Roo, g) if and only if s = n + 1. If & > n + 2, this Frobenius type
structure has no pre-primitive section at all. ¢

6.2 Application: the mirror partner of the orbifold cohomology ring

Recall that we have defined a product x, on E := Go/0Gy (see (5.2)). The filtration (V)4 er
induces a decreasing filtration on E, denoted by (V® E)yer, Which is compatible with the
product %, i.e. VYE s, VAE c V*TPE. As for the filtration V*G, we have V*1PE =
xPV@E forany o € R and any p € N. The vector space E := G/0G defined above is also
Daelo, 1] grg E. We define a product, denoted by U, on E by first graduating the product #,
on @qcr gry E and then shifting iton E := @4e(0,1] gy E by multiplying by an appropriate
xP . In this way, Proposition 5.2.1 implies that

1 e
[[a)ﬂ]U[[a)ﬂ]::W[[wm]] ifi +j>p and 1+cm=c,-+cj,

[[a)i]]U[[a)j]]:: [[a)lurj]] ifi +j<w—1 and Cit+j=¢it¢j

and [w; | U [w;] = 0 otherwise. This product is homogeneous and [[wo]] is the unit. The
bilinear form g on E is also homogeneous because g([w; ], [w;]) # Oonlyifi + j =n or
ifi +j = p+n:inany case, a; +aj =n.

Proposition 6.2.1 The tuple (E, U, g) is a Frobenius algebra, isomorphic to
(Hoy (P(w), C©), Uorb, (-, - ))-
Proof To prove the first assertion, it remains to show the compatibility condition
g([wi U [, [w; 1) = g([lwi ]I, [[w; 11U [ex ]

but this follows from a straightforward computation of the right term and the left term, keep-
ing in mind the definition of g and U. The second follows from Sect. 5: the isomorphism is
induced by y. O

Of course, this result should be compared with [28, Theorem 1.1].

Example 6.2.2 wo = 1, w; = wy = 2: the table of the orbifold cup-product Uq is

Uorb 1 P P2 1% I%P
1 1 P P 1 1P
P P2 0 P 0
P? 0 0 0
1, P P?
1, P 0

2
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and the one of U is

U [wol M1l [w2ll [wsl [w4]
[woll [woll (w1l [w2l [ws3l [w4]

[ ] [w2] 0 [ws] O
w1l 0 0 0
[ws]] Lol fllws]
[w4]] 0

Recall that via mirror symmetry, [w; ]| corresponds to P*'. So the difference of the constants
between the two tables comes from the relation between P* and (1 fi PJ) (see Lemma 3.4.2).

Let us explain for instance the computation [w3] U [w3]] = [w1]/16. By Proposition
5.2.1, we have

(03] % 03] = = [w1] (6.1)
We have also [w3] € VY2E and x[w;] € V!E and the equality above is still true in the
graded space @ycr gry E. As gr}/ E :=x gr(‘)/ E, and because in E we only consider the
graded pieces between [0, 1[, we deduce that [w3]] U [w3]] = [w;]/16. Notice that putting
x = 0in (6.1), we do not get the expected result. Doing the same computation on the A-side,
we get P*3 Uy, P*3 = P/16. Let us stress again that setting directly ¢ = 0 does not give

the right answer.

7 Construction of Frobenius manifolds

First, we recall how to construct Frobenius manifolds, starting from a Frobenius type structure
(our references will be [10,21]): one needs a homogeneous and primitive section yielding
an invertible period map. We then use this construction to define a limit Frobenius manifold,
by unfolding the limit Frobenius type structure IF,, defined in Sect. 6.1. Last, we end with a
discussion about logarithmic Frobenius manifolds, as defined in [29].

7.1 Frobenius manifolds on M = C*

Let A be an open disc in M. The w-Frobenius type structure [, (see Definition 5.1.4) gives
also an analytic Frobenius type structure

F = (A E™ R, Roo, &, 7", g™")

on the simply connected domain A. Universal deformations of this Frobenius type structure
are defined in [10, Definition 2.3.1] and [21]. The following results are shown and discussed
in detail in [10] in a slightly different situation, but the arguments in loc. cit. can be repeated
almost verbatim here so we give only a sketch of the proofs.

