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Abstract:

Alexander and Hirschowitz [1] determined the Hilbert function of a generic union of fat
points in a projective space when the number of fat points is much bigger than the greatest
multiplicity of the fat points. Their method is based on a lemma which determines the limit
of a linear system depending on fat points approaching a divisor.

Other Hilbert functions were computed previously by Nagata [15]. In connection with his
counter example to Hilbert’s fourteenth problem, Nagata determined the Hilbert function
H(d) of the union of k2 points of the same multiplicity m in the plane up to degree d = km.

We introduce a new method to determine limits of linear systems. This generalizes the
result by Alexander and Hirschowitz. Our main application of this method is the conclusion
of the work initiated by Nagata: we compute H(d) for all d. As a second application, we
compute collisions of fat points in the plane.

1 Introduction

Fixing general points pi in a projective space, what is the dimension d of the space of
hypersurfaces of degree δ having multiplicity mi at pi for each i ? This simple question is
related to numerous other problems: Hilbert’s fourteenth problem, Waring’s problem, ample
bundles on surfaces, symplectic packing ... ([16], [18], [3], [13], [5]). Surprisingly, the question
is still open when the projective space has dimension at least two.

This problem is usually attacked using specialisation methods. There is an expected
dimension de with de ≤ d. The points pi are moved to a special position. One computes the
dimension d′ in this special position and checks d′ = de. By semi-continuity, de ≤ d ≤ d′

hence d = de. The difficulty with this approach is to find a good specialisation. Possible
methods are the Horace method [12], collisions of fat points [8], or degenerations of the
projective space [6].

The drawback of all these methods is that they are hardly usable when there are few
points with high mutiplicities because of inevitable numerical difficulties. In this article,
we introduce a method of specialisation which tackles the numerical difficulties appearing
in these difficult cases. Then we apply the method to complete a result by Nagata and to
compute collisions of fat points.

We put the problem in a general context. LetX be a (quasi-)projective scheme, L a linear
system on X and Z ⊂ X a generic 0-dimensional subscheme of degree d, ie. a subscheme
parametrised by a non closed point pZ ∈ Hilbd(X). We address the problem of determining
the dimension dimL(−Z).

In this introduction, we suppose for simplicity that Z = Zt is the generic fiber of a
subscheme F ⊂ X × A

1 flat and finite over A
1 = Spec k[t] and such that the support of

the fiber F (t) approaches a divisor D when t → 0. Our strategy is the following. We
specialize Zt to the subscheme Z0 = F (0) = limt→0 Zt. Accordingly, the linear system
L(−Zt) specialises to a system limt→0 L(−Zt). The subspace L(−Zt) ⊂ L is associated to
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a (non closed) point pt in a Grassmannian G of subspaces of L. The limit limt→0 L(−Zt) is
by definition parametrised by the point p0 = limt→0 pt ∈ G. By construction, the dimension
of the linear system is preserved under specialisation: dim limt→0 L(−Zt) = dimL(−Zt). In
particular, if we can compute the dimension of the limit, we obtain the dimension of L(−Zt).

To illustrate this idea with an example, let L be the set of homogeneous polynomials
P ∈ k[x, y, z] of degree 15, D ⊂ P2 the line with equation y = 0, p1, p2, p3 three points of D,
p4(t) = [x4 : t : 1] ∈ P2 and p5(t) = [x5 : t : 1] ∈ P2 two points which move to the line D when
t tends to 0. Let L(−Zt) be the set of homogeneous P of degree 15 which vanish at each of the
points pi, i ≤ 5, with multiplicity four. The limit linear system limt→0 L(−Zt) parametrises
the set of reducible curves C = 3D + C′, with C′ a curve of degree 12 passing through the
points p1, p2, p3, p4(0), p5(0). The dimension of the limit is 86, hence dimL(−Zt) = 86 too.

One could näıvely hope that limt→0L(−Zt) = L(−Z0). This is not correct. There is a
trivial inclusion

lim
t→0

L(−Zt) ⊂ L(−Z0)

but in general, this is a strict inclusion. For instance, in the above example, dimL(−Z0) =
dimL(−Zt)+3. In other words, the dimension of the linear system jumps when Zt moves to
Z0. Our point is precisely to determine what could be the limit when the dimension jumps
and the displayed inclusion is not an equality.

Our result gives an estimate of the limit limt→0L(−Zt). More precisely, we introduce a
combinatorical procedure to construct a system L′ ⊂ L(−Z0) and we show an inclusion

lim
t→0

L(−Zt) ⊂ L′ (∗).

The system L′ has the following form : we find an integer r and a residual scheme Zres ⊂ Z0

such that L′ = L(−rD − Zres).
With concrete examples (see the applications below), the inclusion (∗) suffices to compute

dimL(−Zt) using the same argument as above: There is an expected dimension de which
verifies de ≤ dimL(−Zt) = dim limt→0 L(−Zt) ≤ dimL′ = de, hence our analysis finally
computes the limit linear system and the dimension of the initial linear system:

dimL(−Zt) = de and lim
t→0

L(−Zt) = L′.

The method to estimate the limit is infinitesimal in nature. It is based on a study of
deformations of a space of sections. There is a unique flat family G over A1 whose fiber over
the generic point t ∈ A1 is L(−Zt). Our theorem is obtained by a careful analysis of the
restrictions G×A1 Spec k[t]/(tni) ⊂ G for well chosen integers n1, . . . , nr.

The inclusion (∗) generalizes the main lemma of Alexander-Hirschowitz [1]. Their state-
ment corresponds essentially to ours in the special case r = 1. However, the proofs are
different. When Alexander-Hirschowitz published their theorem, our theorem did already
exist in a weaker version where the 0-dimensional subscheme Z moving to the divisor had
to be supported by a unique point. The current version is a merge which contains both our
earlier version and Alexander-Hirschowitz version.

As an application, we extend results by Nagata relative to the Hilbert functions of fat
points in the plane. We recall that a consequence of Alexander-Hirschowitz [1] is that the
Hilbert function of a generic union of k fat points in the plane of multiplicity m1, . . . ,mk is

HZ(d) = min( (d+1)(d+2)
2 ,

∑k

i=1
mi(mi+1)

2 ) provided k >> max(mi). The “opposite” cases,
those with a fixed number of points (≥ 10) and big multiplicities, have been considered by
Nagata. As explained above, they are known empirically to be difficult cases. In connection
with his construction of the counter example to the fourteenth problem of Hilbert, Nagata
proved that the Hilbert function of a generic union Z of k2 fat points of the same multiplicity

m in P2 is HZ(d) = (d+1)(d+2)
2 if the degree is not too big, namely if d ≤ km. This result is

asymptotically optimal in m in the sense that it is sufficient to compute the Hilbert function
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up to the critical degree d = km + [k−3
2 ] to determine the whole Hilbert function. Nagata

was just missing the last [k−3
2 ] cases. We compute the Hilbert function for every degree:

Theorem . HZ(d) = min( (d+1)(d+2)
2 , k2m(m+1)

2 ).

This result was already proved when the number of points is a power of four in [9] by
methods relying on the geometry of integrally closed ideals which we could not push much
further.

Putting the result in perspective, there is a conjecture by Harbourne-Hirschowitz relative
to the Hilbert function of a generic union of fat points. The above theorem is a new evidence
for the conjecture as it involves cases with few points and big multiplicities.

As a second application, we propose a method to compute collisions of fat points in the
plane. We recall that a collision of punctual subschemes Z1, . . . , Zs ⊂ A2 is a subscheme
obtained as a flat limit when the support of the Zi’s approach the same point.

The collisions of at most three fat points are known [7]. When there are four points or
more, the situation is still largely open: some collisions have been computed by Ciliberto
and Miranda [4] and in [9], but most of them remain to be described.

To illustrate our method, we compute the collisions of four fat points of the same mul-
tiplicity which approach successivly the origin along a smooth curve (theorem 21). Besides
this illustration, it is clear from the proofs that it is possible using the same method to
compute an infinite number of collisions.

