ON COMBINATORIAL TYPES OF CYCLES UNDER THE MULTIPLICATION BY k MAP OF THE CIRCLE.

Carsten Lunde Petersen, INM Roskilde University

joint work with Saeed Zakeri, CUNY Queens College

In memory of Tan Lei

Université d’Angers October 25, 2017
Let \(m_k : T \to T := \mathbb{R}/\mathbb{Z} \) denote the multiplication by \(k \geq 2 \) map of the circle

\[
m_k(x) = kx \pmod{\mathbb{Z}}.
\]

The central question of this work is whether a given combinatoric \(\sigma \in C_q \) and or combinatorial type \(\tau \) in \(C_q \) has a realization under \(m_k \) and if it does, how many such realizations there are.
There is a natural way to associate to each q-periodic point z for m_k belonging to a q-cycle $0 < z_1 < \ldots < z_q < 1$, say $z = z_j$, a pair of q-periodic points (x_j, y_j) characterized as follows:

- $y_j - x_j = \frac{(k + 1)^{q - 1}}{(k + 1)^q - 1}$,
- Their cycles are interlaced

 $0 < x_1 < y_1 < x_2 < y_2 < \ldots x_q < y_q < 1$

- There is a monotone projection $P : \mathbb{T} \to \mathbb{T}$ with $P(0) = 0$, $P([x_j, y_j]) = z_j$ and semi-conjugating m_{k+1} to m_k on $\mathbb{T} \setminus [x_j, y_j]$.
Connectedness locus for $\lambda z^2 + z^3$

e.g. $z = \frac{3}{5}$ with m_2-orbit

$$\left\{ \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5} \right\}$$

gives $(x_3, y_3) = (\frac{29}{80}, \frac{56}{80})$

with m_3 orbits

$$\left\{ \frac{7}{80}, \frac{21}{80}, \frac{29}{80}, \frac{63}{80} \right\}$$

and

$$\left\{ \frac{8}{80}, \frac{24}{80}, \frac{56}{80}, \frac{72}{80} \right\}.$$
I view the above as saying that for every periodic point \(z \) for \(m_k \) there is a pair of neighbouring periodic orbits for \(m_{k+1} \) with the same combinatorics and with critical interval corresponding to \(z \).

This motivates the following questions:

- Which combinatorics exists for \(m_{k+1} \), but does not exist for \(m_k \)?
- How does the number of orbits with a given combinatorics grow with the degree \(k \)?
- For rotation orbits with rational rotation number the answers to these questions are known.
- In fact for each irreducible rotation number \(p/q \), \(m_2 \) has a unique such orbit and Goldberg showed that in the general case, the number of such orbits is given by

\[
\binom{q + k - 2}{q}
\]
Cyclic Permutations

- We shall use cyclic permutations to represent combinatorics of periodic orbits on the circle \mathbb{T}.
- Denote by S_q the group of permutations of q symbols, which we take to be the representatives $\{1, \ldots, q\}$ of the cyclically ordered set $\mathbb{Z}/q\mathbb{Z}$.
- Denote by $C_q \subset S_q$ the set of q-cycles σ in S_q:
 \[
 \sigma = (1 \sigma(1) \sigma^2(1) \ldots \sigma^{q-1}(1))
 \]
- And denote by $R_q \subset S_q$ the rotation group, that is the group generated by the q-cycle
 \[
 \rho = (1 \ 2 \ \ldots \ q)
 \]
 with rotation number $1/q$.
What is a combinatorics?

Consider again the "Cocapeli"-orbit \(\{ \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5} \} \) under \(m_2 \).

\[
x_2 = \frac{2}{5} \quad \qua
We shall use $\sigma = (1 2 4 3)$ as a synonym for the combinatorics of the orbit $\{ \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5} \}$ under m_2.