We keep in this section the notations of Sect. 4. Let " be the class of wg in E“": wf"
4" -flat because R(wp) = 0.

is

Lemma 7.1.1 (1) The Frobenius type structure F has a universal deformation
f- = (Na Eﬂl’l, E(a)n» ﬁocn (Bana %an7 gan)

parametrized by N := A x (C*~1,0).
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(2) Let wg" be the V" -flat extension of §". The period map
(pagn :ON — Ean
defined by gz (§) = —52‘” (@g") is an isomorphism which makes N a Frobenius manifold.

Proof (1) We can use the adaptation of [21, Theorem 2.5] given in [10, Section 6] because

i, RE" @F"), - (RED (@)
generate E%" and because ug := 1/ ulf‘ -+~ uy™ is not equal to zero in E4". (2) follows from
(1) (see e.g. [21, Theorem 4.5]). ]

The previous construction can be also done in the same way point by point” (see [13,21]
and the references therein) and this is the classical point of view: if x € A one can attach to
the Laurent polynomial Fy := F(., x) a Frobenius type structure on a point F*', a universal
deformation F; b "of it, again because u¢ and its powers generate C[u, u_l](au ; Fy), and finally
a Frobenius structure on M := (C*, 0) with the help of the section wg. We will call it "the
Frobenius structure attached to Fy”. Let Fy (resp. F ) be the germ of F (resp. F Jatx € A
(resp. (x,0)).

Proposition 7.1.2 (1) The deformations F © and ]?f " are isomorphic.
(2) The period map defined by the flat extension of @§" to Fy is an isomorphism. This yields
a Frobenius structure on M which is isomorphic to the one attached to F.

Proof Notice first that FP"is a deformation of Fy: this follows from the fact that iy does not
belong to the Jacobian ideal of f: see [10, Section 7]. Better, F f " is a universal deformation
of F, because Fy is a deformation of F, ft. This gives (1) because, by definition, two universal
deformations of a same Frobenius type structure are isomorphic. (2) is then clear. O

As a consequence, the universal deformations F xp I, x € A, are the germs of a same sec-
tion, namely F. Thus, the Frobenius structure attached to Fy,, x; € A, can be seen as an
analytic continuation of the one attached to Fy,, xo € A.

7.2 Limit Frobenius manifolds

In order to construct limit Frobenius manifolds we start from the limit structures given in Sect.
6.1.2. We mimic the process explained in Sect. 7.1: the main point is to find an unfolding of
our limit Frobenius type structure FF,, such that the associated period map is an isomorphism.
To do this, we first unfold the quantum differential system S,, (which is after all a vector
bundle with connection) and then we use Proposition 2.5.

It should be emphasized that the cases i = n + 1 (manifold) and & > n + 2 (orbifold)
will yield different conclusions.

7.2.1 Unfoldings of the limit structures

The first step is thus to unfold the limit quantum differential system
Sw=(H,V,S,n)

(see Definition 6.1.5). A basis of global sections of H is e = (eo, ..., eu—1) where we put
¢; := [w;] (remember that [w;] denotes the class of w; in H). Recall the matrices Ag and
Ao defined in Sect. 6.1.
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Define, fori =0, ..., u — 1, the matrices C; by
1

— v ifi +j Z/Landl—l—cm:ci +cj,
Ci(ej) = —ejtj ifi+j<p-Tlandciy; =c; +cj,
0 otherwise

and put
Ao(x) = (@0 — DxoCo — nCi + (@2 — Dx2Ca + -+ + (1 — Dxu1Cpi

where x = (xo, ..., X,—1) is a system of coordinates on M = (C*, 0) (with the previous
notations, we have x; = x). Notice that —uC = Ao.

Let H be the trivial bundle on P! x M with basis & = €o,...,eu—1)=(1Qep,...,1®
e;,—1). Define on H the connection V in the basis ¢ is

~ -1

Ao(x) o X

( 5 +Aoo)?+0 lzoc,-dxi.
1=l

Define S on H by S(@;. ¢j) = S(ei, e}), this equality being extended by linearity.
Proposition 7.2.1 (1) The tuple
Sw=(M,H,V,5 n)

is a quantum differential system which unfolds S.,. _
(2) Assume moreover that wo = wy = - - = w, = 1. Then the unfolding S,, is universal.