Our motivation for determining the collisions is the following. If Z = Z1 ∪ · · · ∪ Zs is
a generic union of fat points, the Hilbert function of Z is determined by the collisions of
the Zi’s. Indeed, there exist “universal” collisions C on which one can read off the Hilbert
function of Z: ∀d, HZ(d) = HC(d) [8]. Determining all collisions of any number of fat
points is far beyond our knowledge. However, by semi-continuity it would suffice to exhibit a
collision with the expected Hilbert function to prove the Harbourne-Hirschowitz conjecture
for Z, hence the need to understand the collisions. The computations of the present paper
are a step in this direction.

Acknowledgments. I thank the referee for constructive comments.

2 Statement of the theorem

An elementary example

As the statement of the theorem is somehow intricate, we start with an elementary example
to understand the kind of result we are looking for. Precise and more formal statements will
follow in the next sections.

Let L be the vector space whose elements are homogeneous polynomials P (x, y, z) of
degree 8 vanishing with order 2 on 4 points p1, . . . , p4 ∈ P2, aligned on the line D with
equation x = 0, and vanishing on a fifth general point p5 with order 4. The order of contact
between D and a curve C ∈ P(L) is 8 = 4.2. By Bezout, if the contact was 9, then D would
be a fixed component of L. Though we miss 1 = 9− 8 orders of contact to prove it, suppose
that D is a fixed component of L. An equation f ∈ L then writes down f = xg where g has
degree 7 and the curve Cg passes through p1, . . . , p4. By Bezout again, we miss 4 = 8 − 4
orders of contact to show that g vanishes on D. Summing up, we missed 5 = 1 + 4 orders of
contact to show that D is a fixed component with multiplicity 2.

Passing through p5 with multiplicity 4 is equivalent to containing a scheme Z5 of length
10. We move Z5 = Z5(t) towards the line D when the time t tends to 0. Then L = L(t)
tends to a system L(0). We want to prove that in the limit process, Z5 gives the missing
orders of contact to L, ie. L(0) will have D as a fixed component with multiplicity 2. If
C ∈ P(L(0))−2D is a curve of degree 6 in the moving part of the limit linear system, C does
not contain Z5 any more, but a subscheme Z ′

5 ⊂ Z5 of length 5 = 10 − 5 obtained in some
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sense by “taking off” the 5 orders of contact from Z5 which have been given to L. To say it
precisely, we want to prove the existence of a subscheme Z ′

5 of length 5 such that L(0) ⊂ M,
where M is the set of polynomials f which decompose: f = x2g with g vanishing on Z ′

5.
To construct Z ′

5, we represent Z5 with a combinatorical diagram and taking off order of
contacts corresponds to a suppression of slices in the diagram (see the picture page 5). In this
example, one can prove that the limit linear system P(L0) contains the curves C = 2D + E
where E is a curve of degree 6 with a cusp tangent to the line D.

It is possible to do the same analysis when several points approach a divisor. But then
the limit depends on the speed of each moving point. For instance, if two punctual schemes
Z1 and Z2 approach the same divisor D and 5 orders of contact are needed to make D a
fixed component, it is possible to pick up a orders of contact from Z1 and b from Z2 with
a+ b = 5. Different choices for the numbers a and b are possible depending on the speeds of
the points Z1 and Z2.

In the following analysis, we use the language of generic points and specialisation (which
is more precise and compact) rather than the language of families and limits.

Notations

We fix a generically smooth quasi-projective scheme X of dimension d, a locally free sheaf L
of rank one on X and a sub-vector space L ⊂ H0(X,L). Let Z ⊂ Xk(Z) be a 0-dimensional
subscheme parametrised by a non closed point of Hilb(X) with residual field k(Z). Let
L(−Z) ⊂ L be the sub-vector space of sections which vanish on Z (see the definition below).
Our goal is to give an estimate of the dimension dimL(−Z) under suitable conditions.

The generic point X(E)

A staircase E ⊂ Nd is a subset whose complement C = Nd \ E verifies Nd + C ⊂ C.
We denote by IE the ideal of k[x1, . . . , xd] (resp. of k[[x1, . . . , xd]], of k[[x1, . . . , xd]][t] . . . )
generated by the monomials xe11 . . . . .x

ed

d = xe whose exponent e = (e1, . . . , ed) is in C. If
E is a finite staircase, the subscheme Z(E) defined by IE is 0-dimensional and its degree
is #E. The map E 7→ Z(E) is a one-to-one correspondence between the finite staircases
of Nd and the monomial punctual subschemes of Spec k[x1, . . . , xd]. If E = (E1, . . . , Es)
is a set of finite staircases, if X is irreducible and if Z(E) is the (abstract non embedded)
disjoint union Z(E1)

∐
· · ·

∐
Z(Es), there is an irreducible scheme P (E) which parametrizes

the embeddings Z(E) → Xs, where Xs ⊂ X is the smooth locus ([11] and [12]). Such an
embedding Z(E) → Xs determines a subscheme of X , thus there is a natural morphism
f : P (E) → Hilb(X) to the Hilbert scheme of X . We denote by X(E) the subscheme
parametrised by f(p) where p is the generic point of P (E). We call X(E) the generic union
of the schemes Z(E1), . . . , Z(Es).

The linear system L(−X(E))

If Z ⊂ X is a subscheme, denote by L(−Z) ⊂ L the subvector space which contains the
elements of L vanishing on Z. If p is a non closed point of Hilb(X) whose residual field is
k(p), and if Z ⊂ X ×k Spec k(p) is the corresponding subscheme, the definition of L(−Z)
is as follows. Since L ⊗ k(p) ⊂ H0(L ⊗ Spec k(p), X × Spec k(p)), it makes sense to
consider the vector space V ⊂ L⊗k(p) containing the sections which vanish on Z. Denoting
by λ the codimension of V , we may associate with V a k(p)-point g ∈ Grassk(p)(λ,L ⊗
k(p)) = Grassk(λ,L) × Spec k(p) ([10], prop.9.7.6). In particular L(−Z) is well defined
as a (non closed) point of Grassk(λ,L). The goal of the theorem is to give an estimate of
dimL(−X(E)).

4



Combinatorical constructions

To formulate the theorem, we need some combinatorical notations that we introduce now.
The τ th slice of a staircase E ⊂ N

d is the staircase T (E, τ) ⊂ N
d defined by:

T (E, τ) = {(0, a2, . . . , ad) such that (τ, a2, . . . , ad) ∈ E}

If E = (E1, . . . , Es) is a s-tuple of staircases and τ = (τ1, . . . , τs), we set

T (E, τ) = (T (E1, τ1), T (E2, τ2), . . . , T (Es, τs)).

A staircase E ⊂ Nd is characterized by a height function hE : Nd−1 → N which verifies:
∀a, b ∈ Nd−1, hE(a + b) ≤ hE(a). The staircase E and hE can be deduced one from the
other via the relation: (a1, . . . , ad) ∈ E ⇔ a1 < hE(a2, . . . , an). The staircase S(E, τ) is
defined by its height function:

hS(E,τ)(a2, . . . , ad) = hE(a2, . . . , ad) if τ ≥ hE(a2, . . . , ad)

= hE(a2, . . . , ad) − 1 if τ < hE(a2, . . . , ad).

Intuitively, S(E, τ) is the staircase obtained from E after the suppression of the tth slice, as
shown by the following picture.
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Suppression of slice number oneStaircase

If E = (E1, . . . , Es) is a family of staircases, and τ = (τ1, . . . , τs) ∈ Ns, we put:

S(E, τ) = (S(E1, τ1), S(E2, τ2), . . . , S(Es, τs)).

If (τ1, . . . , τr) ∈ (Ns)r, the recursive formula

S(E, τ1, . . . , τr) = S(S(E, τ1, . . . , τr−1), τr)

defines the s-tuple of staircases S(E, τ1, . . . , τr) obtained from the s-tuple E = (E1, . . . , Es)
by suppression of r slices in each Ei.

