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Abstract

Let Hab be the equivariant Hilbert scheme parameterizing the zero-dimensional subschemes

of the affine plane invariant under the natural action of the one-dimensional torus Tab :¼
fðt�b; taÞtAk�g: We compute the irreducible components of Hab: they are in one-to-one

correspondence with the set of possible Hilbert functions.

As a by-product of the proof, we give new proofs of results by Ellingsrud and Str^mme,

namely the main lemma of the computation of the Betti numbers of the Hilbert scheme Hl

parametrizing the zero-dimensional subschemes of the affine plane of length l (Invent. Math.

87 (1988) 343), and a description of Bialynicki-Birula cells on Hl by means of explicit flat

families (Invent. Math. 91 (1988) 365). In particular, we give precise conditions when this last

description applies.
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0. Introduction

The Hilbert scheme H parametrizing the zero-dimensional subschemes of the

plane Spec k½x; y	 is a disjoint union of its components Hl parametrizing the
subschemes of length l: These Hilbert schemes admit an action of the two-

dimensional torus k� 
 k� induced by the linear action ðt1; t2Þ:xayb ¼ ðt1:xÞaðt2:yÞb of

k� 
 k� on k½x; y	: If Tab ¼ fðt�b; taÞ; tAk�g is a one-dimensional sub-torus, the
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closed subscheme HabCH (resp. Hl
abCHl) parametrizes by definition the zero-

dimensional subschemes invariant under the action of Tab:
In case a ¼ 1; b ¼ �1; H1�1 parametrizes the subschemes with homogeneous

ideal while in general, Hab parametrizes quasi-homogeneous ideals.
The homogeneous case has been extensively studied by Iarrobino [11]. In

particular, H1�1 is smooth and its irreducible components, denoted by GT ; have been
computed.

Though Iarrobino has focused on the homogeneous case, the following two
examples illustrate that it may be very useful to study the other Hab’s.

For any l; if ða; bÞ is chosen general enough, Hl
ab is a union of points pi: One can

extract information from this trivial Hl
ab via its embedding in Hl : Ellingsrud and

Str^mme [4] have computed the Chow group of Hl by describing the tangent spaces
TH;pi

at the various points pi and the action of k� 
 k� on them.

Another example of the usefulness of a good description of Hab when

ða; bÞað1;�1Þ is the work of Brion [3]: the equivariant cohomology of Hl can be

explicitly described in terms of the equivariant cohomology of all the Hl
ab:

These examples illustrate that information on Hab may sometimes be lifted to H:
In this sense, Hab plays a role similar to the Hilbert scheme H� parametrizing the
subschemes of the plane supported by a point � (the papers by Lehn and Nakajima—
[13,14]—are explicit situations where the geometry of H� has proven to be useful).

Summing up, even if one is primarily interested in studying H; it is natural to study
H; H� and the Hab’s as a whole, for their respective geometries are linked.

One of the very basic questions about the schemes H; Hab and H� is to determine
their irreducible components. The answers are known for H (the irreducible

components are the smooth subschemes Hl by Hartshorne [10] and Fogarty [7]) and

for H� (the irreducible components are Hl
� :¼ H�-Hl by Brian@on [2]), but unknown

for Hab:
As to Hab; it cannot be irreducible for there are obviously disconnected

subschemes Hl
ab :¼ Hab-Hl : These can still be divided into smaller disconnected

pieces as follows. The ideal of a subscheme corresponding to a point of Hl
ab is quasi-

homogeneous (homogeneous if a ¼ 1; b ¼ �1) and is a direct sum I ¼ "iAZ Ii of
vector spaces. The codimensions di of the Ii are fixed on a connected component and

verify
P

di ¼ l: Thus Hl
ab ¼

‘
HabðHÞ; where H : Z-N runs through the functions

verifying
P

iAZ HðiÞ ¼ l and HabðHÞ parametrises the zero-dimensional subschemes

satisfying ðy; d�1; d0; d1; d2;yÞ ¼ H: So the natural question concerning the
irreducibility of the equivariant Hilbert schemes is: are the natural candidates
HabðHÞ connected and irreducible?

Theorem 1. For any H; if HabðHÞa|; then HabðHÞ is smooth and connected (hence

irreducible).