Proof (1) We have to show that V is flat and that S is V-flat. The flatness is equivalent to the
equalities

aC;  aC;
L= L ¢, ci1=0
3Xj ax,-
~ 34
[Ap(x), Ci1=0, ™ +Ci =[Ax, Ci]
1

for all i, j. Notice first that we have C;(eg) = —e; fori =0, ..., u — 1. We have

eitj+k if Civjrk =ci+cj+c,
O if 1 +ci+m:ci +cj+ck,

CiCi(er) = : —
Y e 1+ e =citcj+a
(Eﬁ 1f2+cﬁ:ci+c’j+ck

This is symmetric in i, j and thus [C;, C;] = 0. Now if we define

n—1
Apx) =D ([Ace. Ci1 = Ci)xi — puC)
.

the conditions %AF’ +C; =[Ax, Cilforalli, j =0, ..., u—1areobviously satisfied. But we

Xi
have also [A~, C;] = «; C;, because the condition 1 + Cixj =Ci +cj (resp. citj = ci+cj)
is equivalent to O = + «a; (resp. ajy; = a; + o), hence [Zo(x), C;] = 0 and the

connection is flat. For the V-flatness of §, it is enough to notice that Cl.* = C;,* denoting
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the adjoint with respect to S,,. This is shown using the kind of computations above. For the
second assertion, notice that Ko (0) = Ap.

(2Q)Ifwy = --- = wy, = 1, eg induces a cyclic vector of Ay. Hence, we canuse [21, p. 123]:
the universality then follows from the fact that (C;); 11 = —1foralli =0,...,u—1. O

The quantum differential system S,,, with the help of Proposition 2.5, gives a Frobenius
type structure on M,

Fw = (M7 Ea %7 ﬁOs Eocn 57 g)
the matrices of EU and ﬁm being, in the obvious bases, Z@ and —A. By definition, it is an

unfolding of F,,.

7.2.2 Construction of limit Frobenius manifolds

In order to get a Frobenius manifold from the Frobenius type structure F,, we still need
an invertible period map: its existence follows from the choice of the first columns of the
matrices C;.

Corollary 7.2.2 (1) The period map

Yoo : TM — E s
defined by ¢z, (§) = —CTJS (eo), is an isomorphism and e is an eigenvector of Eoo.

(2) The section eq defines, through the period map g, a Frobenius structure on M which
makes M the limit Frobenius manifold for which:

(a) the coordinates (xo, ..., xu—1) are J-flat: one has oy, =0 foralli =0,...,u—1,

(b) the product is constant in flat coordinates,

(c) the potential V is a polynomial of degree less or equal to 3,

(d) the Euler vector field is E = —(og — 1)x00xy + 10y, — (02 — Dx20y, — -+ — (atj—1 —
1)XM_18XM71.

Proof (1) Indeed, the period map ¢z, is defined by ¢z, (dy,) = —C;(eg) = e;—1. Last, ep is

an eigenvector of Roo because eg is an eigenvector of Rs.. Let us show (2): the isomorphism

@g, brings on T M the structures on E: (a) follows from the fact that the first column of the

matrices C; are constant and (b) from the fact that the matrices C; are constant because, by

the definition of the product, ¢z, (0, * 0x;) = Ci(Cj (ep)); (c) follows from (b) because, in

flat coordinates,
(0 Oy, Ox,) i
% Oy, = —
810x; * Oxj Oxe 0x;0x j 0xk

where g is the metric on 7 M induced by g. Last, (d) follows from the definition of Xo (x).0

Remark 7.2.3 If wy = --- = w, = 1, the product is given by 0d,, * ij = 8xi+j ifi +j <
u — 1, 0 otherwise, and we have
1
U = XXX i
i,j,i+j<p—I1

up to a polynomial of degree less or equal to 2. ¢
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Remark 7.2.4 Of course, the period map can be an isomorphism for other choices of the first
columns of the matrices C;:

e the resulting Frobenius manifolds will be isomorphic to the one given by Corollary 7.2.2
if w; = -+ = w, = 1 (manifold case) because the Frobenius type structure Fw is
a universal deformation of our limit Frobenius type structure F,, (see [21] and [10,
Theorem 3.2.1]). This Frobenius structure is the one on M := H*(P", C) given by the
cup product and the Poincaré duality on each tangent spaces.

e If there exists an w; such that w; > 2 (orbifold case), one theoretically could get, starting
from F,,, several Frobenius manifolds (we have shown that there exists at least one), which
can be difficult to compare because we loose the universality property here. However, the
Frobenius manifold obtained in the previous corollary is the one on M := H, (P(w), C)
given by the orbifold cup product and the Poincaré duality on each tangent spaces.

