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Abstract. We introduce standard decomposition, a natural way of decomposing
a labeled graph into a sum of certain labeled subgraphs. We motivate this graph-
theoretic concept by relating it to Connect Four decompositions of standard sets.
We prove that all standard decompositions can be generated in polynomial time as
a function of the combined size of the input and the output. This implies that all
Connect Four decompositions can be generated in polynomial time.
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1. Introduction

Let G be a directed graph. We say that an integer-valued labeling on the
nodes of G is compatible with the edge relation if for all edges (a, b), the label
of node a is less than or equal to the label of node b. Graphs satisfying that
compatibility form the class of standard graphs; they are the objects of study
of the present paper.

The paper is divided into two parts. In the first part, we study standard
graphs and introduce a way of decomposing a standard graph as a sum of
standard components — these are the standard subgraphs of G whose labels
are 0 or 1. Here addition of labeled graphs is defined as addition of the
labels. A standard decomposition of a standard graph is a multiset of standard
components whose sum is the given graph. Standard components may be
viewed as the building blocks of a standard graph.

Standard decomposition is not unique — standard graphs in general admit
more than one standard decomposition. Figure 1.1 shows a simple example of
a standard graph and all its standard decompositions. This raises the ques-
tion of what the complexity of generating all standard decompositions given a
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standard graph is. Theorem 1.1 answers this question and it is the main result
of the first part of the paper.

Theorem 1.1. It is possible to generate all the standard decompositions of a
standard graph in polynomial time.

A word for clarity is needed. Example 3.1 shows that the number of de-
compositions can depend exponentially on the input. For such problems, it is
natural to consider the so-called “generating complexity”, in which one con-
siders the running time as a function of the combined size of the input and
the output. This is our framework in this paper, in particular when we assert
the polynomial dependency in Theorem 1.1 above, or in Theorem 1.2 and its
corollary below.
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Figure 1.1: A standard graph and its two standard decompositions

In the second part of the paper, we link standard graphs and standard
decomposition to a previously studied subject — Connect Four decomposition
of standard sets. A standard set is an “n-dimensional staircase”, and a Connect
Four decomposition of a standard set ∆ is a set of n− 1 dimensional standard
sets from which ∆ can be built by stacking them on top of each other and
“letting gravity pull them down”. Figure 1.2 shows a simple example of a
three dimensional standard set and all its Connect Four decompositions; the
graph from Figure 1.1 encodes that same standard set.

Connect Four decomposition is a notion relevant to the study of the Hilbert
scheme of points Lederer (2014), which appears as the combinatorial part
in many techniques. For instance, it is useful in the study of singularities
of plane curves as a tool for the Horace method Hirschowitz (1985), in the
context of Gröbner basis theory Eisenbud (1995), Lederer (2008), Lederer
(2014), to compute tangent spaces Nakajima (1999, Proposition 7.5), or to
produce new counterexamples to Hilbert’s fourteenth problem Evain (2005).
Handling Connect Four decompositions is what originally prompted the work
in this paper. We will show:
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Theorem 1.2. (i) The two problems,

(a) computing standard decompositions of labeled graphs, and

(b) computing Connect Four decompositions of finite standard sets,

are equivalent in the sense that for each labeled graph G, there exists
a standard set ∆ such that the standard decompositions of G are in
canonical bijection with the Connect Four decompositions of ∆, and
conversely.

(ii) This equivalence preserves polynomial complexity in the sense that for
each labeled graph G, we can compute a standard set ∆ with graph G in
polynomial time, and for each standard set ∆, we can compute its graph
G(∆) in polynomial time.

Corollary 1.3. It is possible to generate all Connect Four decompositions
of a standard set in polynomial time.
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Figure 1.2: A standard set and its two Connect Four decompositions

We conclude our paper with an appendix which links the notions intro-
duced in this paper to other classical tools and problems. First we present
a generating function for the number of standard decompositions of a given
graph. Then we show that the set of all Connect Four games in Nd of a given
size n is in canonical bijection with the set of (d − 1)-fold iterated partitions
of n.

A word on the proofs. We prove Theorem 1.1 by presenting an algorithm
that generates all standard decompositions in polynomial time. The algorithm
is based on reducing the problem of computing all standard decompositions of
G to the problem of computing all standard decompositions of G containing
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a fixed node v. We then solve that problem in a recursive way. Any choice
of the node v results in a correct algorithm, yet we give a specific choice of v
that allows the algorithm to generate its output in polynomial time.

The proof of Theorem 1.2 is done in several steps. We first attach a graph
G(∆) to each standard set ∆ such that the standard decompositions of G(∆)
and the Connect Four decompositions of ∆ are in canonical bijection. From
G(∆) we then define another graphG′(∆) that is easier to work with, called the
canonicalized standard graph, which has the same decompositions (see Propo-
sition 7.5). We show that all labeled graphs arising from standard sets in this
way have three specific properties, namely,

◦ they are standard,

◦ they are connected, and

◦ they have a unique node of maximal label.

Let S be the class of labeled graphs satisfying these conditions. The connect-
edness assumption in the definition of S is not essential for the complexity
of the graphs from that class, since the standard decompositions of a disjoint
union of graphs is the product of the standard decompositions of the individ-
ual graphs. We prove in Proposition 8.5 that each connected graph in S arises
from a standard set if, in addition, the relation on the nodes of the graph
defined by the edges of the graph is transitive. In Proposition 9.2, we show
that for each connected standard graph, there exists a graph in S such that
the standard decompositions of the two graphs are in canonical bijection.

2. Standard graphs and standard components

All graphs under consideration are directed, have finitely many nodes and do
not have any parallel edges or loops. Given a graph, let < be the partial
preorder on the set of nodes such that a < b if b is reachable from a. The
graphs that we consider are labeled in the following sense.

Definition 2.1 (Labeled graph). A labeled graph is a graph G with a finite
node set VG (possibly empty), an edge set EG ⊆ VG × VG such that the
graph contains no loops (ie. ∀a ∈ VG, (a, a) /∈ EG) and a labeling of nodes
LG : VG → Z. If (a, b) ∈ EG, a is called the source of the edge and b is called
the target of the edge.

Definition 2.2 (Subgraph). A subgraph of a labeled graph G is a labeled
graph H with a finite node set VH ⊂ VG, an edge set EH = (VH × VH) ∩ EG,
and a labeling of nodes LH : VH → Z with LH ≤ LG.

This definition does not allow parallel edges since the edge set is not a
multiset. The constraints on parallel edges and loops are not important to the
results of this paper. We impose those conditions for simplicity since loops
and parallel edges add nothing interesting to the problem.
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Definition 2.3 (Standard graph). A labeled graph G is standard if all labels
are non-negative and the labeling is compatible with the partial order on the
nodes in the sense that LG (a) ≤ LG (b) for all edges (a, b) ∈ EG.

We now introduce the operations of addition and subtraction on labeled
graphs.

Definition 2.4 (Addition and subtraction). LetG andH be labeled graphs.
Suppose that VG and VH are subsets of a common set V. Suppose that for all
(a, b) ∈ (VG ∩ VH)× (VG ∩ VH), the conditions (a, b) ∈ EG and (a, b) ∈ EH are
equivalent. Then G⊕H is the labeled graph with node set VG⊕H ..= VG ∪VH ,
edge set EG⊕H ..= EG ∪ EH and labeling

LG⊕H ..=


LG for v ∈ VG \ VH ,
LG + LH for v ∈ VG ∩ VH ,
LH for v ∈ VH \ VG.

We define G	H to have the same node set and edge set as G⊕H, but with
labeling

LG	H ..=


LG for v ∈ VG \ VH ,
LG − LH for v ∈ VG ∩ VH ,
−LH for v ∈ VH \ VG.

The sum of two standard graphs is again a standard graph. This is illus-
trated in the example from Figure 2.1.
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Figure 2.1: The sum of two standard graphs
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Definition 2.5 (0-1 graph). A labeled graph is a 0-1 graph if all labels are
0 or 1.

If we take a standard graph and replace all positive labels by 1, then we
obtain another standard graph. This is a standard 0-1 graph — a graph that
is both standard and a 0-1 graph. Some subgraphs H of a standard graph G
are standard 0-1 graphs and in some cases we can write G as H ⊕ G′, where
G′ is another standard graph. In this case we call H a standard component of
G.

Definition 2.6 (Standard component). Let G and H be labeled graphs with
the same set of nodes and edges, ie. VG = VH and EG = EH . Then H is a
standard component of G if

(i) H is a standard 0-1 graph;

(ii) G	H is a standard graph; and

(iii) not all labels in H are zero.

We think of standard components of G as the building blocks of G. Our
goal is to determine all the ways to build a graph out of such building blocks.

Definition 2.7 (Standard decomposition). Let G be a labeled graph. A
multiset of labeled graphs H is a standard decomposition of G if each H ∈ H
is a standard component of G and G =

∑
H∈HH. We denote the set of

standard decompositions of G by D (G).

To keep formulas succinct, we use the shorthand notation
∑
H ..=∑

H∈HH.