This result was already known for ða; bÞ general enough (since then Hl
ab is a union

of points) and for the special value ða; bÞ ¼ ð1;�1Þ thanks to Iarrobino [11].
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After constructing our proof, the work of Haiman and Sturmfels [9] came to our
knowledge. The Hilbert schemes HabðHÞ are multigraded Hilbert schemes and the
framework Haiman and Sturmfels constructed give an other perspective on the
problems tackled in the present paper.

On the proof. The first point is that Hab is smooth, as it is the fixed locus of the
smooth scheme H under the action of the one-dimensional torus Tab [12]; so we just
have to prove the connectedness of HabðHÞ:

The general plan is as follows. We explain that HabðHÞ is naturally stratified by
locally closed subschemes CðEÞ: The strata are parametrized by staircases (or Young
diagrams) E and in each stratum CðEÞ there is a particular subscheme ZðEÞ: Each
stratum is connected as an affine space, so the problem is to link the strata together. This
is done in two steps. Firstly, we partially order the strata and we show that each stratum
is connected to a smaller stratum except for some special strata characterized by their
staircase E: We then show that there is in fact a unique special stratum. It follows that
all strata can be connected to this special stratum and the theorem follows.

The main point is to find a workable condition to connect a stratum CðEÞ to a

smaller stratum. To this purpose, we describe the tangent space Tab
ZðEÞ to HabðHÞ at

the special point ZðEÞ of the stratum. It is a vector space whose a base is a
combinatorial datum associated with E (Theorem 3). This vector space splits into a

direct sum of a positive tangent space Tabþ
ZðEÞ and a negative tangent space Tab�

ZðEÞ: We

describe a sort of ‘‘exponential’’ map Tabþ
ZðEÞ-Hab; which turns out to be an

isomorphism on CðEÞ: Using this map, a point p of Tabþ
ZðEÞ corresponds to a

subscheme X ð pÞ of A2 whose equations are completely described. We check that for
a suitable action of k�; if pa0; then limt-0 tX ð pÞ is a subscheme in a smaller stratum
(Proposition 18). This allows us to connect a stratum CðEÞ to a smaller stratum
provided the positive tangent space in ZðEÞ is nontrivial.

To conclude, we exhibit an explicit staircase Em characterized combinatorially by a
property of minimality (Theorem 19). We show that going down from a stratum to a
smaller stratum as explained above, the process always ends in CðEmÞ: The existence
of a minimal Em is a purely combinatorial statement. Its proof, however, requires the
characterization of minimality using the positive tangent space. The method here is
very much in the spirit of toric varieties [8] where combinatorial statements are
proved via algebro-geometric arguments.

By-products of the proof. The methods involved in the proof to study Hab remain
useful with few changes to study H: This allows us to recover results by Ellingsrud–
Str^mme [4,5].

More precisely, the tangent space TZðEÞ to H at ZðEÞ is a direct sum of the various

invariant tangent spaces Tab
ZðEÞ: Following the argument of [4], the control of TZðEÞ is

the key to compute the Betti numbers of Hl and we get by our description of TZðEÞ a

new proof of their main technical lemma.
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This tangent space TZðEÞ splits into a direct sum Tþ
ZðEÞ"T�

ZðEÞ; just like the

invariant tangent space Tab
ZðEÞ: And we can still define an embedding e : Tþ

ZðEÞ-H

using the same methods as for the invariant case, that is by exhibiting an explicit flat

family on Tþ
ZðEÞ: The image of e is a Bialynicki-Birula cell CðEÞ with respect to a

suitable action of the torus k� on H (Theorem 13). In other words, we have explicit
charts for the Bialynicki-Birula cells CðEÞ which come from a suitable action of k�

on H: Though it has been obtained by quite different methods, the flat family which
defines e is up to an identification the same family as in [5]. We note that the families
involved in [5] are more general than ours: the cells CðEÞ depend on the action of k�

and our method works only for suitable actions whereas Ellingsrud and Str^mme
describe the cells corresponding to any action. However, the extra cases are false in
general: the universal family constructed by Ellingsrud and Str^mme to describe
CðEÞ is not always of constant length. An explicit example is given (Example 16).
Consequently, Theorem 13 can be seen as a prolongation of the analysis of
Ellingsrud and Str^mme: it provides conditions on the action of k� under which the
description of the cells given in [5] are valid (Section 3.2).