The generic point Xϕ(E, t, v)

Suppose that E is a staircase. We want to give an upper bound to dimL(−X(E)). A
specialisation Xϕ(E, t, v) of X(E) is introduced. By semi-continuity, dimL(−X(E)) ≤
dimL(−Xϕ(E, t, v)) thus it will suffice to give an upper bound for dimL(−Xϕ(E, t, v)).

Whereas the generic point X(E) corresponds to a monomial subscheme with staircase
E which can move generically, Xϕ(E, t, v) is more special and corresponds to a monomial
subscheme which can move only in a prescribed way with respect to a coordinate patch ϕ.
We construct a family whose base is Spec k[[t]] by explicit equations in the coordinate patch
ϕ. The equations depend on the time t and v is a control parameter for the velocity of the
moving subscheme. The subscheme Xϕ(E, t, v) is the generic fiber of this explicit family.

To be precise, the subscheme Xϕ(E, t, v) is defined as follows. If p ∈ X is a smooth point,
a formal neighborhood of p is a morphism ϕ : Spec k[[x1, . . . , xd]] → X which induces an
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isomorphism between Spec k[[x1, . . . , xd]] and the completion Ôp of the local ring of X at
p. If p = (p1, . . . , ps) is a s-tuple of smooth distinct points, a formal neighborhood of p is
a morphism (ϕ1, . . . , ϕs) : U → X from the disjoint union U = V1

∐
· · ·

∐
Vs of s copies of

Spec k[[x1, . . . , xd]] to X , where ϕi : Vi → X is a formal neighborhood of pi. If D is a divisor
on X , we say that ϕ and D are compatible if D is defined by the equation x1 = 0 around
each pi (in particular, pi is a smooth point of D and X).
Consider the translation morphism:

Trv1 : k[[x1, . . . , xd]] → k[[x1, . . . , xd]] ⊗ k[[t]]

x1 7→ x1 ⊗ 1 − 1 ⊗ tv1

xi 7→ xi ⊗ 1 if i > 1

If E1 is a staircase, the ideal

J(E1, v1) = Trv1(I
E1)k[[x1, . . . , xd]] ⊗ k[[t]] ⊂ k[[x1, . . . , xd]] ⊗ k[[t]]

defines a flat family F1 of subschemes of Spec k[[x1, . . . , xd]] parametrised by Spec k[[t]].
This corresponds geometrically to the family whose fiber over t is obtained from Z(E1) by
the translation x1 7→ x1 − tv1 . If ϕ1 is a formal neighborhood of p1, F1 can be seen as a
flat family of subschemes of X via ϕ1, thus it defines a morphism Spec k[[t]] → Hilb(X).
We denote by X(ϕ1, E1, t, v1) the non closed point of Hilb(X) parametrised by the image of
the generic point. The first coordinate does not play any specific role. Thus more generally,
if E = (E1, . . . , Es) is a family of staircases, if ϕ = (ϕ1, . . . , ϕs) is a formal neighborhood
of (p1, . . . , ps), if v = (v1, . . . , vs) ∈ Ns, one defines similarly families Fi ⊂ X × Spec k[[t]]
flat over Spec k[[t]]. The disjoint union F = F1 ∪ · · · ∪ Fs is still flat over Spec k[[t]] and
corresponds to a morphism Spec k[[t]] → Hilb(X). We denote by Xϕ(E, t, v) the image of
the generic point and by Xϕ(E) = Xϕ(E, 0, v) the image of the special point (which does
not depend on v).

Notation

We denote by [x] the integer part of a real x. If J is an ideal of a ring R, and s ∈ R, we
denote (J : s) = {r ∈ R, sr ∈ J}.

Statement of the theorem

We are now ready to state the theorem. By the above, L(−Xϕ(E, t, v)) corresponds to a
morphism Spec k((t)) → G to a Grassmannian G, which extends to a morphism Spec k[[t]] →
G by valuative properness. The theorem gives a control of the limit obtained under suitable
conditions.

The formulation is more transparent when there is a unique point moving towards the
divisor (s = 1). The speed v of the point is chosen to be 1.

Theorem 1. Let D be an effective divisor on a quasi-projective scheme X, p ∈ X, ϕ a formal
neighborhood of p compatible with D, E a staircase with slices T0, T1, . . . . Let Tn1

, . . . , Tnr

be slices of E with associated subschemes Zi = Xϕ(Tni
) and n1 > n2 > · · · > nr. Let

F = E \ Tn1
, . . . , Tnr

be the staircase obtained after suppression of the slices Tni
in E. If

∀i, 1 ≤ i ≤ r,L(−(i− 1)D − Zi) = L(−iD),

then
lim
t→0

L(−Xϕ(E, t, v = 1)) ⊂ L(−rD −Xϕ(F ))

In the more general version, there are several moving points and one needs to be careful
about the speed of each point to describe the limit.
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Theorem 2. Let D be an effective divisor on a quasi-projective scheme X, p = (p1, . . . , ps)
be a s-tuple of smooth points of X, ϕ a formal neighborhood of p compatible with D, v =
(v1, . . . , vs) ∈ Ns a speed vector, E = (E1, . . . , Es) be staircases and Xϕ(E, t, v) the generic
union of subschemes defined by ϕ. Suppose that one can find integers n1 > · · · > nr such
that:

• ∀k, nk − nk+1 ≥ max(vi),

• ∀i, 1 ≤ i ≤ r, L(−(i− 1)D − Zi) = L(−iD)

where τi = ([ni−1
v1

], . . . , [ni−1
vs

]), Ti = T (E, τi) and Zi = Xϕ(Ti). Then

lim
t→0

L(−Xϕ(E, t, v)) ⊂ L(−rD −Xϕ(S(E, τ1, . . . , τr)))

Remark 3. The main lemma 2.3 of [1] corresponds essentially to the above theorem with
r = 1. Our theorem also generalizes to the vertically graded subschemes considered in [1]
instead of monomial subschemes.

If X is irreducible, X(E) is well defined and it specializes to Xϕ(E, t, v). Thus we get by
semi-continuity the inequality

dimL(−X(E)) ≤ dimL(−Xϕ(E, t, v)) = dim lim
t→0

L(−Xϕ(E, t, v)).

Combining this inequality with the theorem, we obtain the following estimate of
dimL(−X(E)) in terms of a linear system of smaller degree.

Corollary 4. dimL(−X(E)) ≤ dimL(−rD −Xϕ(S(E, τ1, . . . , τr)))

Remark 5. In case L is infinite dimensional, the theorem still makes sense since Grass-
mannians of finite codimensional vector spaces of L are still well defined and the limit makes
sense in such a Grassmannian.

2.1 Comment on the conditions of the theorem and plan of the

proof

In this section, we explain the technical conditions nk − nk+1 ≥ max(vi) and τi =
([ni−1

v1
], . . . , [ni−1

vs
]) appearing in the statement of the theorem, and we give a very rough

plan of the proof.
Consider the example at the beginning of section 2. There is a subscheme Z5(t) corre-

sponding to a point of multiplicity 4, which moves towards the line D as t tends to 0. When
t 6= 0, Z5(t) ∩ D = ∅. When t = 0, Z5(0) ∩ D is a scheme of length 4. To apply Bezout
properly, we need to find a t such that Z5(t) ∩ D is a scheme of length 1. Thus neither
t = 0 nor t 6= 0 are suitable. The idea is then to choose t 6= 0 but tn = 0, which rigorously
corresponds to a restriction over the base Spec k[t]/(tn). The point is to understand how
we choose n to get the required intersection. On this example, if t4 = 0, Z5(t) ∩ D “is” a
scheme of length 1, as required.