A standard 0-1 graph G admits only the standard decomposition {G}. In
particular, the building blocks of a graph are indecomposable; this is why
we call them standard components. We define standard decompositions to be
multisets rather than sets since a standard component can appear multiple
times within one decomposition.

Example 2.8. Figure 2.2 shows a standard graph and all its decompositions.
♦

Since the sum of two standard graphs with the same nodes and edges is
standard, a labeled graph has a standard decomposition only if it is standard.
Proposition 2.10 shows that the converse is also true.
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Figure 2.2: All decompositions of a graph.

Definition 2.9 (Maximal standard component). The maximal standard
component of a standard graph G is the unique standard component H for
which LH (v) = 1 if, and only if, LG (v) > 0.

This component is maximal in the sense that all other standard components
are labeled subgraphs of the maximal standard component. Note that the
maximal standard component is always a standard component unless we are
in the degenerate case where all nodes of G are labeled zero.

Proposition 2.10. Let H be a multiset of standard components of a labeled
graph G. Then H can be extended to a standard decomposition of G if, and
only if, G	

∑
H is standard. In particular, a standard graph admits a standard

decomposition.

Proof. Proof of “if”: If G =
∑
H then we are done, so suppose that

G 6=
∑
H. Let C be the maximal standard component of G 	

∑
H. Then

G	
∑

(H ∪ {C}) is standard. The assertion follows from this by induction.
Proof of “only if”: If H′ is a multiset of standard components of G that

contains H, and G	
∑
H is not standard, then neither is G	

∑
H′, so H′ is

not a standard decomposition of G.
The last statement of the proposition follows from the first by takingH = ∅.

�
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Corollary 2.11. If H is a standard component of a standard graph G, then
H is an element of at least one standard decomposition of G.

3. Standard node decompositions

We now turn to the topic of the computational complexity of the problem
of computing standard decompositions. We start with a simple instructive
example.

Example 3.1. Let Gn be the labeled graph defined by

VGn ..= {y, x1, . . . , xn} , EGn ..= {(x1, y), . . . , (xn, y)} ,

and LGn (xi) ..= 1 for i = 1, . . . , n, while LGn (y) ..= 2. There are 2n standard
components of Gn, corresponding to the n independent choices of whether
to include or exclude the value at each xi. The standard decompositions of
Gn are pairs of standard components that include complementary subsets of
{x1, . . . , xn}. So Gn has 2n−1 standard decompositions while having only n+1
nodes. ♦

Consider the computational problem whose input is a labeled graph G
and whose output is the set of standard decompositions D (G). Recall that
D (G) 6= ∅ if, and only if, G is standard — however, we will formulate our
statements for arbitrary labeled graphs, thus covering also the case where the
output is the empty set. Example 3.1 shows that this computation cannot be
done in time better than exponential in the worst case since just writing down
the output can take exponential time. For problems such as this, it is standard
practice to consider an alternative notion of complexity, generating complexity,
in which we consider the running time as a function of the combined size of
the input and the output.

We present an algorithm for standard decomposition of graphs that runs
in polynomial time in the combined size of input and output. This algorithm
is based on the following notion of decomposing a single node of a standard
graph.

Definition 3.2 (Standard node decomposition). Let G be a labeled graph
and let v be a node of G. A multiset of standard graphs H is a standard
v-decomposition of G if

(i) each H ∈ H is a standard component of G,

(ii) LH (v) = 1 for all H ∈ H,

(iii) G	
∑
H is standard,

(iv) |H| = LG (v).

We denote the set of standard v-decompositions of G by Dv (G).
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Consider a standard graph G with a standard decomposition H and a
node v of G. The submultiset of H whose elements give v a label of 1 forms
a standard v-decomposition of G. Another way of characterizing a standard
v-decomposition is that it is a minimal multiset H of standard components of
G such that G	

∑
H gives v the label 0 and such that H can be extended to

a standard decomposition of G.

Lemma 3.3. Let G be a labeled graph. Let A be a multiset of standard 0-
1 subgraphs of G and let B be a submultiset of A. Then A is a standard
decomposition of G if, and only if, A \ B is a standard decomposition of
G	

∑
B.

Proof. Proof of “if”: Assume that A \ B is a standard decomposition
of G 	

∑
B. Then G 	

∑
B =

∑
(A \ B) so G =

∑
A. It only remains

to prove that each a ∈ A is a standard component of G. To prove that, we
need to show that G 	 a is standard. We already know that a is a standard
component of G 	

∑
B, which implies that G 	

∑
B 	 a is standard. Then

G	a = (G	
∑
B 	 a)⊕

∑
B is standard, as it is a a sum of standard graphs

with identical node sets.
Proof of “only if”: Assume that A is a standard decomposition of G.

Then G =
∑
A so G	

∑
B =

∑
(A \ B). It only remains to prove that each

a ∈ A\B is a standard component of G	
∑
B. To prove that we need to show

that G	
∑
B 	 a is standard. We already know that G	

∑
A has all labels

zero, so it is standard. Then G	
∑
B 	 a = (G	

∑
A)⊕

∑
(A \ (B ∪ {a}))),

so G 	
∑
B 	 a is standard, as it is a sum of standard graphs with identical

node sets. �

Every standard graph has at least one standard decomposition, so Propo-
sition 3.4 implies that if we can generate standard v-decompositions in polyno-
mial time, then we can also generate standard decompositions in polynomial
time.

Proposition 3.4. Let v be a node of a labeled graph G. Then

D (G) =
{
H ∪H′

∣∣∣H ∈ Dv (G) ,H′ ∈ D
(
G	

∑
H
)}

,

where no decomposition appears twice on the right hand side.

Proof. Proof of ⊆: Let D ∈ D (G) and let H be the submultiset of D
whose elements give v the label 1. Then H ∈ Dv (G). It only remains to prove
that D \ H ∈ D (G	

∑
H), which follows from Lemma 3.3.

Proof of ⊇: Let H ∈ Dv (G) and let H′ ∈ D (G	
∑
H). Then H′ ∪H is

a standard decomposition of G by Lemma 3.3.
Proof of “no duplicates”: Let H1,H2 ∈ Dv (G), H′1 ∈ D (G	

∑
H1)

and H′2 ∈ D (G	
∑
H2). Then H1 ∪ H′1 6= H2 ∪ H′2 unless H1 = H2 and

H′1 = H′2. Indeed, H′1 ∪ H′2 is disjoint from H1 ∪ H2, as the elements of
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H′1 ∪H′2 give v the label zero, while the elements of H1 ∪H2 give v the label
1. �

4. Generating standard node decompositions

Proposition 3.4 reduces the problem of generating D (G) in polynomial time to
the problem of generating the standard node decomposition Dv (G) in polyno-
mial time for some freely chosen node v of G. In this section we investigate this
problem. Our solution is based on choosing the right node v to decompose.

Consider the set of all standard components of G that give v the label
1. We impose an ordering, H1, . . . ,Hk, on the elements of that set. This
ordering can be chosen arbitrarily, but is fixed once and for all. Now let F be
any labeled subgraph of G. For each such F and each i = 1, . . . , k, we define

τ(F, i) ..= {H ⊆ {H1, . . . ,Hi} |H ∈ Dv (F )}

Note that Dv (F ) and τ(F, i) are both sets of multisets, thus the condition
H ∈ Dv (F ) for a multiset H makes sense; If we can compute τ(F, i) in general
then we can also compute Dv (G) since τ(G, k) = Dv (G). In order to compute
τ(F, i), consider the recursive formula

(4.1) τ(F, i) =


{∅} if all labels of F are zero, else

∅ if F is not standard or i = 0, else

τ(F, i− 1) ∪ {H ∪ {Hi} |H ∈ τ(F 	Hi, i)} .

This way of writing τ immediately suggests an algorithm based on recursively
evaluating the expression. It is a problem with this approach that this al-
gorithm can spend a large amount of computational steps to determine that
τ(F, i) is empty. This is an obstacle to proving that this algorithm generates
its output in polynomial time.

We say that a pair (F, i) is relevant if τ(F, i) 6= ∅, and irrelevant otherwise.1

For making the algorithm generate its output in polynomial time, we need a
criterion for detecting irrelevant pairs. We can use such a criterion to quickly
eliminate irrelevant pairs in the algorithm.

Proposition 4.2. Let v be a node of minimal positive label in a labeled graph
G. Let H be a multiset of standard components of G that give v the label 1.
Let H be the maximal standard component of G. Assume that G 	

∑
H is

standard. Let H′ be the union of H and the multiset containing LG (v)− |H|
copies of H. Then H′ is a standard v-decomposition of G.

Proof. Upon applying the proof of Proposition 2.10 to H, we obtain a
standard decomposition H′′ ⊇ H of G. Since the label of v is minimal among
all positive labels appearing in G, the first LG (v)−|H| rounds of the inductive

1In particular, we see that it suffices to consider graphs such that 0 ≤ LF (w) ≤ LG (w)
for all nodes w, since (F, i) is irrelevant otherwise.
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construction in that proof will use the same maximal standard component H.
After that the label of v has become zero, so the maximal standard components
used in later rounds of the construction will give v the label zero. So the
subset of H′′ that gives v the label 1 is precisely H′, which implies that H′ is
a standard v-decomposition of G. �

Through choosing wisely the node v and the order of the standard compo-
nents H1, . . . ,Hk, Proposition 4.3 gives an if-and-only-if criterion for detecting
irrelevant pairs.