1. The stratified subscheme HabðHÞ

1.1. Disconnected subschemes of Hab

In this section, we introduce the closed subschemes HabðHÞCHab: As claimed in

the introduction, for H1aH2; HabðH1Þ-HabðH2Þ ¼ |:
Recall that k is an algebraically closed field, that a and b are two relatively prime

integers, and that Tab ¼ fðt�b; taÞ; tAk�g is a one-dimensional sub-torus of k� 

k� ¼: T : Since ða; bÞað0; 0Þ we can suppose by symmetry ba0; and since ða; bÞ is

defined up to sign, we suppose from now on bo0: The Hilbert scheme Hl

parametrizing the zero-dimensional subschemes of Spec k½x; y	 of length l is

connected and by definition H ¼
‘

Hl ; where
‘

stands for a disjoint union. There
are actions T 
H-H and Tab 
H-H of the tori on H; which in terms of

coordinates are given by ðt1; t2ÞðxaybÞ ¼ ðt1xÞaðt2yÞb: We denote by HabCH the
subscheme parametrizing the subschemes of the plane invariant under the action of

Tab: Then Hab ¼
‘

Hl
ab; where Hl

ab :¼ Hab-Hl : One can still separate Hl
ab into

disjoint subschemes by fixing a Hilbert function.
To do this, let us characterize the subschemes of Spec k½x; y	 which lie in Hab by

their ideals. Define the degree d of a monomial by the formula dðxaybÞ ¼ �baþ ab:
If I is an ideal of k½x; y	; we let In :¼ I-k½x; y	n; where k½x; y	n denotes the vector

space generated by the monomials m of degree dðmÞ ¼ n: A subscheme Z is in Hab; if
and only if its ideal is quasi-homogeneous with respect to d; i.e. IðZÞ ¼ "nAZ IðZÞn:

By semi-continuity, if a subscheme Z0AHab is a specialization of ZAHab; then the
codimensions of InðZÞ and InðZ0Þ in k½x; y	n verify codim InðZÞXcodim InðZ0Þ: But Z
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and Z0; being in the same connected component of H; have the same length l ¼P
n codim InðZÞ ¼

P
n codim InðZ0Þ: It follows that the sequence HðZÞ ¼

ðy; h�1; h0; h1;yÞ; where hi ¼ codim InðZÞ; is constant on the connected compo-
nents of Hab and that hn ¼ 0 for nc0 and n{0: If H ¼ ðy; 0; 0; hr;y; hs; 0; 0;yÞ is
any sequence, we denote by HabðHÞ the closed subscheme of Hab (possibly empty)
parametrizing the subschemes Z verifying HðZÞ ¼ H: By the above, we have
Hab ¼

‘
HabðHÞ:

1.2. The case abX0 via a theorem of Bialynicki-Birula

In this section, we introduce the stratification on HabðHÞ; the special points ZðEÞ
of the cells CðEÞ and we prove the theorem under the condition abX0: The strata
can be defined in terms of Gröbner bases, using Grassmannians or using a
Bialynicki-Birula theorem, as explained in [6]. We recall here the first and the last
approach. The theorem follows easily if abX0: the stratification on HabðHÞ is
reduced to one stratum, which is an affine space by Bialynicki-Birula [1].

Each cell is associated with a staircase E: to a staircase E corresponds a subscheme
ZðEÞ and the cell CðEÞ is the unique cell containing the subscheme ZðEÞ: To be

more precise, we recall that a staircase is a subset of N2 whose complement is stable

by addition of N2: In this paper, we will identify freely the monomial xpyq with the
couple ð p; qÞ and therefore the expression ‘‘staircase of monomials’’ will make sense.
More generally, we will transpose unscrupulously the definitions between couples of

integers and monomials. If E is a staircase, then the vector space IE generated by the
monomials which are not in E is an ideal and conversely, every monomial ideal is an

ideal IE for a unique staircase E: The subscheme ZðEÞ whose ideal is IE is in HabðHÞ
if and only if E has HðiÞ elements m of degree dðmÞ ¼ i:

The Gröbner bases point of view. We choose to order the monomials of k½x; y	 by the
rule: m1om2 if ðdðm1Þ; dyðm1ÞÞoðdðm2Þ; dyðm2ÞÞ for the lexicographic order, where

dy is defined by dyðxaybÞ ¼ b: Let m1;m2;y be the monomials which do not belong

to E: Fixing once and for all a; b and H ¼ ðy; 0; 0; hr;y; hs; 0;yÞ; an ideal of
HabðHÞ is in CðEÞ if, regarding it as a k-vector space, it admits a basis f1; f2;y;
where fi ¼ mi þ Ri; Ri being a linear combination of monomials strictly smaller
than mi: The locus CðEÞ in HabðHÞ is non empty exactly when E has hi elements in
degree i:

If abo0; the above order is a monomial order in the sense of Gröbner bases. In
this case, the theory of Gröbner bases associates with every ideal in k½x; y	 a
monomial ideal called initial ideal and CðEÞ is the locus in HabðHÞ parametrizing the

ideals whose initial ideal is IE :

The Bialynicki-Birula point of view. Let X be a smooth projective variety over k

admitting an action of the torus k�: Suppose that the action has a finite number of

fixed points x1;y; xn: Let Tþ
X ;xi

be the part of the tangent space to X at xi where the

weights of the k�-action are positive, and let Xi :¼ fxAX ; limt-0 ðt:xÞ ¼ xig: Then a
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theorem of Bialynicki-Birula asserts that the Xi are a cellular decomposition of X in

affine spaces and satisfy TXi ;xi
¼ Tþ

X ;xi
: In the present case, we are not in a projective

situation since the underlying space is the affine space. If UCX is a stable open
subset of a projective X ; it is still possible to define cells which are affine spaces
associated with the fixed points which lie in U ; but these cells do not always cover U :
In our case, fixing two integers p and q with ap þ bq40; the torus k� acts on k½x; y	
by t:x ¼ tpx and t:y ¼ tqy: This action induces an action of k� on HabðHÞ: The fixed
points of HabðHÞ under k� are the monomial subschemes ZðEÞ: Applying the
Bialynicki-Birula theorem to the action of k� on HabðHÞ; we get a set of cells. We
denote by CðEÞ the cell associated with the fixed point ZðEÞ: The previous
description of these cells insure that they cover HabðHÞ:

Proof of the theorem in the case abX0. When the product ab is nonnegative, there is
at most one staircase E compatible with the Hilbert function H (i.e. such that E has
hi elements in degree i). It follows that HabðHÞ is empty or an affine space CðEÞ: The
theorem is then obvious.

2. Description of the tangent space

Let E be a staircase, TZðEÞ be the tangent space to H at the point ZðEÞ; Tab
ZðEÞ be

the tangent space to Hab at the point ZðEÞ: In this section, we give a description of

Tab
ZðEÞ and TZðEÞ:

We need some combinatorial vocabulary that we introduce now.

Clefts and cleft couples. A cleft for E is a couple ðu; vÞ such that xuyv is a monomial

in IE minimal for the divisibility relation among the monomials of IE i.e. such that

xu0yv0AIE and ðu; vÞaðu0; v0Þ ) uou0 or vov0:

A positive (resp. negative) half-direction is a couple of relatively prime integers ð f ; gÞ
with f40 (resp. fo0) or (f ¼ 0 and go0 (resp. g40)). A couple of points ðM;NÞ in

N2 has half-direction ð f ; gÞ if the vector MN
��!

is a positive multiple of ð f ; gÞ: We have
a notion of direction by identifying two opposite half-directions. A cleft couple (with

respect to E) with (half)-direction h is a couple of elements ðc;mÞ in N2 s.t. c is a cleft,
mAE; and ðc;mÞ has (half)-direction h:

The orders 4þ and 4� on cleft couples. We put orders on the set of clefts and on the
set of cleft couples. The identification between xpyq and ð p; qÞ gives a lexicographic
order 4þ on the monomials of k½x; y	: The identification between xpyq and ðq; pÞ
gives a lexicographic order 4�: Any order on the monomials induces an order on
the clefts (by restriction), on the couples of monomials (lexicographically) and on the
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cleft couples (the restriction of the latter). We still denote the induced orders by 4þ
and 4�:

Some particular sets of cleft couples and their associated vector spaces. The
combinatorial object used to describe TZðEÞ is the significant cleft couple:

Definition 2. Let ðc;mÞ be a cleft couple with positive (resp. negative) half-direction,
c0 be the cleft successor of c for 4þ (resp. for 4�) and s be the smaller common
multiple of c and c0: Then ðc;mÞ is said to be a significant couple if ms

c
e E:

For a cleft couple, we will wonder whether it is significant and what is its direction.