More generally if $0 < x_1 < x_2 < \ldots < x_q < 1$ and

$$f : \{x_1, \ldots, x_q\} \longrightarrow \{x_1, \ldots, x_q\}$$

is a cyclic dynamics we shall say that the orbit $\{x_1, \ldots, x_q\}$ has combinatorics $\sigma \in \mathcal{C}_q$ iff

$$\forall i : f(x_i) = x_{\sigma(i)}.$$

And we shall call any $\sigma \in \mathcal{C}_q$ a q-combinatorics.
A few numbers

- For each q the number of q-combinatorics is $(q - 1)!$.
- For each $k \geq 2$ and q there are at most $k^q \frac{k^q}{q}$ periodic orbits for m_k of period q.
- So for each fixed k and sufficiently large q the majority of the q-combinatorics are not realized by m_k.
- The next slide shows as examples the four possible non-rotational 4-combinatorics
\[\sigma_1 = (1 \ 2 \ 4 \ 3) \]
\[\sigma_2 = (1 \ 4 \ 2 \ 3) \]
\[\sigma_3 = (1 \ 3 \ 4 \ 2) \]
\[\sigma_4 = (1 \ 3 \ 2 \ 4) \]
Only σ_1 is realized by m_2, uniquely by our "Cocapeli"-orbit \{ $\frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}$ \}.

The others however are each uniquely realized by m_3:

\[
\begin{align*}
\sigma_2 &= (1 \ 4 \ 2 \ 3) : \left\{ \frac{23}{80}, \frac{47}{80}, \frac{61}{80}, \frac{69}{80} \right\} \\
\sigma_3 &= (1 \ 3 \ 4 \ 2) : \left\{ \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5} \right\} \\
\sigma_4 &= (1 \ 3 \ 2 \ 4) : \left\{ \frac{11}{80}, \frac{19}{80}, \frac{33}{80}, \frac{57}{80} \right\}
\end{align*}
\]
A 5-cycle example

\[\sigma = (1 \ 2 \ 4 \ 5 \ 3) \]

This combinatorics is not realized by \(m_2 \) either.

It is however uniquely realized by \(m_3 \):

\[\sigma = (1 \ 2 \ 4 \ 5 \ 3) : \left\{ \frac{8}{121}, \frac{24}{121}, \frac{43}{121}, \frac{72}{121}, \frac{95}{121} \right\} \]
Intervals in $\mathbb{Z}/q\mathbb{Z}$ and "lengths"

Definition

For $1 \leq i, j \leq q$ define the closed interval $[i, j]$ in $\mathbb{Z}/q\mathbb{Z}$ as:

$$[i, j] = \begin{cases}
\{i, i + 1, \ldots, j\} & \text{if } i < j, \\
\{i, (i + 1), \ldots, (j + q)\} & \text{if } j < i.
\end{cases}$$

And the length $|[i, j]| := \#[i, j] - 1$ so that

$$|[i, j]| = j - i \text{ if } i \leq j \text{ and } |[i, j]| = j + q - i \text{ if } j < i.$$

All subsets of $\mathbb{Z}/q\mathbb{Z}$ are closed but we shall use the notion $[i, j)$ to indicate the "open interval $[i, j]$ minus the right end point.
The degree of a cycle.

Definition

For $\sigma \in \mathcal{C}_q$ define $\text{deg}(\sigma)$ as the integer:

$$\text{deg}(\sigma) = \frac{1}{q} \sum_{j=1}^{q} |[\sigma(j), \sigma(j+1)]|$$

- The degree of σ is equal to the descent number $\text{des}(\sigma)$ of the permutation σ as defined in combinatorial analysis.
- $\text{deg}(1243) = \text{deg}(1423) = \text{deg}(1342) = \text{deg}(1324) = 2$
- $\text{deg}(12453) = 3$
- $\text{deg}(\sigma) = 1$ if and only if σ is a rotation cycle.
Example $\sigma = (1 \ 2 \ 4 \ 5 \ 3)$
Topological realization

Definition

A (topological) realization of the cycle $\sigma \in C_q$ is a pair (f, \mathcal{O}), where $f : \mathbb{R}/\mathbb{Z} \to \mathbb{R}/\mathbb{Z}$ is a positively oriented covering map, $\mathcal{O} = \{x_1, \ldots, x_q\}$, $0 < x_1 < \ldots, x_q < 1$ is a period q orbit of f, and $f(x_i) = x_{\sigma(i)}$ for all i.

The degree of the realization (f, \mathcal{O}) is the mapping degree of f.

A realization of σ is minimal if it has the smallest possible degree among all realizations.

- For any $x \neq y \in \mathbb{T}$ let $[x, y]$ denote the closed interval in \mathbb{T} with end points x, y such that for any z in the corresponding open interval $]x, y[$ the triple (x, z, y) is positively oriented.
- Equivalently let $\Pi : \mathbb{R} \longrightarrow \mathbb{T}$ denote the natural projection. Then $[x, y] = \Pi([\hat{x}, \hat{y}])$, where $\Pi(\hat{x}) = x$ and $\Pi(\hat{y}) = y$ and $\hat{x} < \hat{y} < \hat{x} + 1$.