Proposition 4.3. Given a labeled graph G, choose v to be a node of minimal
positive label, and choose an order on the standard components H1, . . . ,Hk

giving v the label 1 such that H1 is the maximal standard component of G. Let
H be a multiset whose elements are chosen among the standard components
Hi of G, and let F ..= G	

∑
H. Then a pair (F, i) with 1 ≤ i ≤ k is relevant

if, and only if, F is standard.

Proof. Proof of “if”: Assume that F is standard. By Proposition 4.2,
G =

∑
H ⊕

∑
H1 ⊕

∑
H2, where H1 is a multiset containing copies of H1

and H2 is a multiset containing standard components of G with label 0 on v.
Thus F =

∑
H1 ⊕

∑
H2, and τ(F, i) is not empty.

Proof of “only if”: This part is obvious. �

5. Generating standard decompositions in polynomial
time

Based on the previous two sections, we can now present an algorithm for
generating standard decompositions and prove that it runs in polynomial time.

Theorem 5.1. The algorithm in Figure 5.1 generates the standard decompo-
sitions of a labeled graph in polynomial time.

The pseudo code for standardDecompositions implements the recursive
formula from Proposition 3.4. The recursion from Section 4 is implemented
in the pseudo code standardNodeDecompositions, where the function Tau is
τ from that section. Line 20 eliminates pairs that are irrelevant according to
Proposition 4.3.

In reading the pseudo code for Tau, note that the first return is of the
value {∅} while the second is of the value ∅. Here {∅} is a set containing one
decomposition while ∅ is a set containing nothing.

Proof (Proof of Theorem 5.1 and thus also of Theorem 1.1). Recall that
generating output in polynomial time means that the algorithm runs in poly-
nomial time in the combined size of input and output — this is the meaning
of the word “generate” in this context.

The size of the input and output depend on the representation used. We
specify a graph as a list of nodes with labels and a list of edges. We specify



12 Evain, Lederer & Roune

1: function standardDecompositions(G)
2: if all labels of all nodes of G are zero then
3: return {∅}
4: else
5: choose a node v ∈ VG of minimal positive label
6: D ← StandardNodeDecompositions(G, v)
7: return {H ∪H′|H ∈ D,H′ ∈ standardDecomps(G	

∑
H)}

8: end if
9: end function

10: function standardNodeDecompositions(G, v)
11: H1 ← the maximal standard component of G
12: H2, . . . ,Hk ← all other standard components of G that give v the label

1
13: S ← {H1, . . . ,Hk}
14: return tau(G, k, S)
15: end function
16: function tau(F , i, S)
17: if all labels of F are zero then
18: return {∅}
19: else
20: if F is not a standard graph then
21: return ∅
22: else
23: return tau(F, i− 1, S) ∪ {H ∪ {Hi} |H ∈ tau(F 	Hi, i, S)}
24: end if
25: end if
26: end function

Figure 5.1: An algorithm for standard decomposition.
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the set of decompositions as a list of standard components followed by a list of
sets that specify a decomposition by referring back to the list of components.
Each standard component is specified by a bit per node indicating whether
that node is an element of the standard component.

We assume a model where all labels and indices take up one word of space,
rather than the logarithmic number of bits actually necessary to hold these
numbers. The only arithmetic operations we perform is subtractions a − b
where a > b so this assumption does not weaken the theorem.

standardNodeDecompositions is correct: Suppose that we call the func-
tion standardNodeDecompositions on the pair (G, v). We know that v is a
node of minimal positive label in G since standardDecompositions always
makes calls to standardNodeDecompositions with such a v. Also observe
that the sequence H1, . . . ,Hn are ordered to satisfy the precondition of 20.
We then see that standardNodeDecompositions computes the correct value
Dv (G) since it directly implements the recursive formula from equation (4.1)
along with the criterion for irrelevant pairs from Proposition 4.3.

standardNodeDecompositions is polynomial: Let G have n nodes and
e edges. We do not give pseudo code for generating H1, . . . ,Hk, but it is not
difficult to do this in time O(k(n + e)) using backtracking. We first need to
prove that k(n+ e) is polynomial in the size of the output.

Let l be the label of v in G. Every Hi is an element of at least one standard
decomposition of G by Corollary 2.11, and each v-decomposition has exactly
l elements, so k ≤ ld where d is the number of standard v-decompositions of
G. So computing H1, . . . ,Hk can be done in time O(ld(n + e)). The size of
the input is Θ(n+ e) and the size of the output is Θ(ld+ kn) since it takes l
elements of S to specify each of the d decompositions and for each irreducible
decomposition we need one bit per node to specify whether it is in the graph or
not. Clearly ld(n+ e) = Ω(ldn2) is bounded above by a polynomial in ld+kn,
so the time to compute S is polynomial.

It remains to prove that Tau takes polynomial time. Each individual call
to Tau, not counting recursive subcalls, can be done in time O(n + e). We
need an upper bound for the number of recursive calls.

Consider a tree T where each recursive call to Tau is a node labeled by the
parameters (F, i) and where there is an edge from the caller to the callee. The
relevant leaves of T give rise to one distinct node decomposition per leaf so d,
the number of v-decompositions of G, is also the number of relevant leaves of
T . Let r be the number of irrelevant leaves of T — these do not give rise to
a v-decomposition. Since T is a binary tree we see that there are r + d − 1
internal nodes in T . We need an upper bound for r.

Since Proposition 4.3 is an if-and-only-if criterion for irrelevant pairs, we
see that the sub-tree rooted at any internal node contains a relevant pair.
This implies that the sibling of an irrelevant leaf A is a root of a sub-tree that
contains some relevant leaf B. Let f be the mapping A 7→ B. If f(A) = B
then the parent of A is on the path from the root of T to B. All the relevant
leaves are at depth k or less, so f can map at most k irrelevant leaves to each
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relevant leaf. This implies that r ≤ dk.
We have seen that there are d relevant leaves, at most dk irrelevant leaves

and therefore also at most d+dk internal nodes in T , which is a total of at most
2d+2dk nodes. So the time taken by all recursive calls to Tau is O(dk(n+e)).
Recall that the input size is Θ(n+e) and the output size is Θ(ld+kn). Clearly
dk(n + e) is dominated by a polynomial in (n + e) + (ld + kn). This proves
that standardNodeDecompositions generates Dv (G) in polynomial time.

standardDecompositions is correct: We have already done the correct-
ness proof since standardDecompositions directly implements the recursive
formula for D (G) from Proposition 3.4.

standardDecompositions is polynomial: We have seen that each call to
standardNodeDecompositions generates its own output in polynomial time.
Consider a tree T where each recursive call to standardDecompositions is a
node with an edge from the caller to the callee. Let q be the number of leaves of
T . Every leaf contributes at least one distinct decomposition to the output, so
q is a lower bound on the number of decompositions of G. The multiset of node
decompositions computed by all the calls to standardNodeDecompositions is
in bijection with the edges of T . All trees have more nodes than edges and
more leaves than internal nodes so the combined time to compute all the node
decompositions is dominated by a polynomial in q(n + e) where n + e is the
input size for the original input which is an upper bound on the size of any
graph produced during the computation.

Line 7 could a priori seem to require too much time by going through all
the elements of D. However, we can charge this work to each of the children
of that node that are produced in this way which clears up the problem. As
trees have more leaves than internal nodes the total number of nodes of T is
less than 2q. This proves that the total time to compute D (G) is bounded
by a polynomial in w(n + e) where w is the number of decompositions and
Θ(n+ e) is the size of the input. �

We can extract some bounds on the number of node decompositions from
the arguments just given.

Proposition 5.2. Let v be a node of a standard graph G. Let l ..= LG (v).
If G has k standard components that give v label 1, then there are between k

l

and
(
k+l−1
l

)
standard v-decompositions of G, and these two numbers coincide

when l = 1. If v is a node of minimal positive label in G, then there are at
least k standard v-decompositions of G.

Proof. Every v-decomposition of G has exactly l elements, and the ele-
ments of each such multiset are chosen among the k standard components
that give v the label 1, so there cannot be more than

(
k+l−1
l

)
standard v-

decompositions.
Every one of the k standard components giving v label 1 can be extended

to a standard decomposition of G by Corollary 2.11 and therefore also to
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a standard v-decomposition. We get the minimal number of standard v-
decompositions when each of these extensions are unique. As each standard
v-decomposition has l elements, that implies the existence of at least k

l stan-
dard v-decompositions.

If v is a label of minimal positive label, then each standard component
H that gives v the label 1 can be extended to a v-decomposition using only
the maximal standard component by Proposition 4.2. So there are at least k
standard v-decompositions in this case. �

Here are examples in which the bounds from the proposition are sharp.