Formally, we introduce the sets C;C;Cab;Cab containing, respectively,

* the significant cleft couples (with respect to E),
* the cleft couples,
* the significant cleft couples with direction ða; bÞ;
* the cleft couples with direction ða; bÞ:

We have the obvious inclusions

C - C

m m

Cab - Cab

For each of the above sets, we can form the vector space on this set, i.e. the vector
space whose elements are the formal linear combinations of elements of this set. We

denote by R;R;Rab;Rab the vector spaces corresponding to C;C;Cab;Cab: To the
inclusion of sets corresponds the inclusion of vector spaces

R - R

m m

Rab - Rab

We can now formulate the main result of the section, which is a combinatorial

description of Tab
ZðEÞ: Its proof ends with Corollary 6.

Theorem 3. There is an isomorphism Tab
ZðEÞCRab:

We start by constructing an injective morphism j : Tab
ZðEÞ-R: Next, we will

identify the image jðTab
ZðEÞÞ with Rab:

We have the classical description of tangent spaces on Hilbert schemes

TZðEÞCHomk½x; y	ðIE ; k½x; y	=IEÞ: Let us recall in our situation how to produce the

infinitesimal deformation of k½x; y	=IE starting from an element fA
Homk½x;y	ðIE ; k½x; y	=IEÞ:
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Let VE be the vector space generated by the monomials which are in

E; p : VE-k½x; y	=IE the isomorphism induced by the restriction of the projection

k½x; y	-k½x; y	=IE ; and p : k½x; y	=IE-k½x; y	 the inverse of p: Let f ¼
p 3 f : IE-k½x; y	: The set of elements J ¼ fm þ ef ðmÞ;mAIEg is an ideal of

k½x; y	½e	=ðe2Þ: The quotient k½x; y	½e	=J is the flat infinitesimal deformation of

k½x; y	=IE corresponding to f :

For every cleft couple ðc;mÞ; define lc;m by the formula f ðcÞ ¼
P

lc;mm:

Proposition 4. The linear map

j: TZðEÞ-R

f s:t: f ðcÞ ¼
X

lc;mm/
X

lc;mðc;mÞ

is injective and its restriction to Tab
ZðEÞ factorizes:

Tab
ZðEÞ - R

r m

Rab

Proof. The ideal IE being generated by the clefts, the morphism

fAHomk½x;y	 ðIE ; k½x; y	=IEÞ is characterized by the images of the clefts. But these

images are themselves characterized by jð f Þ so j is injective.

We can characterize Tab
ZðEÞCTZðEÞ as the subspace containing the vectors fixed

under the action of Tab: If f is in Tab
ZðEÞCTZðEÞ; one then sees from the description of

f as an infinitesimal deformation of k½x; y	=IE that lc;m is different from zero only if

ðc;mÞ has direction ða; bÞ: It follows that jðTab
ZðEÞÞC %Rab: &

The next step is to show the equality jðTab
ZðEÞÞCRab: This is done in two steps.

Firstly, we construct a graph G associated to E; a vector space RG from G and we

show the equality jðTab
ZðEÞÞ ¼ RG: We then conclude with the isomorphism RGCRab:

We construct a graph G from the staircase E: The set of points is the set Cab of
cleft couples with direction ða; bÞ: Significant couples are not the end of any arrow.
Nonsignificant cleft couples are the end of exactly one arrow. Let ðc1;m1Þ be
nonsignificant with positive half direction, and c2 be the cleft successor of c1 for 4þ:
If m2 :¼ m1:

c2

c1
Ak½x; y	; draw an arrow from ðc2;m2Þ to ðc1;m1Þ; otherwise draw an

arrow from ðc1;m1Þ to itself. Replacing 4þ by 4�; you get arrows ending at cleft
couples with negative half-direction.