What do we mean when we compute the intersection Z(t) ∩D for tn = 0 ? Consider a
monomial ideal IE and make the change of variable x1 7→ x1 − tv to get the ideal J(t) of
Xϕ(E, t, v). For instance, suppose that the staircase E is defined by IE = (x2

1, x1x
2
2, x

3
2). In

other words, E is made from two slices T0, T1 corresponding to the subschemes with ideals
IT0 = (x1, x

3
2) and IT1 = (x1, x

2
2), and J(t) = (x1 − 2tvx1 + t2v, (x1 − tv)x2

2, x
3
2). When we

work over Spec k[t]/tn, formally, we replace ti by zero if i ≥ n. It is easy to see on our
example that if tv = 0, J(t) ⊂ IT0 and if t2v = 0, then J(t) ⊂ IT1 . Geometrically, this
means that if t is in the infinitesimal neighborhood Spec k[t]/(tn), n ≤ (i + 1)v, then the
intersection Xϕ(E,t,v) ∩D contains the subscheme associated with slice number i.

The general case is similar to this example: for any staircase E, if we restrict to the in-
finitesimal neighborhood tn = 0, the trace Xϕ(E, t, v)∩D contains the subscheme associated
with the slice number [n−1

v
].
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Consider finally the case with several staircases E1, . . . , Es and associated subschemes
Z(E1), . . . , Z(Es) moving with speed v1, . . . , vs towards the divisor D, and Xϕ(E, t, v) =
Xϕ1

(E1, t, v1)
∐

· · ·
∐
Xϕs

(Es, t, vs). When we make tni = 0, we see that Xϕ(E, t, v) ∩ D
contains a union of subschemes Zi = R1

∐
· · ·

∐
Rs where Rk is defined by the slice number

[ni−1
vk

] of Ek. In other words, the coordinates of τi = ([ni−1
v1

], . . . , [ni−1
vs

]) are the index of

the slices corresponding to the intersection Xϕ(E, t, v) ∩D when we consider the restriction
tni = 0.

Now the condition n1 ≥ n2 ≥ n3... is clear. It comes from the fact that our analysis uses
smaller and smaller restrictions. We restrict over Spec k[t]/(tn1) to get the required order
of contact Xϕ(E, t, v) ∩D and we make an analysis of the situation. Then we restrict to a
smaller infinitesimal neighborhood Spec k[t]/(tn2) and so on.

To explain why the hypothesis required in the theorem is ni − ni+1 ≥ max(vi), which is
a bit more than the natural inequality ni ≥ ni+1, we look more precisely at the plan of the
proof.

Suppose that we have of family of sections s(t) of L vanishing on a moving punctual
subscheme Z(t) = Xϕ(E, t, v) whose support p(t) tends to p(0) as t tends to 0. Using
local coordinates around p(0), the sections of L can be considered as functions and the
vanishing on Z(t) translates to s(t) ∈ J(t) where J(t) is the ideal of Z(t). Denote by
Jn1

the restriction of J(t) to the infinitesimal neighborhood Spec k[t]/tn1 of t = 0. As
explained above, we put tn1 = 0 in J(t) and we see that the functions in Jn1

vanish on Z1.
In particular, if tn1 = 0, s(t) is a family of sections vanishing on Z1. Then it is a family
of sections vanishing on D since by hypothesis a section which vanishes on Z1 vanishes on
D. If D is defined locally by the equation x1 = 0, this means that s(t) = x1s

′(t) with
s′(t) ∈ (Jn1

: x1). Restrict now to the smaller infinitesimal neighborhood Spec k[t]/tn2 and
denote by (Jn1

: x1)n2
the restriction of (Jn1

: x1). The restriction of s′(t) to Spec k[t]/tn2

is an element of (Jn1
: x1)n2

, and a computation shows that it vanishes on Z2. Then
by hypothesis, s′(t) vanishes on D. Using local coordinates, this means that if tn2 = 0,
s′(t) = x1s

′′(t), with s′′(t) ∈ ((Jn1
: x1)n2

: x1) and s(t) = x1s
′(t) = x2

1s
′′(t). Then we put

t = 0 and we get s(0) = x2
1s

′′(0) where s′′(0) ∈ ((Jn1
: x1)n2

: x1)(0). A computation shows
that ((Jn1

: x1)n2
: x1)(0) = IS(E,τ1,τ2)). The control we get in this way of any element

s(0) ∈ limt→0 L(−Xϕ(E, t, v)) corresponds to the inclusion

lim
t→0

L(−Xϕ(E, t, v)) ⊂ L(−2D −Xϕ(S(E, τ1, τ2)))

given by the theorem in the case r = 2.
For a general r, the proof follows the same lines. We simply do r restrictions instead of

two and we need to control a more complicated ideal (((Jn1
: x1)n2

: x1)....)nr
: x1)) instead

of ((Jn1
: x1)n2

: x1). The computation of the ideal (((Jn1
: x1)n2

: x1)....)nr
: x1)) is difficult

in general, but it simplifies if nk−nk+1 ≥ max(vi). Thus the condition nk−nk+1 ≥ max(vi)
is a technical condition to make possible the computations of the ideals involved in the proof.

3 Proof of theorem 2

In the context of the theorem, we are given a set of staircases E = (E1, . . . , Es), a vector
v = (v1, . . . , vs), a divisor D, a formal neighborhood ϕ of (p1, . . . , ps) in which D is given
by the equation x1 = 0 around each pi, and integers n1, . . . , nr. For n > 0, we put Rn =
k[[x1, . . . , xd]]

s ⊗ k[[t]]/(tn) and R∞ = k[[x1, . . . , xd]]
s ⊗ k[[t]]. The formal neighborhood

ϕ = (ϕ1, . . . , ϕs) is viewed as a map Spec R1 → X . We denote by ψnp : Rn → Rp the
natural projections, which exist for p ≤ n ≤ ∞. If J ⊂ R∞ is an ideal, we define recursively
the ideals Jnk

⊂ Rnk
and Jnk: ⊂ Rnk

(mind the semicolon in the subscript) by the formulas

• Jn1
= ψ∞n1

(J),

• Jnk: = (Jnk
: x1),

• Jnk
= ψnk−1nk

(Jnk−1:)
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As explained before, the vector space L(−X(ϕ,E, t, v)) corresponds to a morphism
Spec k((t)) → G (where G is a Grassmannian of subvector spaces of L) which extends
to a morphism Spec k[[t]] → G. The universal family over the Grassmannian G pulls back
to a family Ũ ⊂ Spec k[[t]] × L. If V ⊂ L is a subvector space, we can define its base locus
BV ⊂ X . In the relative situation, the flat family Ũ of subvector spaces parametrised by
Spec k[[t]] defines a family of base loci BŨ (t) ⊂ Spec k[[t]]×X . Since we are interested in the
part of the base locus contained in the formal neighborhood ϕ : Spec R1 → X , we consider
the intersection BŨ (t) ∩ (Spec k[[t]] × Spec R1) which is defined by an ideal U ⊂ R∞. The

theorem will be proved if we show that the special fiber Ũ(0) contains only sections vanishing
r times on D and if, in local coordinates, U(0) is included in xr1I

S(E,τ1,...,τr).
Let us denote by Ũni

⊂ Spec k[t]/tni × L and Uni
⊂ Rni

the restrictions of Ũ and U over
the subscheme Spec k[[t]]/tni . We show by induction that:

∀i ≥ 1, Uni
⊂ xi1Jni:

where J = J(E1, v1) ⊕ · · · ⊕ J(Es, vs) ⊂ R∞. The proof relies on the following two lemmas
whose proof is postponed. These lemmas control the ideal Jnk

and the restriction of Jnk: to
the special fiber t = 0.

Lemma 6. Jnk
⊂ ITk

Lemma 7. Jnk:(0) = IS(E,τ1,...,τk).