G
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Figure 5.2: Three graphs leading to sharp bounds in Proposition 5.2

Example 5.3. Consider the graph G from Figure 5.2, whose labels we will
presently specify, and the graphs G′ and G′′ from the same figure, whose labels
are specified in the picture.

◦ Choose the labels such that LG (vi) ≥ LG (v) for all i and LG (w) ≥
LG (v) +

∑
i LG (vi). Then for each multiset of standard graphs H sat-

isfying conditions (1), (2) and (4) from Definition 3.2, condition (3) is
automatically satisfied. The number k from the proposition depends
on the choice of the labels, but in any case, G has

(
k+l−1
l

)
standard

v-decompositions. The upper bound for the number of standard v-
decompositions is therefore sharp.

◦ Define LG (v) ..= 1, LG (vi) ..= 1 for all i and LG (w) ..= 2. Then the
standard components that give v the label 1 correspond to the power set
of {v1, . . . , vm}, whose cardinality is 2m. All standard components that
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give v the label 1 lead to standard v-decompositions of G. The lower
bound for the number of standard v-decompositions is therefore sharp.

◦ The graph G′ provides another example of sharpness of the lower bound,
this time with l > 1. We define v as the node of label l. As in the proposi-
tion, we denote by k the number of standard components of G′ that give
v the label 1. Since v is labeled 1 in every standard component, k is just
the number of components of G′. Likewise, a standard v-decomposition
of G′ is just a standard decomposition of G′. Obviously k = l, and there
exists precisely one standard v-decomposition.

◦ Also in the graph G′′, we define v as the node of label l. This graph has
the property that the lower bound is sharp while, unlike in the previous
example, there exists more than one standard v-decomposition. Note
that the fraction k

l = 2l−1
l is not an integer, but dkl e = 2.

♦

We leave the question open whether there exist k and l as in the proposition
such that k

l > 2 and there exists a graph G such that the lower bound from
the proposition is sharp.

6. From standard sets to standard graphs

In the remaining three sections, we investigate the relation between standard
decomposition of labeled graphs and another combinatorial problem called
Connect Four decomposition. In the end we show that the two problems are
equivalent.

A standard set, or staircase, is a subset ∆ ⊆ Nd whose complement C ..=
Nd \∆ satisfies C + Nd = C. We are only going to consider standard sets of
finite cardinalities. Standard sets in N are just intervals starting at 0; in N2,
they can be identified with partitions, or with Young diagrams2; in N3, they
are also known as plane partitions; in Nd for d > 3, they are also known as solid
partitions. Standard sets in Nd canonically correspond to monomial ideals in
the polynomial ring k[x1, . . . , xd]. See Figure 6.1 for examples in dimensions
1, 2, and 3.

Let d ≥ 2. Consider the projection to the first d−1 components, qd : Nd →
Nd−1 : β 7→ (β1, . . . , βd−1) and its complementary projection, qd : Nd → N :
(β1, . . . , βd) 7→ βd For each standard set ∆, we have the equality

∆ =
{
β ∈ Nd

∣∣ qd(β) <
∣∣(qd)−1(qd(β)) ∩∆

∣∣} ,
where |.| denotes the cardinal. Thus, the integer

∣∣(qd)−1(qd(β)) ∩∆
∣∣ appearing

on the right-hand side is the cardinality of the fiber of the projection qd : ∆→
2in the French notation
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Figure 6.1: Standard sets in dimensions 1, 2 and 3

Nd−1 over the point γ ..= qd(β). We call that quantity the height of ∆ over
γ. The equation displayed above implies that the datum of standard set ∆ is
equivalent to the datum of the projection ∆′ ..= qd(∆), which is a standard set
in Nd−1, and the datum of the heights over all γ ∈ ∆′. The heights satisfy a
compatibility condition: Upon denoting by hγ the height over γ ∈ ∆′, we see
that hγ+ei ≤ hγ for all standard basis elements ei ∈ Nd−1 and all γ ∈ ∆′ such
that also γ + ei ∈ ∆′. These observations motivate the following definition:

Definition 6.1 (Standard graph of a standard set). Let ∆ ⊆ Nd be a finite
standard set. We define the standard graph of ∆, denoted by G(∆), by setting

VG(∆)
..= qd(∆),

EG(∆)
..= { (γ′, γ)| γ′ = γ + ei for some i}

LG(∆) (γ) ..=
∣∣(qd)−1(γ) ∩∆

∣∣ .
The discussion leading to the definition proves that G(∆) is indeed a stan-

dard graph. The transition from a standard set to its standard graph is illus-
trated in the first two pictures in Figure 7.1.

Addition of standard graphs has a counterpart on standard sets, called C4
addition.

Definition 6.2 (C4 sum). Let ∆1 and ∆2 be two finite standard sets in
Nd. We define the Connect Four sum, or C4 sum of ∆1 and ∆2 by

∆1 + ∆2
..=

{
β ∈ Nd qd(β) <

∣∣(qd)−1
(
qd(β)

)
∩∆1

∣∣
+
∣∣(qd)−1

(
qd(β)

)
∩∆2

∣∣ }
.

So for determining the C4 sum of ∆1 and ∆2, we define ∆′ to be the union
of qd(∆1) and qd(∆2) and, for all γ ∈ ∆′, hγ to be the sum of the heights over
γ of ∆1 and ∆2.3 Then ∆ is characterized by its projection ∆′ and the heights
hγ .

3We say that the height of ∆i over γ is zero if γ /∈ qd(∆i).
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Here is a more graphic way of thinking about the C4 sum: Place ∆1 and ∆2

somewhere on the d-axis in Nd such that they do not intersect, subsequently
drop the cubes along the d-axis, until they get stacked above each other on the
1, 2, . . . , (d−1)-hyperplane. The result is the standard set ∆1 +∆2. Figure 6.2
illustrates that process in two examples. The figure also explains the analogy
to the eponymous game Connect Four.
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Figure 6.2: C4 sums of 2-dimensional standard sets yielding a 3-dimensional
standard set

It is easy to see that

◦ ∆1 + ∆2 is a standard set;

◦ its cardinality is the sum of the cardinalities of ∆1 and ∆2;

◦ C4 addition is associative and commutative, and ∅ is its neutral element;

◦ G(∆1 + ∆2) = G(∆1)⊕G(∆2).

The last item confirms that C4 addition of standard set is indeed the coun-
terpart of addition of standard graphs. Here is the counterpart of standard
decomposition of standard graphs.

Definition 6.3 (C4 decomposition). Let ∆ ⊆ Nd be a finite standard set.
A C4 decomposition of ∆ is a multiset {∆1, . . . ,∆h} of standard sets in Nd−1

whose C4 sum equals ∆. Here we understand each ∆i to be a standard set in
Nd via the embedding Nd−1 ↪→ Nd : γ 7→ (γ, 0).

Figure 6.2 shows C4 decompositions of the standard set in N3 on the right
hand side into two (multi)sets of standard set in N2. Note, however, that the
three-dimensional standard set of that example has more C4 decompositions
than the two shown in the figure.
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The last coordinate plays a special role in the sense that projection qd

forgets the last coordinate. The constructions could obviously be done with
an other projection. However, the number of decompositions depends on the
chosen projection. For instance, if there are N decompositions of ∆ ⊂ Nd, if
we consider the injection f : Nd → Nd+1, (β1, . . . , βd) 7→ (0, β1, . . . , βd), then
f(∆) still has N decompositions with our definition of qd+1. However, if we
had defined qd+1 to be the projection (0, β1, . . . , βd) 7→ (β1, . . . , βd), then f(∆)
would have had only one decomposition.

The following proposition is the first step of four in proving that C4 de-
composition and standard decomposition of labeled graphs are equivalent.

Proposition 6.4. Let ∆ ⊆ Nd be a finite standard set. Then the C4 de-
compositions of ∆ and the standard decompositions of G(∆) are in canonical
bijection.

Proof. Let {∆1, . . . ,∆h} be a C4 decomposition of ∆. Consider, for j =
1, . . . , h, the graph Hj whose nodes and edges are identical to the nodes and
edges of G(∆) and whose labeling is given by

LHj (γ) =

{
1 if γ ∈ Hj

0 else.

In other words, we think of ∆j , which is a priori a standard set in Nd−1, as
being a standard set in Nd, as we do in Definition 6.3, and define Hj

..= G(∆j).
Then Hj is obviously a standard 0-1 graph. The fact that {∆1, . . . ,∆h} is a
C4 decomposition of ∆ implies that H ..= {H1, . . . ,Hh} is a standard decom-
position of G(∆).

Conversely, let H be a standard decomposition of G(∆). Recall that the
node set of G(∆) is ∆′ ..= qd(∆), which is a standard set in Nd−1. For every
H ∈ H, we define ∆(H) to be the set of all γ ∈ ∆′ with LH (γ) = 1. The
definition of EG(∆), together with the fact that H is a standard graph, shows

that ∆(H) ⊆ Nd−1 is a standard set contained in ∆′. The fact that H is a
standard decomposition of G(∆) means that for each γ ∈ ∆′, the labels of all
nodes γ, which are 0 or 1, sum up to the height hγ . This means that C4 sum
of the corresponding multiset {∆(H) |H ∈ H} equals ∆, so that multiset is a
C4 decomposition of ∆.