Carsten Lunde Petersen, INM RUC
Combinatorics of cycles
In memory of Tan Lei
For \((f, O)\) a topological realization of \(\sigma\) and any \(j \in \mathbb{Z}/q\mathbb{Z}\) the restriction of \(f\) to \(I_j := [x_j, x_{j+1}]\) lifts into \(\Pi\) as a homeomorphism \(\hat{f}_j : [x_j, x_{j+1}] \rightarrow [\hat{x}_\sigma(j), \hat{x}_\sigma(j+1)]\), where \(\hat{x}_\sigma(j) < \hat{x}_\sigma(j+1)\), \(\Pi(\hat{x}_\sigma(j)) = x_\sigma(j)\) and \(\Pi(\hat{x}_\sigma(j+1)) = x_\sigma(j+1)\).

It follows that \((f, O)\) is minimal iff \(\hat{x}_\sigma(j) < \hat{x}_\sigma(j+1) < \hat{x}_\sigma(j) + 1\) for each \(j\).

Or in other words \((f, O)\) is minimal only if for each \(j\)

\[
f(I_j) = [f(x_j), f(x_{j+1})] = [x_\sigma(j), x_\sigma(j+1)] = \bigcup_{i \in [\sigma(j), \sigma(j+1))} l_i.
\]

Thus \((f, O)\) is minimal if and only if \(\text{deg}(f) = \text{deg}(\sigma)\)

McMullen observed that a minimal realization of \(\sigma\) always exists:

Take any \(q\) points with \(0 < x_1 < \ldots < x_q < 1\) as \(O\) and let \(f\) be any map which for each \(j\) maps \([x_j, x_{j+1}]\) homeomorphically onto \([x_\sigma(j), x_\sigma(j+1)]\).
Minimal realization of $\sigma = (1 \ 2 \ 4 \ 5 \ 3)$
We see immediately why \(\sigma = (1 \ 2 \ 4 \ 5 \ 3) \) is not realized by \(m_2 \). It has degree 3 and thus any realizing map must have topological degree at least 3.

The four non-rotational period 4 combinatorics \(\sigma_1 = (1 \ 2 \ 4 \ 3) \), \(\sigma_2 = (1 \ 4 \ 2 \ 3) \), \(\sigma_3 = (1 \ 3 \ 4 \ 2) \) and \(\sigma_4 = (1 \ 3 \ 2 \ 4) \) are mutually conjugate by powers of the rotation \(\rho = (1 \ 2 \ 3 \ 4) \) and have degree 2. But only \(\sigma_1 \) is realized by \(m_2 \). Why is this?

Notice that 0 is a fixed point for any \(m_k \). Thus in general \(I_q \) must be mapped over itself, and in fact onto a larger interval in order for \(\sigma \in C_q \) to be realized by \(m_k \).

This means for a \(\sigma \in C_q \) of degree \(d \) to be realized by \(m_d \) we must have \(I_q = [x_q, x_1] \subset [x_{\sigma(q)}, x_{\sigma(1)}] \) or equivalently

\[
\sigma(1) < \sigma(q).
\]
We have thus arrived at

Proposition

A necessary condition for a combinatoric $\sigma \in \mathcal{C}_q$ *to be realized by* m_k *is that*

$$\deg(\sigma) \leq k \quad \text{and} \quad \sigma(1) < \sigma(q).$$

The following theorem shows that these conditions are also sufficient.
Realization under m_d. I

Theorem (Zakeri and P.)

Let $\sigma \in \mathbb{C}_q$ be a q-cycle with $\deg(\sigma) = d \geq 2$.

- If $\sigma(1) < \sigma(q)$ then σ has a realization under m_d and
- if $\sigma(1) > \sigma(q)$ then σ has a realization under m_{d+1}.

In both cases the realisation is unique.
Realization under m_d. II

Theorem (Zakeri and P.)

Let $\sigma \in \mathcal{C}_q$ be a q-cycle with $\deg(\sigma) = d \geq 2$ and let $k \geq d$. Then the number of realizations of σ under m_k is given by the binomial coefficient:

$$\begin{align*}
\binom{q+k-d}{q} &\text{ if } \sigma(1) < \sigma(q) \\
\binom{q+k-d-1}{q} &\text{ if } \sigma(1) > \sigma(q).
\end{align*}$$

- Note that for $d = 1$ (rotation cycles) and $k \geq 2$ this agrees with Goldbergs formula.
- I shall focus on the proof that a q-cycle $\sigma \in \mathcal{C}_q$ with $\deg(\sigma) = d \geq 2$ and $\sigma(1) < \sigma(q)$ is realised under m_d.
The transition matrix of σ.

