Examen de Mathématiques UE 2 - CORRIGE Durée 1 h - Documents interdits - Calculatrice autorisée

Exercice I: 12 points

1. a. Justifier l'existence d'une fonction réciproque pour la fonction tan. tan est continue et strictement croissante sur $]-\pi/2,\pi/2[$ à valeur dans \mathbb{R} , elle réalise donc une bijection de $]-\pi/2,\pi/2[$ dans \mathbb{R} et admet une fonction réciproque arctan définie sur \mathbb{R} .

b. arctan est continue et strictement croissante sur \mathbb{R} . arctan t est dérivable sur \mathbb{R} et arctan $t'(x) = \frac{1}{1+x^2}$.

c.
$$f'(x) = \frac{-1}{x^2} \times \frac{1}{1 + \frac{1}{x^2}} = \frac{-1}{1 + x^2}$$

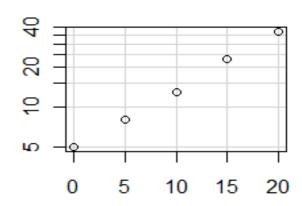
(Donc $f(x) = -\arctan(x) + C$ avec $f(1) = \pi/4$ soit $C = \pi/2$)

2. On pose
$$f(x) = x^2 - \cos(x)$$
 continue sur $\left[0, \frac{\pi}{2}\right]$.
 $f(0) = -1 < 0$
 $f(\pi/2) = -\pi/2 > 0$

D'après le TVI, f(x) = 0 admet au moins une solution sur $\left[0, \frac{\pi}{2}\right]$.

3.
$$f$$
 est continue dérivable sur $\left[0, \frac{\pi}{4}\right]$, on applique le TAF :

$$\exists c \in]0, \pi/4[\text{ tel que } f'(c) = \frac{\arctan(\frac{\pi}{4}) - \arctan(0)}{\frac{\pi}{4} - 0} = \frac{4}{\pi}$$


Exercice II

- 1. Représenter le tableau à l'aide du papier semi-log fourni.
- 2. Le nuage de points est rectiligne.

3.
$$y=0.7+0.04t$$

4.
$$\log_{10}(p)=0.7+0.04t$$

 $p=10^{0.7+0.04}=10^{0.7}\times(10^{0.04})^{t}$

$$p = 5.0 \times 1 \cdot 1^t$$