The two constructions are readily seen to be mutual inverses. �

7. Canonicalization for graphs of standard sets

The graph of a given standard set will in general contain many nodes of iden-
tical label connected by an edge. However, edges between nodes of the same
label are irrelevant for computing the standard decomposition of that graph
and we can get rid of those redundancies to speed up the computations. Sim-
ilarly, nodes with label zero do not impact the computation of the standard
decomposition.
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By passing from a graph to its canonicalization (constructed below), we
shall keep only the information necessary for the computation. The canoni-
calization process is the second step of four in proving that C4 decomposition
and standard decomposition of labeled graphs are equivalent.

Definition 7.1 (Canonical labeled graph). A labeled graph G is canonical
if

(i) G is standard;

(ii) all labels are positive;

(iii) LG (a) < LG (b) for all edges (a, b) ∈ EG.

Remark that if G has a cycle, i.e. a sequence of nodes (a1, a2, . . . , ak) with
k ≥ 2, ak = a1 and (ai, ai+1) ∈ EG for all i, then the labels of the nodes
(a1, . . . , ak−1) are equal since LG (a1) ≤ LG (a2) ≤ · · · ≤ LG (ak) = LG (a1).
In particular, a canonical graph has no cycle.

Definition 7.2. If G is a labeled graph, we denote by G0 the subgraph of G
with set of nodes VG0

= {a ∈ VG,LG (a) > 0} and labels LG0
(a) = LG (a) for

all a ∈ VG0
.

Let R be an equivalence relation on the set of nodes VG. Suppose that for
every pair of nodes (a, b) ∈ VG × VG with aRb, LG (a) = LG (b). Then we
denote by G/R the labeled graph defined by :

(i) VG/R is the quotient of VG by the equivalence relation

(ii) ∀a ∈ VG/R, LG/R (a) = LG (x) where x is any representative in the class
of a.

(iii) ∀(a, b) ∈ VG/R × VG/R with a 6= b, (a, b) ∈ EG/R if and only if there
exists x ∈ a, y ∈ b representatives such that (x, y) ∈ EG.

We denote by G/ ' the quotient graph of G where ' is the equivalence relation
on VG generated by the relation a ' b if (a, b) ∈ EG and LG (a) = LG (b).

Proposition 7.3. Let G be a labeled graph. Then the graph G0/ ' is canon-
ical. It is called the canonicalization of G. The standard decompositions of G
and its canonicalization G0/ ' are in one-to-one correspondence.

Proof. All the labels in G0 are positive by definition, and all the nodes
with the same label connected by an edge have been contracted into a single
point in G0/ '. Thus G0/ ' is canonical.
Let G =

∑
H be a decomposition in standard components, where H is a

multiset of labeled graphs. We denote by H0 = {H ′, H ∈ H} where H ′ is
the labeled subgraph of H defined by VH′ = VH ∩ VG0

and for every node a,
LH′ (a) = LH (a).
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Then G0 =
∑
H0 is a canonical decomposition and obviously all decomposi-

tions are obtained in such a way since G0 and the labeled graphs of H0 can
be extended by adding the nodes in VG \ VG0

with label 0 and considering the
same edges as in G. The bijection between the decompositions of G and G0

follows.
Let H be a standard component of G and let (a, b) be an edge of G such that
LG (a) = LG (b). Then LH (a) = 1 if, and only if, LH (b) = 1. In other words,
if two nodes a, b of G are equivalent for the relation 'G identifying connected
nodes with the labels on G, these nodes are equivalent for the relation 'H .
In particular, it makes sense to consider H/ 'G= {H/ 'G, H ∈ H}. The
decomposition G =

∑
H yields a decomposition G/ 'G=

∑
H/ 'G. All the

decompositions of G/ 'G are obtained from this procedure.
Summing up, for any G, there is a canonical one-to-one correspondence be-
tween the components of G and the components of G′ when G′ = G0 or
G′ = G/ '. It follows that there is a canonical identification between the
decompositions of G and G0/ '. �

We obtain the following explicit description of the canonicalization of a
standard set ∆.

Definition 7.4 (Definition of G′(∆)).

◦ We say that a non empty subset B of Nd−1 is connected if for all γ, γ′ ∈ B
with γ 6= γ′, there exists a sequence (γj) in B starting at γ0 = γ and
ending at γn = γ′ such that for all j, we either have γj+1 = γj + ei or
γj = γj+1 + ei for some i ∈ {1, . . . , d− 1}.

◦ A connected component of A ⊆ Nd−1 is a connected B ⊆ A, maximal
with respect to inclusion.

◦ Let ∆ ⊆ Nd be a standard set, h ..= max(qd(∆)) its height, and ∆′ ..=
qd(∆) its projection. For a = 1, . . . , h, we define the a-th isohypse as

∆a ..=
{
γ ∈ ∆′

∣∣∣∣(qd)−1(γ) ∩∆
∣∣ = a

}
,

the set of all points in the projection of height a.

◦ We define the graph G′(∆) by

VG′(∆)
..= {connected components of ∆a |a = 1, . . . , h} ;

EG′(∆)
..= {(B,C) |∃γ′ ∈ B, γ ∈ C : γ′ = γ + ei for some i}

LG′(∆) (C) ..= a, when C is a connected component of ∆a.

The transition from ∆ to G(∆) and to G′(∆) is illustrated in Figure 7.1.
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Figure 7.1: A standard set of height 3, its graph, and its canonicalized graph
defined with the projection q3 on a horizontal plane. A point (a, b, c) ∈ ∆ is by
convention represented by a 3-dimensional box of dimension (1, 1, 1) centered
on (a, b, c). The graph G(∆) has 4 nodes corresponding to the 4 columns of
boxes. The labels on the nodes (corresponding to the height of the columns)
are denoted by superscripts. The two nodes generated by columns of height 3
have been identified in the canonicalization.

Proposition 7.5. Let ∆ ⊆ Nd be a finite standard set. Then G′(∆), as
defined above, is the canonicalization of the standard graph of ∆.

Proof. All the labels considered in G(∆) are positive so no suppression of
node is required. The equivalence relation ' is generated by the identification
of two nodes with the same label connected by an edge. Thus two nodes are
identified in the equivalence relation iff they are connected by a chain of nodes
of the same label. This is exactly the identification performed in the definition
of G′(∆). �

8. From standard graphs with unique maximal nodes to
standard sets

For each standard set ∆, the canonicalized graph G′(∆) is connected since
it is constructed as a quotient of the connected graph G(∆) and that taking
the quotient preserves the connectedness. Moreover, G′(∆) contains a unique
node of maximal label, namely, the highest isohypse ∆h. This graph thus lies
in the class S defined in the Introduction. Example 8.1 and Proposition 8.2
show that graphs in S may or may not arise from standard sets.

Example 8.1. Figure 8.1 shows a standard graph which arises as the standard
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graph of a standard set in N4, namely,

∆ =


(0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 0, 2),

(1, 0, 0, 0), (1, 0, 0, 1), (0, 1, 0, 0), (0, 1, 0, 1),
(0, 0, 1, 0), (0, 0, 1, 1), (0, 1, 1, 0), (0, 1, 1, 1),

(1, 1, 0, 0), (1, 0, 1, 0)

 .

The picture on the right hand side of that figure shows ∆3,∆2 and ∆1 ⊆ N3. ♦

3







�

J
J
JJ]

2 2

6

Q
Q

Q
Q
Qk

�
�
�
�
�3 6

1 1

�

�

�

∆3

�

�

�

� �

�

∆2

�

�

�

�

�

∆1

Figure 8.1: A standard graph arising from a standard set in N4

Proposition 8.2. The graph shown in Figure 8.2 does not arise as the stan-
dard graph of a standard set.
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Figure 8.2: A graph not arising from a standard set

Proof. Assume that ∆ ⊆ Nd is a standard set whose standard graph is the
given graph G. In particular, the nodes of G are the isohypses ∆i, for i =
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1, 2, 3, 4. We claim that there exists an element β ∈ ∆1 and i, j ∈ {1, . . . , d− 1}
such that β−ei ∈ ∆2 and β−ej ∈ ∆4. This will finish the proof, since β−ei−ej
will then lie in ∆. But β − ei − ej can lie in neither ∆1 nor ∆2 nor ∆3, since
either of these inclusions would contradict the standard set property of ∆.
However, an inclusion β − ei − ej ∈ ∆4 would force an edge from node ∆2 to
node ∆4 in the standard graph of ∆, which isn’t there.

So we have to prove the above assertion. There exists elements σ ∈ ∆4

and τ ∈ ∆2 and a sequence (γk)Nk=0 such that

◦ its subsequence (γk)N−1
k=1 lies in ∆1,

◦ its starting point γ0 is σ,

◦ its end point γN is τ , and

◦ it has the property that for all k, γk+1 = γk ± ei for some i.