¢

7.3 Logarithmic Frobenius manifolds

A manifold M is a Frobenius manifold with logarithmic poles along the divisor D = {x = 0}
(for short a logarithmic Frobenius manifold) if Derys(log D) is equipped with a metric, a
multiplication and two global logarithmic vector fields (the unit e for the multiplication and
the Euler vector field E), all these objects satisfying the usual compatibility relations, see
[29, Definition 1.4]. We can also define a Frobenius manifold with logarithmic poles without
metric: in this case, we still need a flat, torsionless connection, a symmetric Higgs field (that
is a product) and two global logarithmic vector fields as before.

There are two ways to construct such manifolds: the first one is to start from initial data,
namely a logarithmic Frobenius type structure in the sense of [29, Definition 1.6], and to
unfold it, just as in Sect. 7.1. This logarithmic Frobenius type structure will be obtained
from a logarithmic quantum differential system, as in Proposition 2.5. The second is to work
directly with the big Gromov—Witten potential, as it is done in loc. cit. in the case of P". We
explore these two ways.

7.3.1 Construction via unfoldings

Let N = C. We will denote the coordinate on N by x and we will put D := {x = 0}. The
following definitions are borrowed from [29].

Definition 7.3.1 A quantum differential system of weight n on P! x N with logarithmic
poles along D (for short a logarithmic quantum differential system) is a tuple

(N, D, H'"98 V'8 §lo8 p)

where H'%8 is a trivial bundle on P! x N, V%8 ig a flat meromorphic connection on H log
such that

Vs (r(@! x N, H'¢8)) c 671QL, y(log(({0}) x C) U (C x {0})) @ T (P! x N, H'*¢)
and S%°8 is a V'°8 flat bilinear form as in Definition 2.1.

In order to construct logarithmic Frobenius manifolds, we will need the following
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Definition 7.3.2 A Frobenius type structure with logarithmic pole along D (for short, a
logarithmic Frobenius type structure) is a tuple

(V. D, Bt e, R, RIS, dlox, g1o%)

where E'°8 is a bundle on N, Réog and Régg are Oy -linear endomorphisms of E log
®'% : £t — Q'(log(D)) ® E'*

is a Opy-linear map, gl"g is a metric on E'8, i.e a Oy-bilinear form, symmetric and non-
degenerate, and /¢ is a connection on E'°¢ with logarithmic pole along D, these object
satisfying the compatibility relations of Sect. 2.

Remark 7.3.3 (1) One can also define in an obvious way a logarithmic quantum differential
system and logarithmic Frobenius type structure without metric.

(2) AsinSect. 2, alogarithmic quantum differential system determines a logarithmic Frobe-
nius type structure (see [29, proposition 1.10])

(3) As before, we will work preferably in the algebraic category: E*°¢ will be a free C[x]-
module efc... ¢

Proposition 3.4.7 and Theorem 4.3.3 suggests that we are not so far from a logarithmic
quantum differential system. Indeed, with the notations of Sect. 4 and forgetting the index
B, H'°8 will be obtained from an extension of Gy as a free C[x, 6]-module (recall that Gy is
only aCl[x, x~1, #]-module). We can use for instance the C[x, 6]-submodule of G generated
by wo, ..., w,—1, and we thank C. Sevenheck for this suggestion: we will denote it by L.
Let L be the C[x, T]-module generated by wy, . .., w,—1 where, as usual, 7 := 61, These
two free modules give a trivial bundle H°¢ equipped with a connection with the desired
poles, thanks to Theorem 4.3.3. In order to define the metric $'°¢, extend the bilinear form S
defined in Sect. 4.3.3 to L. We will denote the resulting tuple by SL%.

The logarithmic Frobenius type structure is then obtained as follows: put E/°¢ = £q/60 L.

Define, as in Sect. 2, the endomorphisms R(l)"g and CIDZ;g for any logarithmic vector field

& € Derc(log D) and, using now the restriction of L, at T = 0, the endomorphisms Rggg
and vl;g. We get the flat bilinear symmetric form g/¢ on E'°% putting

8% ([wi). [w]) = 07" "% (w;, ;)
where [ ] denotes the class in E/°¢. We will denote the resulting tuple by [ {,‘jg.