The fibers of Ũ contain sections of L which vanish on Xϕ(E, t, v). Since J is the ideal of
Xϕ(E, t, v), this implies the inclusion U ⊂ J , hence Un1

⊂ Jn1
. By lemma 6, this inclusion

implies that the fibers of Ũn1
are elements of L which vanish on Z1, hence they vanish on

D by hypothesis. It follows that elements of Un1
are divisible by x1 and we can then write:

Un1
⊂ x1Jn1: . Suppose now that Uni

⊂ xi1Jni: . Then Uni+1
⊂ xi1Jni+1

. By lemma 6,

this inclusion implies that the fibers of Ũni+1
are elements of L(−iD) which vanish on Zi+1,

hence they vanish on D by hypothesis. It follows that elements of Uni+1
are divisible by xi+1

1

and we can write Uni+1
⊂ xi+1

1 Jni+1: . This ends the induction on i. In particular, for i = r,
using lemma 7 for the last equality, we have the required inclusion:

U(0) = Unr
(0) ⊂ xr1Jnr:(0) = xr1I

S(E,τ1,...,τr).

We now turn to the proof of the lemmas 6 and 7 on which the above proof relies. Note that
J = (J1, . . . , Js) and ITk = ((ITk)1, . . . , (ITk)s) are defined componentwise, the component
number i corresponding to the study around the point pi. Thus lemmas 6 and 7 below can
be proved for each component and one may suppose s = 1 to prove them. We thus suppose
for the rest of this section that s = 1, that E = (E1, . . . , Es) is a staircase given by a height
function h, and that v = (v1, . . . , vs) ∈ N.
Let B (resp. C) be the set of elements m = (m2, . . . ,md) ∈ Nd−1 such that h(m) 6= 0 (resp.
h(m) = 0). Remark that B is finite due to the finitness of E. We denote by

• C(t) ⊂ Rn the k[[x1]] ⊗ k[[t]] sub-module containing the elements∑
am1m2...md

xm1

1 xm2

2 . . . xmd

d ⊗ f(t), where f(t) ∈ k[[t]]/tn and (m2, . . . ,md) ∈ C

• C(0) ⊂ R1 = k[[x1, . . . , xd]] the k[[x1]] sub-module containing the series∑
am1m2...md

xm1

1 xm2

2 . . . xmd

d where (m2, . . . ,md) ∈ C

• B(m) ⊂ Rn the k[[x1]]⊗k[[t]] sub-module generated by fm = (x1−tv)h(m)xm2

2 . . . , xmd

d ,

• B(m, 0) ⊂ R1 = k[[x1, . . . , xd]] the k[[x1]] sub-module generated by fm(0) =
(x1)

h(m)xm2

2 . . . , xmd

d ,

• Bnk
(m) ⊂ Rn the k[[x1]]⊗ k[[t]] sub-module generated by the elements fm,

t
αk−i+1fm

xi
1

,

1 ≤ i ≤ k, where αi = max(0, ni − vh(m)) for i > 0. In particular, for k = 0,
Bnk

(m) = B(m).
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To simplify the notations, we have adopted above the same notation for distinct submodules
(living in distinct ambiant modules). The following lemma says that the module Bnk

(m) is
well defined as a sub-module of Rj for j ≤ nk.

Lemma 8. Let j ≤ nk. If i ≤ k, the element t
αk−i+1fm

xi
1

∈ Rj. In particular Bnk
(m) ⊂ Rj

is well defined for j ≤ nk. If in addition, j ≤ nk+1, then t
αk−i+1fm

xi
1

is a multiple of x1.

Proof. First, if l < i, the coefficient of xl1 in tαk−i+1fm is a multiple of tαk−i+1tv(h(m)−l). This
term is zero in Rj since the exponent of t is at least nk−i+1−vl ≥ nk+(i−1)v−vl ≥ nk ≥ j.

It follows that t
αk−i+1fm

xi
1

∈ Rj is well defined. A similar estimate shows that for l ≤ i, the

coefficient of xl1 in tαk−i+1fm is zero in Rj for j ≤ nk+1. Thus t
αk−i+1fm

xi
1

is a multiple of x1.

Lemma 9. • As k[[x1]]-modules, IE =
⊕

m∈B B(m, 0) ⊕ C(0) ⊂ k[[x1, . . . , xd]]

• As k[[x1]] ⊗ k[[t]]-modules, J =
⊕

m∈BB(m) ⊕ C(t) ⊂ R∞

Proof : This is a straightforward verification left to the reader.

Lemma 10. We have the equality of k[[x1]] ⊗ k[[t]]-modules:

• Jnk
=

⊕
m∈B Bnk−1

(m) ⊕ C(t) ⊂ Rnk

• Jnk: =
⊕

m∈B Bnk
(m) ⊕ C(t) ⊂ Rnk

Proof. Let us say that the index i of Jnk
and Jnk: is respectivly 2k−1 and 2k. We prove the

lemma by induction on the index i. If i = 1, we get from the preceding lemma the equality

Jn1
= ψ∞n1

(J) =
∑

m∈B

ψ∞n1
(B(m)) + ψ∞n1

(C(t))

=
∑

m∈B

B(m) + C(t) in Rn1
.

The last sum is obviously direct, thus it is the required equality.
Suppose now that we want to prove the lemma for i = 2k − 1. This is exactly the same
reasoning as in the case i = 1, substituting Jnk

, Jnk−1: and ψnk−1nk
for Jn1

, J , and ψ∞,n1
.

Consider now the case i = 2k. Taking the conductor from the expression of Jnk
coming from

induction hypothesis, we get:

Jnk: =
⊕

m∈B

(Bnk−1
(m) : x1) ⊕ (C(t) : x1)

The equality (C(t) : x1) = C(t) is obvious, so we are done if we prove the equality (Bnk−1
(m) :

x1) = Bnk
(m) in the ambiant module Rnk

. The inclusion ⊃ is clear since for every generator
g of Bnk

(m), x1g is a multiple of one of the generators of Bnk−1
(m). As for the reverse

inclusion, if z ∈ (Bnk−1
(m) : x1), one can write down

x1z =
∑

1≤i≤k−1

Pi
tαk−ifm
xi1

+ x1P0fm +Q0fm (∗)

where Pi ∈ k[[x1]] ⊗ k[[t]] and Q0 ∈ k[[t]]. By lemma 8, the terms t
αk−ifm

xi
1

∈ Rnk
are

divisible by x1, thus x1 divides Q0fm. It follows that the coefficient Q0t
vh(m)xm2

2 . . . xmd

d

of x0
1 in Q0fm is zero, which happens only if Q0 is a multiple of tmax(0,nk−vh(m)) = tαk .

Writing down Q0 = λtαk−1+1 and dividing the displayed equality (∗) by x1 shows that
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z ∈ Bnk
, as expected.

Lemma 6. Jnk
⊂ ITk

Proof. In view of the previous lemma, and since the inclusion C(t) ⊂ ITk is obvious, one
simply has to check that the generators of Bnk−1

(m) verify the inclusion. If h(m) ≤ [nk−1
v

],
xm2

2 . . . xmd

d ∈ ITk . Since every generator of Bnk−1
(m) is a multiple of xm2

2 . . . xmd

d , it is in

ITk . If h(m) > [nk−1
v

], then x1x
m2

2 . . . xmd

d ∈ ITk . According to lemma 8, every generator of
Bnk−1

(m) is a multiple of x1, hence is in ITk as a multiple of x1x
m2

2 . . . xmd

d .

Lemma 7. Jnk:(0) = IS(E,τ1,...,τk).
Proof. According to lemmas 10 and 9, it suffices to show that Bnk

(m, 0) ⊂ k[[x1]] is the

submodule generated by x
h(m)−p(m)
1 xm2

2 . . . xmd

d where p(m) is the number of τi’s verifying
τi < h(m), 1 ≤ i ≤ k. Since the generators of Bnk

(m) are explicitely given, the lemma just

comes from the evaluation of these generators at t = 0. We have fm(0) = x
h(m)
1 xm2

2 . . . xmd

d .
By definition of p(m), for 1 ≤ i ≤ k, τi ≥ h(m) if and only if i ≤ k − p(m). In particular
αi = 0 if and if i > k − p(m). We now evaluate the generators of Bnk

(m) using this

information on αi. If i ≤ p(m), t
αk−i+1fm(0)

xi
1

= t0fm

xi
1

(0) = x
h(m)−i
1 xm2

2 . . . xmd

d . If i > p(m),

t
αk−i+1fm(0)

xi
1

= 0. Thus Bnk
(m, 0) is generated by x

h(m)−p(m)
1 xm2

2 . . . xmd

d as expected.