Take σ, τ and (γk) sharing these properties such that, in addition, N , the
length of the sequence (γk) is minimal. If N = 2, then β ..= γ1 is of the desired
shape. We now assume that N > 2, and are going to show that this assumption
leads to a contradiction. For doing so, we prove three claims concerning the
sequence (γk). The first claim is that for all k < N ,

(8.3) γk = σ +
∑
i∈Ik

ei

for some multiset of indices Ik. Note that γk ∈ ∆1 for all k in question. For
k = 0, 1, equation ((8.3)) is evident. We assume that the equation holds for k
and prove it to hold for k+ 1. Suppose that γk+1 = σ+

∑
i∈Ik ei− ej for some

j /∈ Ik. Then, since ∆ is standard, σ′ ..= σ − ej ∈ ∆4. Consider the sequence
(γ′l)

N−1
l=0 , where

γ′l
..=

{
γl − ej for l < k,

γl+1 for l ≥ k.

This sequence is one element shorter than the original sequence (γk). Like the
original sequence, it starts in ∆4 and ends in ∆2. A priori the elements γ′m,
for m = 1, . . . , k − 1, may lie in ∆1, ∆2, ∆3 or ∆4.

◦ If all of them lie in ∆1, the sequence (γ′l) contradicts the minimality of
N .

◦ If γ′m ∈ ∆2, the sequence (γ′′p )m+1
p=0 , where

γ′′p
..=

{
γp for l ≤ m,
γ′m for p = m+ 1

contradicts the minimality of N .
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◦ If γ′m ∈ ∆3, using the absence of elements in ∆22 from the last case and
the fact that ∆ is standard, we obtain an edge from node ∆1 to node
∆3, which isn’t there.

◦ If γ′m ∈ ∆4, we consider the largest index M such that γ′M ∈ ∆4 and
consider the subsequence γ′M , . . . , γ

′
N . The condition γi ∈ ∆1 implies

that γ′i ∈ ∆1 ∪ ∆2 ∪ ∆4, since there is no node from ∆1 to ∆3. Thus
the first term of γ′M , . . . , γ

′
N lies in ∆4, and the other terms in ∆1 ∪∆2.

The subsequence γ′M , . . . , γ
′
M ′ , where M ′ ≥M is the smallest index with

γ′M ′ ∈ ∆2, contradicts the minimality of N .

This finishes the proof of the first claim.
Our second claim is that Ik ⊆ Ik+1 for all sets appearing in ((8.3)). This

is true for I0 ⊆ I1; moreover, since γk+1 = γk ± ei, our first claim shows that
either Ik ⊆ Ik+1 or Ik ⊇ Ik+1 holds. Let m be the smallest index such that
Im ⊇ Im+1. Then the sequence (γk)m+1

k=0 is obtained by adding to σ a number
of ei, one by one, and finally subtracting one of them, say ej . We obtain a
shorter sequence (γ′k)m−1

k=0 by adding to σ the same sequence of ei as above,
but leaving out ej . The same arguments as the ones from the four bulleted
items above then lead to a contradiction. This finishes the proof of the second
claim.

Our third claim is that τ , the final member of our sequence (γk), takes the
shape

τ = γN = γN−1 − ej ,

for some ej /∈ IN−1. The complementary cases include γN = γN−1 − ej
for some ej ∈ IN−1, which immediately contradicts minimality of N , and
γN = γN−1 + ej for some ej . In the latter case, the inclusion γN = τ ∈ ∆2

shows that γN−1 would also lie in ∆2, a contradiction. This finishes the proof
of the third claim.

The sequence (γk)Nk=0 is therefore obtained by adding to σ a number of ei,
one by one, and finally subtracting some ej which is not found among the ei
previously added. We denote by eu the last element from the sequence of ei
which we add, that is, the one element which we add for passing from γN−2

to γN−1. Consider ρ ..= τ − eu. Then ρ may lie in ∆2, ∆3 or ∆4.

◦ If τ ′ ∈ ∆2, the sequence (γ′l)
N−1
l=0 , where

γ′l
..=

{
γl for l ≤ N − 2,

τ ′ for l = N − 1

contradicts the minimality of N .

◦ If τ ′ ∈ ∆3, we obtain an edge from node ∆1 to node ∆3, which isn’t
there.

◦ If τ ′ ∈ ∆4, we obtain an edge from node ∆2 to node ∆4, which isn’t
there.
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So we have disproved the assumption that N > 2. The proposition follows. �

The graphs in Figure 8.1 and Figure 8.2 define relations on their respec-
tive node sets which both fail to be transitive. So one might not guess that
transitivity of graphs in S is crucial for such graphs to arise from standard
sets. That, however, is indeed true, as we shall see in Proposition 8.5 below.
Let us first establish that passing from a graph to its transitive closure has no
impact on standard decompositions.

Lemma 8.4. Let G be a standard graph and G its transitive closure. Then
the standard decompositions of G and G are in canonical bijection.

Proof. Given a standard decomposition H of G, replace every member H
by its transitive closure H. The resulting multiset H is a standard decompo-
sition of G. Given a standard decomposition K of G, we delete from every
member K all edges that appear in G but not in G, and call the resulting
graph K◦. The resulting multiset K◦ is a standard decomposition of G. The
maps H 7→ H and K 7→ K◦ are mutual inverses. �

The following proposition is the third step of four in proving that C4 de-
composition and standard decomposition of labeled graphs are equivalent.

Proposition 8.5. Let G be a canonical, connected and transitive standard
graph containing a unique node of maximal label. Then there exists a standard
set ∆ ⊆ Nd, for some d ≥ 1, whose canonicalized standard graph is G.

Proof. Upon using the terminology of Definition 7.4, we denote by G′(∆)
the canonicalized standard graph of a standard set ∆. We prove the proposi-
tion by two nested inductions, the outer over the number of nodes of G, and
the inner over the number of edges of G. The base case of the outer induction
is trivial. As for the outer induction step, let G be a given connected and tran-
sitive standard graph containing a unique node vh of maximal label, h. Let
v0 be a node of minimal label. We remove from G the node v0, along with all
edges whose source is v0. We call the graph thus obtained G0. Then G0 is also
canonical, connected and transitive. Canonicity and transitivity are obvious.
As for connectedness, we note that each node in G other than the node v0 is
the starting point of a sequence of edges ending up in vh, which sequence does
not pass through v0 by minimality of v0 and canonicity of G. Moreover, when
replacing G by G0, we do not change the labels of the remaining nodes. Thus
G0 contains a unique node of maximal label. We may therefore assume that
there exists a standard set ∆0 ⊆ Nd, for some d, such that G′(∆0) = G0.

For establishing the outer induction step, we shall put the node v0 back
into the graph. Transitivity of G implies that this graph contains an edge from
v0 to vh. Let G1 be the (transitive) graph that arises from G0 by adding the
one node v0 and the one edge (v0, vh). We now construct a standard set ∆1

such that G′(∆1) = G1.
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Consider the embedding ι : Nd ↪→ Nd+1 : β 7→ (0, β). The transition from
∆0 to ι(∆0) does not affect the standard graph of ∆0. We may therefore
assume that ∆0 ⊆ Nd is contained in the hyperplane {β1 = 0} of Nd. The
node vh ∈ G0 corresponds to the isohypse (∆0)h. Let h0 < h be the label of
v0. We may assume that v0 > 1. The set

∆1
..= ∆0 ∪M1, where

M1
..= {(1, 0, . . . , 0, βd) |0 ≤ βd ≤ h0 − 1}

(8.6)

is standard. See Figure 8.3 for a visualization of the transition from ∆0 to ∆1.
For a 6= h0, the isohypses (∆0)a and (∆1)a are identical. The isohypse (∆1)h0

is (∆0)h0 ∪ qd(M1) = (∆0)h0 ∪{e1}. When passing to G′(∆1), we see that this
graph arises from G′(∆0) by adding the one node qd(M1) and the one edge
connecting that new node and (∆1)h. This establishes the outer induction
step, and at the same time the inner induction basis.

As for the inner induction step, we may assume to have a transitive graph
G1

◦ with the same nodes and the same labels as G,

◦ and a distinguished node v0

◦ such that all edges but those with source v0 agree in G and G1,

along with a standard set ∆1 ⊆ Nd such that G′(∆1) = G1. Let v1 be a node
of G such that (v0, v1) is an edge in G, but our original graph G contains no
chain of edges from v0 to v1 of length more than 1. We may assume that
LG (v0) < LG (v1). Denote by G2 the graph that arises from G1 by adding
the edge (v0, v1). We will prove the existence of a standard set ∆2 such that
G′(∆2) = G2. This will establish the inner induction step, and finish the proof
of the proposition.