Proposition 7.3.4 (1) The tuple Slllf'g is a logarithmic quantum differential system if

wo = --- = w, = 1 and a logarithmic quantum differential system without metric
otherwise.
(2) The tuple Fiﬁg is a logarithmic Frobenius type structure if wo = --- = w, = l and a

logarithmic Frobenius type structure without metric otherwise.

Proof By Sect. 4.3.3, Sl is not nondegenerate, unless wo = - - - = w, = 1. This gives (1)
and (2) follows. ]
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Corollary 7.3.5 The section wq together with the tuple Fl,,fg define a logarithmic Frobenius
manifold if wo = --- = w, = 1 and a logarithmic Frobenius manifold without metric
otherwise.

Proof Define
@Yo, : Derc(log D) — E'os,

by 0oy () 1= — @éog (wp). By Theorem 4.3.3, the matrix of d>i0£ is —Ag(x)u~!. Hence Pay 10

is injective and wplp and its images under iteration of the maps <I>ia§”v lo generate E!°¢|. The
result now follows from [29, Theorem 1.12] because the section wy satisfies conditions (IC),
(EC) and (GC) of loc. cit. and its restriction to N — D is v'°%-flat (because Ré%g (wp) = 0).0

If wo = --- = w, = 1, we thus get a counterpart of the results obtained for P”, by a
different method (see section below) in [29, Section 2]. If there exists a weight w; such that
w; > 2, the construction of a logarithmic Frobenius manifold with metric using this method
is still an open problem.

Remark 7.3.6 One could of course consider different extensions of G as a free C[x, 0]-
module and start with a different logarithmic quantum differential system: for instance, it is
possible to work with the lattice £]O/' such that the eigenvalues of the residue matrix of Vj,_at
x = 0 are contained in ] — 1, 0]. It is easily checked that (with obvious notations) the section

ng in ﬁg is flat but does not satisfy (GC) if & > n + 2. The only section which satisfies

(IC), (EC) and (GC) is w;ﬁl but this one is not flat. ¢

7.3.2 Construction via the Gromov—Witten potential

In [29], Reichelt associates a logarithmic Frobenius manifold to a smooth projective variety,
using the Gromov—Witten potential. In this section, we explain why his construction does
not apply in the orbifold case.

In order to simplify the notations, we focuse on weighted projective spaces. Put My =
H» (P(w),C) andlet (Ma, H A VA, SA n)beits big A-model quantum differential system
(see Definition 3.1.4). We define the action of Pic(P(w)) on the trivial bundle H4 — P! x M4
as follows:

(1) on the fibers of H# we define, for any f € Fanday € H*(P(w)sf, Q©),
o@)-ayf = ezﬂﬁdfaf
(2) onMy = H;

T

»(P(w), C) we define

o) [e® @ or)|=@-22vV=TdcO) e @ &Vl
feF/{0} feF/{0}

As in Proposition 3.2.2, the quantum differential system is equivariant with respect to
this action so that we have a quotient quantum differential system (Mg, HA, VA, 54 n)
where M4 = M4/ Pic(P(w)). As the basis (lka) is not invariant for f # 0 with
respect to this action on M4 (see Proposition 3.4.3), the associated coordinates (fp, g =

e, ..., t,—1) on My are not coordinates on the quotient M 4. Nevertheless, we can
complete (fp,q = €', n,...,t,) in order to get a system of coordinates, denoted by
T=(to,qg =€, 10, ... by, Tugl, .., Tu—1), ON My,
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Put E4 .= HA [{0yx.M,4 - If we want to repeat the argument given by Reichelt in Section
2.1.1 [29], we should define the metric using a “infinitesimal period map” T My — EA
which sends the vector field o, to 1., P” @ (cf (3.18) for the notation). This is not allowed in
the orbifold case because for ¢; # 0 the cohomology class 1, P"® does not define a global
section of the quotient bundle H4 — P! x M.

Natural global sections of EA are (P’Li)iego,_“,,hl}. But Proposition 3.4.5 implies that
the metric degenerates at ¢ = 0. Hence as in Corollary 7.3.5, using these global sections, we
get a logarithmic Frobenius manifold without metric on M 4 in the orbifold case.
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