4 The Hilbert function of k
2 fat points in P2

In this section, we compute the Hilbert function of the generic union of k2 fat points in P2

of the same multiplicity m.
We work over a field of characteristic 0.

Definition 11. If Z ⊂ P2 is a zero-dimensional subscheme of degree deg(Z), we denote
by Hv(Z) : N → N the virtual Hilbert function of Z defined by the formula Hv(Z, d) =

min( (d+1)(d+2)
2 , deg(Z)). The critical degree for Z, denoted by dc(Z) is the smallest integer

d such that Hv(Z, d) > deg(Z). We denote by H(Z) the Hilbert function of Z.

Theorem 12. Let Z be the generic union of k2 fat points of multiplicity m in P2. Then
H(Z) = Hv(Z).

Let us recall the following well known lemma:

Lemma 13. If H(Z, d) ≥ Hv(Z, d) for d = dc(Z) and d = dc(Z) − 1, then H(Z) = Hv(Z).

Definition 14. The regular staircase Rm ⊂ N2 is the set defined by the relation (x, y) ∈
Rm ⇔ x + y < m. A quasi-regular staircase E is a staircase such that Rm ⊂ E ⊂ Rm+1

for some m. A right specialized staircase is a staircase such that ((x, y) ∈ E and y > 0) ⇒
(x + 1, y − 1) ∈ E. A monomial subscheme of P2 with staircase E is a punctual subscheme
supported by a point p which is defined by the ideal IE in some formal neighborhood of p.

Example 15. A fat point of multiplicity m is a monomial subscheme with staircase Rm.

Our first intermediate goal is lemma 17 which says that under suitable conditions, if
Z = L ∪ R ⊂ P2 is a subscheme with L included in a line, the Hilbert function of Z is
determined by that of R.

We recall that a collision of punctual subschemes Z1, . . . , Zs ⊂ A2 is a subscheme obtained
as a flat limit when the support of the Zi’s approach the same point (see [8]).

Proposition 16. Let Z be a generic union of fat points. The following conditions are
equivalent.
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• H(Z) = Hv(Z)

• there exists a quasi-regular right-specialized staircase E and a collision C of the fat
points which is monomial with staircase E.

• there exists a quasi-regular staircase E and a collision C of the fat points which is
monomial with staircase E.

Proof. 1 ⇒ 2. Let ρt be the automorphism of P2 = Proj(k[X,Y,H ]) defined for t 6= 0
by ft : X 7→ X

t
, Y 7→ Y

t
, H 7→ H . Consider the collision C = limt→0 ft(Z). It is a

subscheme of the affine plane Spec k[x = X
H
, y = Y

H
] supported by the origin (0, 0). It

is shown in [8] that if H(Z) = Hv(Z), then there is an integer m such that the ideal
of C verifies IRm+1 ⊂ I(C) ⊂ IRm . Thus I(C) = V ⊕ k[x, y]≥m+1 where k[x, y]≥m+1

stands for the vector space generated by the monomials of degree at least m + 1, and
V ⊂ k[x, y]m. Let now gt : x 7→ x − ty, y 7→ y. Then the ideal of D = limt→∞ gt(C) is
I(D) = W ⊕ k[x, y]≥m+1 where W = limt→∞ gt(V ) is a vector space which admits a base of
the form ym, xym−1, . . . , xkym−k. Thus I(D) = IE for some quasi-regular right-specialized
staircase E. And D is a collision of the fat points since it is a specialisation of the collision
C and since being a collision is a closed condition.
2 ⇒ 3 is obvious.
3 ⇒ 1. If there exists a collision C associated with a quasi-regular staircase E, then by semi-

continuity H(Z, d) ≥ H(C, d) = min( (d+1)(d+2)
2 ,#E) = min( (d+1)(d+2)

2 , deg(C)) =

min( (d+1)(d+2)
2 , deg(Z)) = Hv(Z, d). Since the well known reverse inequality

Hv(Z, d) ≥ H(Z, d) is always true, we have the required equality Hv(Z, d) = H(Z, d).

Lemma 17. Let R ⊂ P2 be a generic union of fat points, D ⊂ P2 be a generic line, L ⊂ D
be a subscheme whose support is generic in D. Let Z = R ∪ L and suppose that the degree
of L satisfies deg(L) ≤ dc(R). Then H(R) = Hv(R) implies H(Z) = Hv(Z).

Proof. By the above lemma and its proof, there exists a quasi-regular right specialized
staircase E and a collision C of the fat points supported by the origin of A2 = Spec k[x, y]
such that the ideal of C ⊂ A2 is I(C) = IE . By the genericity hypothesis, L can be
specialized to the subscheme L(t) with equation (y− t, xdeg(L)). Obviously L(t) is monomial
with staircase F = {(0, 0), (1, 0), . . . , (deg(L) − 1, 0)}. Let D = limt→0 C ∪ L(t). By [12],
I(D) = IG for some monomial staircase G. Moreover, the explicit description of G given in
[12] ( G is the “vertical collision” of E and F ) and the inequality deg(L) ≤ dc(R) shows
that G is quasi-regular. Since Z = R ∪ L can be specialized to a scheme D defined by a
quasi regular staircase, H(Z) = Hv(Z).

Lemma 18. Let Z ⊂ P2 be a union of k2 fat points of multiplicity m with k ≥ 4. The
critical degree dc(Z) verifies km+ 1 < dc(Z) ≤ km+ k − 2.

Proof : Direct calculation.

Proof of theorem 12.
We show by induction on k that the Hilbert function of the generic union Z of k2 fat points
of multiplicity m is the virtual Hilbert function Hv(Z). If k ≤ 3, this is known by [14]. So we
may suppose k ≥ 4. According to lemma 13, we only need to check that H(Z, d) ≥ Hv(Z, d)
for d = dc(Z) or d = dc(Z) − 1, and, by lemma 18, such a d verifies d = km + s for some
s satisfying 0 ≤ s ≤ k − 2. By semi-continuity, it suffices to specialize Z to a scheme Z ′

with H(Z ′, d) ≥ Hv(Z, d). First, we choose a generic line D and generic points p1, . . . , p2k−1

on D. We divide the k2 fat points into three subsets E1, E2, E3 of respective cardinal
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k, k− 1, (k− 1)2. We specialize the k fat points of E1 on the points pk, . . . , p2k−1. We leave
the generic (k−1)2 +(k−1) points of E3 ∪E2 in their generic position. We denote by L the
set of sections of O(d) vanishing on the fat points of E1 ∪ E3. Since the points of E1 have
been specialised, we have by semi-continuity the inequality:

(∗) H(Z, d) ≥
(d+ 1)(d+ 2)

2
− dimL(−X(E))

where
E = (Rm, . . . , Rm︸ ︷︷ ︸

(k−1) copies

).

We now make a further specialisation, moving the k − 1 fat points of E2 on the points
p1, . . . , pk−1 using theorem 2. To this end, we fix the notations. We choose a formal neigh-
borhood ϕ of p = (p1, . . . , pk−1), a number N >> 0 and we take the speed vector

v = ( N, . . . , N︸ ︷︷ ︸
k−s−2 times

, N + 1, . . . , N + 1︸ ︷︷ ︸
s+1 times

).

Finally, we let
ni = (N + 1)(m− i+ 1), 1 ≤ i ≤ m.