Analogously as above, we assume that ∆1 ⊆ Nd is contained in the hy-
perplane {β1 = 0} of Nd. The choice of v1 implies that G2 is again transitive.
For i = 0, 1, the node vi ∈ G1 corresponds to a connected component Ci of
(∆1)hi , where hi is the label of vi. The set

∆1 1
2

..= ∆1 ∪M 1
2
, where

M1 1
2

..=
(
∪α∈Nd

(
(qd)−1(C1) ∩∆1 + e1 − α

))
∩ Nd

(8.7)

is standard. See the first two pictures in Figure 8.4 for a visualization of the
transition from ∆1 to ∆1 1

2
: We create a copy of the set (qd)−1(C1)∩∆1 in the

hyperplane {β1 = 1} of Nd and subsequently pass to the smallest standard set
containing both ∆1 and that copy. Transitivity of G1 implies that G′(∆1 1

2
) =

G′(∆1). Indeed, for all heights a 6= h1, the connected components of (∆1 1
2
)a

are identical to of the connected components of (∆1)a. For height h1, the
same is true for those connected components of (∆1 1

2
)h1 that do not project
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to C1 under qd. The connected component C1 of (∆1)h1 , however, has a much
larger counterpart in ∆1 1

2
, namely, the union of C1 and the set qd(M1 1

2
). As

for edges in G′(∆1 1
2
) emerging from node C1 ∪ qd(M1 1

2
), the presence of M1 1

2

obviously leads to new adjacencies in connected components of isohypses of
∆1 1

2
. But transitivity of G1 guarantees that none of those adjacencies lead

to an edge in G′(∆1 1
2
) that does exist in G′(∆1). So the graphs G′(∆1) and

G′(∆1 1
2
) are identical.

However, we do not want another standard set with the same canonicalized
graph, but rather a graph with one additional edge. We obtain that edge by
applying the same trick once more, defining

∆2
..= ∆1 ∪M1 1

2
∪M2, where

M2
..=
(
∪α∈Nd

(
(qd)−1(C1) + e1 − α

))
∩ Nd.

(8.8)

This is another standard set. See the last two pictures in Figure 8.4 for a
visualization of the transition from ∆1 1

2
to ∆2: We also create a copy of the

set (qd)−1(C1) ∩∆1 in the hyperplane {β1 = 1} of Nd and subsequently pass
to the smallest standard set containing both ∆1 and that copy. For all heights
a 6= h0, h1, the connected components of (∆2)a are identical to the connected
components of (∆1 1

2
)a. For heights a = h0, h1, the same is true for those

connected components of (∆2)a that do not project to C0 or C1. Note that
the sets M1 1

2
and M2 will in general intersect. The counterpart of C1 in ∆2

is the union C1 ∪M1 1
2
; and the counterpart of C0 in ∆2 is (C0 ∪M2) \M1 1

2
.

The graph G′(∆2) contains all the edges that appear in G′(∆1 1
2
), plus an edge

from node (C0 ∪M2) \M1 1
2

to node C1 ∪M1 1
2

: the extra edge exists since

(1, 0, . . . , 0, h1) ∈ C1∪M1 1
2

and z0 +e1 ∈ (C0∪M2)\M1 1
2

for z0 ∈ (qd)−1(C0).
This establishes the inner induction step. �
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Figure 8.3: From ∆0 to ∆1
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Figure 8.4: From ∆1 to ∆1 1
2

and ∆2

Readers might wonder how the polynomial dependence from Theorem 1.1
is preserved in Proposition 8.5. Indeed, in the inductive construction of the
standard set ∆ from the proof of the proposition, the dimension of ∆ and the
number of elements in it grow rapidly. However, we don’t specify ∆ as list of
its elements, but rather as a list of the minimal generators of the Nd-module
Nd \ ∆. This set is also known as the set of outer corners of ∆. Doing so,
we avoid large data sets when handling large standard sets. We will use this
representation of ∆ in the proof of Theorem 1.2 below.

9. Reduction to standard graphs with unique maximal
nodes

The following proposition provides the fourth and last step in proving that C4
decomposition and standard decomposition of labeled graphs are equivalent.
Here is a small example illustrating its assertion.

Example 9.1. Let G be the graph with nodes x and y, both of label 1, and
no edges. Let G′ be the graph with nodes x and y of label 1 and z of label 2,
with edges from x and from y to z. Figure 9.1 shows that there is a bijection
between the standard decompositions of G and the standard decompositions
of G′. ♦

Proposition 9.2. Let G be a labeled graph. Then there exists a graph G′

such that

(i) G is a subgraph of G′,

(ii) G′ has a unique node of maximal label that is reachable from all nodes
of G′ and,
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G = 1 1 = 1 1

= 1 0 ⊕ 0 1

G′ =
2

�� @I
1 1

=
1

�� @I
1 1

⊕
1

�� @I
0 0

=
1

�� @I
1 0

⊕
1

�� @I
0 1

Figure 9.1: The decompositions of the graphs from Example 9.1

(iii) the standard decompositions of G and G′ are in canonical bijection.

Proof. Let l be the maximal label among all nodes of G. Let G′ be equal to
G, except that G′ has an extra node v with label l+ 1, and v has an edge to it
from all other nodes. The first two conditions are immediate, so it remains to
show that the standard decompositions of G and G′ are in canonical bijection.

It is not hard to see that the function

f : {stdd comps of G′} \ {{v}} → {stdd comps of G}
H 7→ H \ {v} without edges in H with target v

is a bijection. We extend f to a map of multisets of standard components
by applying it to each component individually, so for example f({A,B}) ..=
{f(A), f(B)}.

Let D′ be a standard decomposition of G′. Write D′ as a union of D and
V where V is a multiset that contains only copies of {v} while D does not
contain {v} at all. Then obviously f(D) is a decomposition of G.

For the other direction, let D be a standard decomposition of G and let
D′ ..= f−1(D). Then G′ −

∑
D′ is a graph in which all nodes but v have

label zero, node v having a label l > 0. Let V be the multiset that contains
l copies of {v}. Then D′ ∪ V is a decomposition of G′. Let g be the function
D 7→ D′ ∪ V . It is not hard to see that f and g are mutual inverses. �

We can now prove that C4 decomposition and standard decomposition of
labeled graphs are equivalent.

Proof (Proof of Theorem 1.2). (i) A solution of problem (a) implies a
solution of problem (b) by Proposition 6.4. Assume we are able to solve
problem (b), and are given a labeled graph G. We pass to the canonicalization
G′, which has the same standard decompositions as G by Proposition 7.3.
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If G′ has multiple nodes of locally maximal label l, we pass to the graph
G′′ with only one node of maximal label l + 1 from Proposition 9.2. G′′

still has the same standard decompositions as G. Then we replace G′′ by
its transitive closure G′′′. By Lemma 8.4, this transition does not harm the
decompositions either. Finally, Proposition 8.5 provides a standard set ∆′′′

whose canonicalized standard graph is G′′′. Problem (a) is solved.
(ii) This assertion depends on the representations of G and ∆. In the proof

of Theorem 5.1, we explained that we specify a graph as a list of nodes with
labels and a list of edges. After the proof of Proposition 8.5, we explained that
we specify a standard set by its outer corners.

Let us first show that for any graph G with n nodes and e edges, a staircase
∆ whose graph equals G can be computed in polynomial time. We may assume
that G is canonical and transitive, and has only one node of maximal label,
since the operations

◦ passing to the canonicalization,

◦ passing to a graph with only one node of maximal label, and

◦ passing to the transitive closure

are obviously polynomial in the datum of G. It therefore remains to show
that the construction from the proof of Proposition 8.5 is polynomial. That
construction builds ∆ using two nested inductions over n and e. The respec-
tive base cases being trivial, it suffices to show that both induction steps are
polynomial in the datum of G. Let us stick to the notation from the proof of
Proposition 8.5. In addition to that notation, we define Ci ⊆ Nd as the set of
corners of ∆i for i = 0, 1, 2. In both the inner and the outer induction, the
dimension of the standard sets involved rises by one. Thus the dimension d is
polynomial in the datum of G. The outer induction step is the passage from
∆0 to ∆1, as defined in ((8.6)). That definition shows that e1 ∈ C0 and

C1 = (C0 \ {e1}) ∪ {e1 + ei |i = 1, . . . , d− 1} ∪ {h0ed} ,

cf. Figure 8.3. The inner induction step is thus polynomial.
The inner induction step is the passage from ∆1 via ∆1 1

2
to ∆2. Remember

that for i = 0, 1, the node vi ∈ G1 corresponds to a connected component Ci
of (∆1)hi . Let C ′ be the union of the following three sets:

◦ all corners α ∈ C1 such that α− ej ∈ (qd)−1(C1) ∩∆1 for some ej 6= e1,

◦ the projections to the hyperplane {xd = 0} of all corners α ∈ C1 such
that α− ej ∈ (qd)−1(C1) ∩∆1 for some ej 6= e1, ed, and

◦ the elements 2e1 and h1ed.

Then C ′ is the set of corners of M1 1
2

from ((8.7)). Remember that ∆1 1
2

is the
union of ∆1 and M1 1

2
. The set C1 1

2
of corners of ∆1 1

2
is therefore obtained by
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◦ collecting the exponents of least common multiples of xα xβ , for all
α ∈ C1 and all β ∈ C ′,

◦ and subsequently cleaning that set up, that is, detecting pairs α, β such
that α ∈ β + Nd and deleting each such α.