Definition

The *transition matrix* of $\sigma \in \mathcal{C}_q$ is the $q \times q$ matrix $A = [a_{ij}]$ defined by

$$a_{ij} = \begin{cases}
1 & \text{if } j \in [\sigma(i), \sigma(i + 1)) \\
0 & \text{otherwise.}
\end{cases}$$

We may also view the transition matrix A geometrically:

Let (f, \mathcal{O}) be a(ny) minimal realization of σ, where $\mathcal{O} = \{x_1, \ldots, x_q\}$ and as usual $0 < x_1 < \ldots < x_q < 1$. Then we saw above that

$$f(I_i) = \bigcup_{j \in [\sigma(i), \sigma(i + 1))} I_j$$

for all i, where $I_j = [x_j, x_{j+1}]$.

It follows that the entries of the transition matrix $A = [a_{ij}]$ satisfy

$$a_{ij} = \begin{cases} 1 & \text{if } f(I_i) \supset I_j \\ 0 & \text{otherwise.} \end{cases}$$

Since f is a covering map of degree d, every column of the transition matrix A contains exactly d entries of 1.

The column stochastic matrix $\frac{1}{d} \cdot A$ describes a Markov chain with states I_1, \ldots, I_q, with the probability of going from I_j to I_i equal to $1/d$ if $I_j \subset f(I_i)$ and equal to 0 otherwise.
The Transition matrix and iteration

- Let A be the transition matrix of a q-cycle σ.
- Let (f, \mathcal{O}) be a minimal realization of σ with the partition intervals I_1, \ldots, I_q as above.
- A straightforward induction shows that the ij-entry $a_{ij}^{(n)}$ of the power A^n is the number of times the n-th iterated image $f^{\circ n}(I_i)$ covers I_j or, equivalently, the number of connected components of $f^{-n}(I_j)$ in I_i.

Lemma

Let A be the transition matrix of $\sigma \in \mathcal{C}_q$ with $\deg(\sigma) \geq 2$. Then the power A^q has positive entries.

- This is shows that the transition matrix is irreducible.
A Perron – Frobenius Theorem

Theorem (Perron – Frobenius)

Let S be a $q \times q$ column stochastic matrix with the property that some power of S has positive entries. Then

(i) S has a simple eigenvalue at $\lambda = 1$ and the remaining eigenvalues are in the open unit disk $\{\lambda : |\lambda| < 1\}$.

(ii) The eigenspace corresponding to $\lambda = 1$ is generated by a unique probability vector $\ell = (\ell_1, \ldots, \ell_q)$ with $\ell_i > 0$ for all i.

(iii) The powers S^n converges to the matrix with identical columns ℓ as $n \to \infty$.
We immediately have:

Theorem

Let A be the transition matrix of $\sigma \in \mathcal{C}_q$ with $\deg(\sigma) = d \geq 2$. Then, there is a unique probability vector $\ell \in \mathbb{R}^q$ such that $A\ell = d\ell$. Moreover, ℓ has positive components and satisfies

$$\ell = \lim_{n \to \infty} \frac{1}{d^n} A^n \nu$$

for every probability vector $\nu \in \mathbb{R}^q$.
We are now ready to prove the theorem:

Theorem

Let $\sigma \in C_q$ be any q-cycle with $\text{deg}(\sigma) = d \geq 2$ and with $\sigma(1) < \sigma(q)$. Then σ has a unique realization under m_d.

PROOF:

- We are looking for a q-periodic orbit $O = \{x_1, \ldots, x_q\}$ for m_d, $0 < x_1 < \ldots < x_q < 1$ such that $m_d(x_i) = x_{\sigma(i)}$ for all i.
- Assume for a moment that such O exists, let $I_i = [x_i, x_{i+1}]$, consider the lengths $\ell_i = |I_i|$, and form the probability vector $\ell = (\ell_1, \ldots, \ell_q) \in \mathbb{R}_+^q$.
- Since m_d maps I_i homeomorphically onto $\bigcup_{j \in [\sigma(i), \sigma(i+1)]} I_j$, we have
 \[
 \sum_{j \in [\sigma(i), \sigma(i+1)]} \ell_j = d \ell_i \quad \text{for all } i. \tag{1}
 \]
The q relations (1) can be written as

$$A\ell = d\ell,$$ \hspace{1cm} (2)

where A is the transition matrix of σ.