Let us check that the conditions of theorem 2 apply. The condition nk − nk+1 ≥ max(vi)
is obviously satisfied. As for the remaining condition, remark that L(−(i− 1)D) is a set of
sections of O(d − i+ 1) vanishing on pm−i+1

k , . . . , pm−i+1
2k−1 . In particular, if Zi is a punctual

subscheme of D of degree d − i + 2 − k(m − i + 1) = s + 1 + (i − 1)(k − 1) whose support
does not meet the union pk ∪ · · · ∪ p2k−1, then L(−iD − Zi) = L(−(i + 1)D). In our case,
Zi is a union of one-dimensional fat points of the line D. Let us compute its degree. The
subscheme Zi is supported by p1∪· · ·∪pk−1 and we denote by dj the degree of the part (Zi)pj

supported by pj. By definition of Zi, dj is the cardinal m− [ni−1
vj

] of the slice T (Rm, [
ni−1
vj

]).

Since N >> 0, dj = i − 1 if j ≤ k − s − 2 and dj = i if k − s − 1 ≤ j ≤ k − 1. Thus
deg(Zi) =

∑
dj = s+ 1+ (i− 1)(k− 1). We can then apply theorem 2 and its corollary. We

conclude that:

(∗∗) dimL(−X(E)) ≤ dimL(−mD −Xϕ(S(E, τ1, . . . , τm)).

The linear system L(−mD) is the set of sections of O(d−m) which vanish on the union Z ′ of
the fat points of E3. Moreover, Xϕ(S(E, τ1, . . . , τm)) is the union L of the one-dimensional
fat points pm1 ∩D, . . . , pmk−s−2 ∩D. It follows that

(∗ ∗ ∗) dimL(−mD −Xϕ(S(E, τ1, . . . , τm)) =
(d−m+ 2)(d−m+ 1)

2
−H(Z ′ ∪ L, d−m).

By lemma 17 and the induction, we have

(∗ ∗ ∗∗) H(Z ′ ∪ L, d−m) = Hv(Z
′ ∪ L, d−m)

Now, by construction (or by an easy direct calculation),

(∗ ∗ ∗ ∗ ∗) Hv(Z
′ ∪ L, d−m) −

(d−m+ 2)(d−m+ 1)

2
= Hv(Z, d) −

(d+ 2)(d+ 1)

2

Putting together the displayed equalities and inequalities (*). . . (*****) yields the required
inequality H(Z, d) ≥ Hv(Z, d).
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5 Prospects and limits

In this section, we discuss the difficulties for the application of theorem 2, in particular for
the application of the method to more general numbers of points.

First, one has to find a divisor D and a good specialisation. For instance, consider the
system L = H0OP2(13H−p4

1 · · ·−p
4
10) containing the equations of plane curves of degree 13

vanishing on ten generic fat points of multiplicity 4. If the point p10 moves to the cubic C
containing the points p1, . . . , p9, it is not possible to compute the limit of the linear system
using theorem 2. To apply the theorem in a sensible way, one would need to take subschemes
Z1 and Z2 of length 3, or equivalently two slices of cardinal 3 in the staircase of p4

10. However,
there is only one slice of cardinal 3 in the staircase of the fat point p4

10. We could of course
apply the theorem with Z1 of length 3 and Z2 of length 4 and conclude that the limit system
is included in G = f2H0OP2(7H − p2

1 · · · − p2
10), where p1, . . . , p10 are located on the cubic C

and f is the equation of C. But the inclusion limLt ⊂ G is strict (dimG = dim limLt + 1).
Even if it is possible to find in the moving points the slices of the required cardinal, it

still happens that the inclusion limLt ⊂ G of the theorem is strict because G is special. For
instance, consider the system L = H0OP2(19H − p6

1 − . . . p6
10). One can show that P(L) is

empty. We put the three points p1, p2, p3 on a line D with equation f = 0. Then, we apply
the theorem with the points p4 and p5 moving to D. The theorem asserts that the limit
system is included in G = f6H0OP2(13H − p6

6 · · · − p6
10). There are too many conditions on

the conic through p6, . . . , p10 and dimG = dim limLt + 6.
However, the above problems are not real obstacles in the application of the method.

When the points are in general position, it is always possible to find a suitable D and a well
chosen number of points moving to D such that the theorem gives a sensible candidate for
the limit.

For instance, in the above case, one can move only p4 to the line D instead of p4 and p5.
The theorem then says that the limit system is included in G = f3H0OP2(16H − p3

1 − p3
2 −

p3
3 − Z4 − p6

5 · · · − p6
10), where p1, p2, p3 ∈ D and Z4 is a subscheme of length 9 (Z4 can be

obtained as a collision of two fat points of multiplicity 3 and 2 moving along D). Then, one
can do a further specialisation from G and move some other points to a curve. However, in
this new specialisation, p1, p2, p3, Z4 must move along D, not freely.

At each step of the procedure, there are several possibilities ( application of the theorem,
collision of points, specialisation of curves, Cremona transformations...). Thanks to this
flexibility, on concrete examples, it always seems to be possible to add a new step and to
progress. However, if the example is significant, the number of steps to reach a situation
where one can conclude is far too big in general. The author gave up some interesting
examples in view of the amount of calculation required. It is not possible to progress step
by step. One has to imagine a systematic procedure.

Thus, the difficulty is that we start with a general position and we end up with a special
position. It makes it hard to perform the computations in a systematic way. This is the main
reason why we dealt with k2 fat points : under this condition, we could fine a systematic
procedure.

Obviously, other results can be proved with theorem 2 and ad hoc inductions. For
instance, an exploration of the method will at least give a bound for the smallest degree d of
a curve passing through k general points in the plane with multiplicity m. The limits of the
method are not clear. Is it possible to find the exact value of d along these lines ? We don’t
know whether the difficulty is to find an induction with the tools developped so far, or if
some new tools will be necessary. Computing an example is tedious by hand, and examples
are missing to have a guess on this question.
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6 Collisions of fat points

This section gives an other application of theorem 2: the computation of collisions of fat
points in the plane.

The collisions of at most three fat points are known [7]. When the number of fat points
is four or five, the general collisions where all points approach the origin with the same order
of speed have been computed by Ciliberto and Miranda [4]. We want to discuss an other
type of collision of fat points, namely the collisions where the points approach the origin
successivly. It is in some sense the opposite cases compared to those studied by Ciliberto
and Miranda: for any pair of points, one of the two points approach the origin infinitly faster
than the other one.

We start with a definition of a generic successive collision of fat points in A2. We proceed
by induction. A generic successive collision of one fat point pm is the fat point itself. Suppose
defined the generic successive collision Zm1...mk−1

of pm1

1 , . . . , p
mk−1

k−1 . Let C(d) be the generic
curve of degree d containing the support O of Zm1...mk−1

. Let

Zm1...mk
(d) = lim

p∈C(d), p→O
Zm1...mk−1

∪ pmk .

Proposition 19. There exists an integer d0 such that ∀d ≥ d0, Zm1...mk
(d) = Zm1...mk

(d0).
We denote this subscheme by Zm1...mk

and this is by definition the generic successive collision
of pm1

1 , . . . , pmk

k .

We omit the proof of the proposition as it will be clear in our context: the integers d0

which appear in the definition of Zmmmm will always be equal to 1. In other words, it will
be clear from the calculations that the generic collision of four fat points will be shown to
depend only on the tangent directions of the approaching fat points.

Our goal is to compute the generic collision Zmmmm of 4 fat points of multiplicity m 20
and more generally the successive collsions of four fat points moving along smooth curves
21.