This establishes the passage from ∆1 to ∆1 1
2
. As for the passage from ∆1 1

2
to

∆2, we construct a set of corners C ′′ in an analogous way as we constructed C ′

in the three bulleted items above, but using C0 rather than C1 and h0 rather
than h1. Then ∆2 is the union of ∆1 1

2
and the standard set with corners

C ′′. The set C2 is therefore obtained from sets C1 1
2

and C ′′ by the method of
taking least common multiples and cleaning up which we employed above. All
operations are polynomial.

Let us now show that for each standard set ∆, its canonicalized graph
G′(∆) can be computed in polynomial time. In other words, we have to
compute the connected components of the isohypses in polynomial time. We
assume ∆ to be given by its corner set C . For each α ∈ C , we define ∆α

..=
qd(α) +⊕d−1

i=1 Nei. For each height a, we define ∆a as the union of all ∆α, for
all α with |α| ≤ a. Then the a-th isohypse is

∆a = ∆a \∆a−1 = ∪|α|=a(∆α \ Ta−1).

Obviously each Eα ..= ∆α \ Ta−1 is connected. Moreover, it is easy to see
that Eα ∪ Eβ is connected if, and only if, the least common multiple of the

monomials xq
d(α) and xq

d(β) has its exponent outside of Ta−1. Upon applying
this observation to all α, β of total degree a, we compute the connected com-
ponents of the a-th isohypse in polynomial time. �

A. A generating function

We will now present a natural generating function for the number of stan-
dard decompositions of a standard graph G. The analogue of this generating
function in the setting of standard sets is discussed in Lederer (2014, Section
2.3).

It is good to temporarily forget about labelings. So let F be an unlabeled
directed graph. Let E be the set of all standard 0-1 subgraphs of F 4 with
node set VF . We identify each E ∈ E with the characteristic function of the
labeling, that is, with the vector χE ..= (χE,v)v∈VF indexed by nodes of F ,
with entries

χE,v ..=

{
1 if v ∈ VE
0 else.

We define χ ..= (χE,v)E∈E,v∈VF to be the matrix whose rows are indexed
by E , the row with index E being the vector χE . Moreover, we introduce

4We defined standard 0-1 subgraphs only for labeled graphs; if F is unlabeled, we give
each node the trivial label 1; then the notion of 0-1 subgraphs is well-defined.
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a vector t ..= (tv)v∈VF of indeterminates, also indexed by nodes of F . If
w ..= (wv)v∈VF is any vector of non negative integers, indexed by nodes of F ,
we write tw ..=

∏
v∈VF t

wv
v . Consider the power series

g ..=
∏
E∈E

1

1− tχE
.

We define integers Φχ(w), one for each integer-valued vector w as above, by
expanding the power series g,

g =..
∑

v∈NVF

Φχ(w)tw.

Φχ is called a vector partition function, see Sturmfels (1995). Note that label-
ings of graphs G with the same nodes and edges as F correspond to vectors w
as above via

w = (LG (v))v∈VF .

We denote by Gw the labeled graph G with the same nodes and edges as F
and labeling given by w.

Proposition A.1. (i) Given any vector w ∈ NVF , the coefficient Φχ(w)
vanishes unless the labeled graph Gw is standard.

(ii) If the labeled graph Gw is standard, the coefficient Φχ(w) equals the
number of standard decompositions of F .

Proof. We expand each term 1
1−tχE in the product expression of g as a

geometric series,

g =
∏
E∈E

(1 + tχE + t2·χE + t3·χE + t4·χE + . . .).

Upon expanding the product, we see that each monomial appearing in the
series takes the shape m =

∏
E∈F t

nE ·χE for some finite F ⊆ E and some
nE ∈ N. We replace the set F by the multiset H in which each E ∈ F appears
nE times. Since each member of H is a standard 0-1 subgraph of F , the graph
G ..=

∑
H standard graph and has the same nodes and edges as F . The above

monomial m equals
∏
v∈VF t

LG(v). This establishes (1).
As for (2), let G be a standard graph with the same nodes and edges as

VF . The above discussion shows that the coefficient of the monomial m ..=∏
v∈VF t

LG(v) shows up in the expansion of g, and its coefficient counts the
number of ways of writing G as a sum G =

∑
H of elements of E . This is just

the number of standard decompositions of G. �

B. Partitions of partitions

Appendix A suggests a connection between standard decompositions and par-
titions. Let us further investigate this.
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Example B.1. ◦ The set of partitions of an integer n is in natural bi-
jection with the set of standard sets of cardinality n by identifying a
partition and its Young diagram (in the French notation).

◦ If p = {n1, . . . , nh} (a multiset) is a partition of n and for each i, pi
is a partition of ni, we call {p1, . . . , ph} a partition of partition of n.
The set of partitions of partitions of n is in natural bijection with the
set of standard sets ∆ ⊆ N3 of cardinality n, together with all their C4
decompositions.

♦

Both bijections are visualized in Figure B.1. For generalizing the state-
ments, we introduce the notion of C4 games.

{5, 3, 2, 2} =


{4, 3}
{2, 1}
{5}

 =

�

�
�
�
�

�
�

�
� �

�

+

�

�
�

�
�

�

�+

� � � � � �

�

Figure B.1: Partitions (of partitions, resp.) and C4 games in N2 (in N3, resp.)
correspond to each other

Definition B.2 (Iterated partition). Let n be a positive integer. We recur-
sively define a q-fold iterated partition of n as follows:

◦ for q = 1, it is a partition of n, that is, a multiset p = {n1, . . . , nh} of
positive integers such that

∑
ni = n;

◦ for q > 1, it is a multiset p = {p1, . . . , ph} of (q − 1)-fold iterated parti-
tions of integers n1, . . . , nh such that

∑
ni = n.

In other words, we look at all partitions of n into ni, together with all
partitions of all parts ni into ni,j , together with all partitions of all parts ni,j
into ni,j,k, etc.
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Definition B.3 (C4 game). Let n be a positive integer. We recursively
define a C4 game of size n in Nd as follows:

◦ for d = 1, 2, it is standard set ∆ ⊆ Nd of cardinality n;

◦ for d > 2, it is a multiset {g1, . . . , gh} of C4 games of respective sizes ni
in Nd−1 such that

∑
ni = n.

In other words, we look at all standard sets ∆ ⊆ Nd of a cardinality n,
together with all C4 decompositions of ∆ into ∆i ⊆ Nd−1, together with all C4
decompositions of all ∆i into ∆i,j ⊆ Nd−2, together with all C4 decompositions
of all ∆i,j into ∆i,j,k ⊆ Nd−3, etc.

Proposition B.4. For all d, n ∈ N, there is a natural bijection

fd : {(d− 1)-fold iterated partitions of n} →
{

C4 games of size n in Nd
}
.

Proof. The assertion is obvious for d = 1, 2. For d > 2, the bijection fd
sends each multiset {H1, . . . ,Hl} of (d− 2)-fold iterated partitions of integers
n1, . . . , nl to the multiset {fd−1(H1), . . . , fd−1(Hl)}. �

Note that the bijection is only natural up to the choice of coordinate axes in
Nd. In other words, replacing the tuple (e1, . . . , ed) of standard basis elements
by (eσ(1), . . . , eσ(d)) for some permutation σ induces an automorphism of the
source of bijection fd. For d = 2, this corresponds to the ambiguity between a
partition and its transpose.

References

David Eisenbud (1995). Commutative algebra, volume 150 of Graduate Texts in
Mathematics. Springer-Verlag, New York. ISBN 0-387-94268-8; 0-387-94269-6,
xvi+785 . With a view toward algebraic geometry.

Laurent Evain (2005). On the postulation of sd fat points in Pd. J. Algebra
285(2), 516–530. ISSN 0021-8693. URL http://dx.doi.org/10.1016/j.jalgebra.

2004.09.034.
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of points. Proc. Lond. Math. Soc. (3) 108(1), 187–224. ISSN 0024-6115. URL
http://dx.doi.org/10.1112/plms/pdt018.

Hiraku Nakajima (1999). Lectures on Hilbert schemes of points on surfaces, vol-
ume 18 of University Lecture Series. American Mathematical Society, Providence,
RI. ISBN 0-8218-1956-9, xii+132 .

http://dx.doi.org/10.1016/j.jalgebra.2004.09.034
http://dx.doi.org/10.1016/j.jalgebra.2004.09.034
http://dx.doi.org/10.1007/BF01168836
http://dx.doi.org/10.1007/BF01168836
http://dx.doi.org/10.1112/plms/pdt018


36 Evain, Lederer & Roune

Bernd Sturmfels (1995). On vector partition functions. J. Combin. Theory
Ser. A 72(2), 302–309. ISSN 0097-3165. URL http://dx.doi.org/10.1016/

0097-3165(95)90067-5.

Manuscript received 05 April 2013

Laurent Evain
Université d’Angers
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