By the Perron-Frobenius Theorem, this equation has a unique solution ℓ which determines the lengths of the partition intervals $\{l_i\}$, hence the orbit \mathcal{O} once we find x_1.

To construct the orbit $\mathcal{O} = \{x_1, \ldots, x_q\}$, take the unique solution $\ell = (\ell_1, \ldots, \ell_q)$ of (2) and define

$$\begin{cases}
 x_1 = \frac{1}{d-1} \sum_{j \in [1, \sigma(1))] \ell_j \\
 x_i = x_1 + \sum_{j \in [1, i)} \ell_j \quad \text{for } 2 \leq i \leq q.
\end{cases}$$ \hspace{1cm} (3)

A few tedious computations shows that (3) works.
The higher degree cases

- Let $\sigma \in \mathbb{C}$. In order to describe the higher degree case $k > d = \deg(\sigma)$, we need some further notation.
- As before let A denote the transition matrix for σ.
- It can be shown that the diagonal of the $0-1$ matrix A contains precisely $d - 1$ entries of 1.
- A diagonal entry say a_{ii} with value 1 corresponds to a fixed point for realizations.
- That is for any minimal realization (f, \mathcal{O}) of σ, the interval I_i contains a fixed point for f iff $a_{ii} = 1$, that is iff $f(I_i) \supseteq I_i$.
- In particular the q-th diagonal entry $a_{qq} = 1$ if and only if $\sigma(1) < \sigma(q)$.
The signature of σ.

We define

Definition

Let $A = [a_{ij}]$ be the transition matrix of $\sigma \in \mathcal{C}_q$ with $\text{deg}(\sigma) = d$. The *signature* of σ is the integer vector formed by the main diagonal entries of A:

$$\text{sig}(\sigma) = (a_{11}, \ldots, a_{qq}).$$

If (f, \mathcal{O}) is any realization of σ (minimal or not), and if I_1, \ldots, I_q are the corresponding partition intervals, then I_i is called a *marked interval* if $a_{ii} = 1$.

- Let $p = (p_1, \ldots, p_q) \in \mathbb{N}^q$ be a q-vector with non negative integer valued coordinates. And let 1 denote the q-vector of ones $1 = (1, \ldots, 1)$.
- Let $P = p^T \cdot 1$ be the $q \times q$ matrix with identical columns equal to $p^T \ldots$
The transformation matrix for non minimal realizations.

- Then

\[B = A + P \]

can be regarded as the transition matrix for realizations \((f, O)\) of \(\sigma\) with winding \(p_i\) on interval \(l_i\).
- That is lifts of \(f\) on \([x_i, x_{(i+1)}]\) to \(\Pi\) have homeomorphic images of the form \([\hat{x}_{\sigma(i)}, \hat{x}_{\sigma(i+1)}]\) where \(\hat{x}_{\sigma(i)} + p_i < \hat{x}_{\sigma(i+1)} < \hat{x}_{\sigma(i)} + p_i + 1, \, \Pi(\hat{x}_{\sigma(i)}) = x_{\sigma(i)}\) and \(\Pi(\hat{x}_{\sigma(i+1)}) = x_{\sigma(i+1)}\).
- Then \(b_{ij}\) is the number of connected components of \(f^{-1}(l_j)\) contained in \(l_i\).
- The total sum of the elements in each column is

\[k = \deg(\sigma) + \sum_{j=1}^{q} p_j. \]
Thus $\frac{1}{k}B$ is a column stochastic matrix.

Applying the Perron-Frobenius theorem again we find that B has a unique simple leading eigenvalue 1 and a unique corresponding positive probability eigen-vector.

With this in place the following theorem is easily proved.

Theorem

*If the diagonal element $b_{qq} = a_{qq} + p_q > 0$, then there are b_{qq} orbits for m_k realizing σ.***
Workshop on Holomorphic Dynamics
- Iterated Monodromy groups and
Henon maps with a semi-neutral fixed point -
Søminestationen Holbæk, November 30 - December 3, 2017
http://thiele.ruc.dk/~lunde/Monodromy/index.html