We will describe Zmmmm as a pushforward via a blowup π : S̃ → A2, where π is the
blowup defined by the following Enriques diagram .

q1

q0

q2

q3

q4

q5 q6 q7

The meaning of the Enriques diagram is explained in [9], but we recall for convenience what
this means on this particular example. Let q0 ∈ A2, q1, q2, q3 be three distinct tangent
directions at q0. Let

η : S1 → S0 = A
2

be the blowup of q0, and Q0 ⊂ S1 the exceptionnal divisor. Let

S2 → S1

be the blowup of (q1∪q2∪q3) ⊂ Q0, and Q1, Q2, Q3 ⊂ S2 the respective exceptional divisors.
If Qi ⊂ Sni

is an exceptional divisor, and if Sj → Sni
is a sequence of blowups, we still denote

by Qi ⊂ Sj (resp. we denote by Ei ⊂ Sj) the strict transform (resp. the total transform) of
Qi in Sj . With this convention, let q4 = Q0 ∩Q2 ∈ S2, q5 = Q0 ∩Q3 ∈ S2. Let

S3 → S2
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be the blowup of q4∪q5, Q4, Q5 the corresponding exceptionnal divisors. Let q6 = Q3∩Q5 ∈
S3, S4 → S3 the blowup of q6, Q6 its exceptional divisor. Let q7 = Q6 ∩ Q3 ∈ S4 and
S̃ = S5 → S4 the blowup of q7. We denote by

ρ : S̃ → S1 and π : S̃ → A
2

the compositions of the blowups introduced above. As explained, each point qi defines a
divisor Ei ⊂ S̃. If (m0, . . . ,m7) ∈ N8, the ideal π∗(OS̃(−

∑
miEi)) defines a punctual

subscheme supported by q0 which we will represent graphically with a label mi at the point
of the Enriques diagram corresponding to qi. For instance, the subscheme π∗(OS̃(−8E0 −
2E1 − E2 − E4 − 3E3)) is associated with the following diagram.

8

2

1

1

3

0 0 0

Theorem 20. Let q0 ∈ A2, q1, q2, q3 three distinct tangent directions at q0 and C1, C2, C3

be three smooth curves passing through p0 with tangent direction q1, q2, q3. Let Zmmmm be
the collision of the fat points pm0 , p

m
1 , p

m
2 , p

m
3 where:

• p0 is located at q0,

• p1 moves on the curve C1 (resp. p2 on C2, p3 on C3).

Then Zmmmm is defined by the following Enriques diagram, which depends on m modulo 4.

k

k

k

3k

k

k

k

k

k

k

k

k

k

m = 4k m = 4k + 1 m = 4k + 2 m = 4k + 3

3k + 1 3k + 1 3k + 2

k k k k k k − 1

7k + 4

k + 1k k k k k

7k + 67k + 27k

Besides theorem 20, many collisions are computable using the same method (in fact, an
infinite number). For instance, consider the successive collisions of four fat points pm1 , .., p

m
4

in the plane, ie. the collisions obtained in four steps by moving successivly each of the fat
points pmi to the origin of A2 along a curve Ci. It is possible to compute all the successive
collisions when the curves Ci are smooth at the origin. The following array sums up the
results.

Theorem 21. The successive collisions of four fat points pn1 , . . . , p
n
4 moving along smooth

curves C1, . . . , C4 are defined by integrally closed ideals and the corresponding Enriques di-
agrams are:
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Enriques diagram Equations of curves which realise the collision

2n/3
2n/3

5n/3

n/3 n/3 n/3

C1, C2, C3 : y = 0

C4 : x = 0

2n/3

n/3 n/3 n/3

4n/3 4n/3
C1, C2, C3 : y = 0

C4 : y = x2

n
n

n
n

C1, C2, C3, C4 : y = 0

n/4 n/4

7n/4 n/4

3n/4

n/4 n/4 n/4

C1, C2 : y = 0

C3 : x = 0

C4 : y = x

n/6 n/6

2n/6 2n/6

10n/6

5n/6

3n/6

C1, C2, C4 : y = 0

C3 : x = 0

3n/2

n/2

n

n/2 n/2
C1, C2 : y = 0

C3, C4 : x = 0

Remark 22. To avoid too many cases, we supposed that the numbers n
2 ,

n
3 ,

n
4 ,

n
6 appearing

above are integers. Of course, it is possible to write down slightly different formulas when
these numbers are not integers as in theorem 20.

Since the proof of theorem 21 use the same arguments as theorem 20, we just prove
theorem 20 for brevity.
Proof: All cases are similar and we only consider the case m = 4k. We choose a formal
neighborhood ξ of p = (q1, q2, q3) ∈ (S1)

3 such that Q0 ⊂ S1 is defined by the equation
x1 = 0 around each qi and such that C3 is defined by x2 = 0 around q3 (this is possible since
C3 is smooth). Let n = (m− 1,m− 5, . . . , 3). Let Fm be the staircase defined by the height
function hFm

(d) = hRm
([d2 ]), and let Gm = S(Rm, n) be the staircase obtained from Rm by

suppression of the slices indexed by n. Let Xξ(Rk, Fk, Gm) ⊂ S1 be the subscheme defined by
the formal neighborhood ξ and the staircases Rk, Fk, Gm. According to the correspondance
between complete ideals and monomial subschemes formulated in [9], if the mi’s are the
integers defined in the Enriques diagram,

ρ∗OS̃(−
∑

miEi)) = OS1
(−m0Q0 −Xξ(Rk, Fk, Gm))) (∗)
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Let J(p3) denote the ideal of Zmmm ∪ pm3 . I claim that we are done if we prove the inclusion

lim
p3→p0

η∗J(p3) ⊂ H0(OS1
(−m0Q0 −Xξ(Rk, Fk, Gm)) (∗∗).

Indeed, we would then have the inclusions

IZmmmm
⊂ η∗η

∗IZmmmm
= η∗η

∗ lim
p3→p0

J(p3)

⊂ η∗ lim
p3→p0

η∗J(p3)

⊂ η∗H
0(OS1

(−7kQ0 −Xϕ(Rk, Fk, Gm)) by (∗∗)

⊂ H0(η∗(OS1
(−7kQ0 −Xϕ(Rk, Fk, Gm))

⊂ H0(η∗ρ∗OS̃(−
∑

miEi)) by (∗)

⊂ IZ where IZ = π∗OS̃(−
∑
miEi).

According to [2], since the Enriques diagram defining Z is unloaded, deg(Z) =
∑ mi(mi+1)

2

which is immediately checked to be 4 4k(4k+1)
2 = deg(Zmmmm). Summing up, Z and Zmmmm

are two punctual subschemes of the same degree with IZmmmm
⊂ IZ , thus they are equal.

It remains to prove the displayed inclusion (∗∗) using our theorem. By [7] or [17],

η∗IZmmm
= H0OS1

(−6kQ0 −Xψ(R2k, F2k))

where ψ is the formal neighborhood of (q1, q2) induced by the formal neighborhood ξ of
(q1, q2, q3). Thus

lim
p3→p0

η∗J(p3) = lim
t→0

L(−Xϕ(Rm, t, v = 1))

where ϕ is the formal neighborhood of q3 induced by the formal neighborhood ξ of (q1, q2, q3)
and L = H0(OS1

(−6kQ0−Xψ(R2k, F2k))). To apply theorem 2 with X = S1, s = 1,D = Q0,
and n = (m,m−4, . . . , 4), the verification L((−i+1)D−Zi) = L(−iD) is needed. Elements
of L((−i+ 1)D − Zi) are sections of OS1

((−6k − i+ 1)Q0) vanishing on

Xψ(R2k−i+1, F2k−i+1) ∪ Zi = Xξ(R2k−i+1, F2k−i+1, T (Rm,m− 1 − 4(i− 1))).

Since the intersection

Q0 ∩Xξ(R2k−i+1, F2k−i+1, T (Rm,m− 1 − 4(i− 1)))

has degree 3(2k − i + 1) + (4i − 3) greater than the degre 6k + i − 1 of the restriction
OS((−6k − i + 1)Q0)|Q0

, it follows that any section of L((−i + 1)D − Zi) vanishes on D.
Thus we can apply the theorem and we get:

lim
t→0

L(−Xϕ(Rm, t, 1)) ⊂ L(−kQ0 −Xϕ(S(Rm, n)))

=

H0(OS1
(−7kQ0 −Xψ(Rk, Fk) −Xϕ(S(Rm, n))))

=

H0(OS1
(−m0Q0 −Xξ(Rk, Fk, S(Rm, n))),

which concludes the proof.
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