We now have a graph G with a set of points P ¼ fp1;y; png and arrows f1;y; fp:

We denote by oð fi Þ the origin of fi and eð fi Þ the end of fi: Let RP be the vector
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space whose base is the set of elements of P and RG be the sub-vector space
of RP whose elements are the linear combinations

P
lpi

pi verifying lpi
¼ lpj

if there is an arrow from pi to pjapi and lpi
¼ 0 if there is an arrow from pi

to itself.

Proposition 5. If abp0; then jðTab
ZðEÞÞ ¼ RðGÞ: If ab40; then jðTab

ZðEÞÞ is a subspace

of RðGÞ:

Proof. We have seen that an element f in TZðEÞ ¼ Homk½x;y	 ðIE ; k½x; y	=IEÞ is

characterized by the images gi ¼ f ðciÞ of the clefts ci: Reciprocally, if we prescribe an
image gi for each cleft ci; a compatibility relation insures the existence of f in TZðEÞ
sending ci to gi: if cioþcj are two clefts such that cj is the successor of ci; and if s is

the smaller common multiple (s.c.m.) of ci and cj ; then their images gi;gj have to

verify

gi:
s

ci

¼ gj :
s

cj

:

The element gi is a linear combination
P

li;kmk and we identify it with the

element
P

li;kðci;mkÞ: We do similarly for gj: The above relation between gi and

gj translates into relations between the coefficients li;k and lj;l : One sees that

these relations are the relations given by the arrows of the graph in the case abp0
so we are done. In the case ab40; there are at least these relations and possibly
some others. &

Corollary 6. If abp0; then Tab
ZðEÞCRab: If ab40; then Tab

ZðEÞ ¼ Rab ¼ 0:

Proof. G is the union of its connected components. By construction, these connected
components are chains of points p1; p2;y; pn with arrows from pi to piþ1 and
possibly from p1 to itself. The vector space RðGÞ is then obviously isomorphic to
RðG0Þ; where G0 is the graph with no arrow obtained from G by keeping the points
that are not the end of any arrow. The set of points of G0 is just the set Cab of
significant cleft couples with direction ða; bÞ so RðGÞ ¼ RðG0Þ ¼ Rab and the first
claim of the corollary is a consequence of the previous proposition. In the case
ab40; G0 is empty because there are no significant cleft couples. So RðGÞ ¼ 0 and the
second claim follows again from the last proposition. &

This corollary obviously concludes the proof of Theorem 3. It also clarifies
the structure of Hab in some cases. We have already explained that Hab is a
disjoint union of affine spaces if abX0: These affine spaces are particularly simple
if ab40:

Corollary 7. If ab40; then HabðHÞ is empty or reduced to a point.
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Proof. There is at most one staircase E compatible with H: If E does not exist, then

HabðHÞ ¼ |: Otherwise, HabðHÞ ¼ CðEÞ: The cell CðEÞ is an affine space by
Bialynicki-Birula and its dimension is zero by the previous Corollary (6). &

Following the lines of the proof of Theorem 3 and simply forgetting the arguments
concerning the action of the torus Tab; we have a description of the tangent space

TZðEÞ instead of a description of the invariant tangent space Tab
ZðEÞ:

Theorem 8. The tangent space TZðEÞ to H at ZðEÞ is isomorphic to the vector space R

whose base is the set of significant cleft couples of E:

Remark 9. This description of the tangent space implies the main lemma (3.2) of [4]

2.1. Definition of the positive and negative tangent spaces

Let Cabþ (resp. Cab�) be the set of significant cleft couples with direction ða; bÞ and
positive (resp. negative) half-direction. Let Rabþ (resp. Rab�) be the vector space on
the set Cabþ (resp. on Cab�). To the decomposition Cab ¼ Cabþ

‘
Cab� corresponds

the decomposition Rabþ"Rab� ¼ Rab: Considering the isomorphism Tab
ZðEÞ ¼ Rab ¼

Rabþ"Rab�; we will say that Rabþ (resp. Rab�) is the positive (resp. negative) tangent

space to Hab at ZðEÞ and we will write it down Tabþ
ZðEÞ (resp. Tab�

ZðEÞ). We define

Tþ
ZðEÞ :¼ "Tabþ

ZðEÞ where the sum runs over all the directions ða; bÞ:

3. The exponential map

3.1. The invariant case

By the previous section, there is an isomorphism Tabþ
ZðEÞCSpec k½Xc;m	 where the

variables Xc;m are in bijection with the cleft couples ðc;mÞ of Cabþ: The goal of this

section is to produce a sort of ‘‘exponential’’ map e : Tabþ
ZðEÞ-Hab which induces an

isomorphism between Tabþ
ZðEÞ and the image CðEÞ: In other words, this section

provides an explicit chart for the cell CðEÞ: In the remainder of this section, we will
make the assumption that the half-direction ða; bÞ verifies a40 and bo0:

The morphism Tabþ
ZðEÞ-H corresponds to a universal ideal over Spec k½Xc;m	 that

we describe now. Let c1oþc2oþ?oþcn be the clefts of E: We define a set of
monomials Di for 1pipn by decreasing induction: Dn is the set a monomials
divisible by cn and, for ian; Di is the set of monomials divisible by ci but not
divisible by ciþ1: We denote by Ei the set of significant cleft couples ðc;mÞ verifying
c ¼ ci: We define a polynomial PðciÞAk½Xc;m	½x; y	 for each cleft ci and a polynomial

Qðci;mÞAk½Xc;m	½x; y	 for each ðci;mÞAEi by decreasing induction on i: When i ¼ n;
we put

PðcnÞ ¼ cn:
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The set En being empty, there is no polynomial Qðcn;mÞ to define. For a general i

and a significant cleft couple ðci;mÞ; g the s.c.m. of ci and ciþ1; let ciþk ðk40Þ be the
cleft such that m:ðg=ciÞ is in Diþk: We put

Qðci;mÞ ¼ PðciþkÞ:
m

ciþk

and

PðciÞ ¼ Pðciþ1Þ:
ci

ciþ1
þ

X
m s:t: ðci ;mÞ is significant

Xci ;mQðci;mÞ:

Proposition 10. (a) The ideal Iþ generated by the polynomials PðciÞ defines a flat

family Zþ of constant length over Spec k½Xc;m	:
(b) The fiber of Zþ over the origin is ZðEÞ:

Proof. When Xci ;m ¼ 0; for all ðci;mÞ; then PðciÞ ¼ ci and Iþ ¼ IE : This shows

point (b).
To verify (a) we use the theory of Gröbner bases. It suffices to find a monomial

order on Spec k½x; y	 such that, with respect to that monomial order, the PðciÞ are a
Gröbner basis of Iþ over each point and verify inðPðciÞÞ ¼ ci: Indeed, if it is the case,
the monomials which are in E form a basis of k½x; y	=Iþ over each point, so the
length of the fibers of k½x; y	=Iþ equals the cardinality of E: Each fiber being

supported by the origin of A2; the assertion on the length of the fibers implies the
flatness. We choose the monomial order 4�: According to the Buchberger
algorithm, to verify that the Pi form a Gröbner basis, we must verify that if ci

and ciþ1 are two consecutive cleft couples, and if g is the s.c.m. of ci and ciþ1; then the

remainder of a division of h ¼ g

ci

PðciÞ � g
ciþ1

Pðciþ1Þ by the PðckÞ is zero. But

h ¼ g

ci

X
m s:t: ðci ;mÞ is significant

Xci ;mQðci;mÞ:

By construction, g
ci

Qðci;mÞ is a product of a polynomial PðciþkÞ by a monomial. So

the remainder after division is zero. &

Theorem 11. The morphism e : Tabþ
ZðEÞ-H defined by Iþ induces an isomorphism

Tabþ
ZðEÞCCðEÞ:

Proof. According to the Gröbner bases considerations in the last proof, the image of
e verifies ImðeÞCCðEÞ: If e is an embedding, then ImðeÞ ¼ CðEÞ and the theorem is
proved. Indeed, suppose that e is an embedding and that there exists pACðEÞ �
ImðeÞ: Then, considering the action of T ¼ k� 
 k�; the closure of the orbit T :p
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meets ImðeÞ at ZðEÞ: It follows that T :p,ImðeÞCCðEÞ is singular at ZðEÞ:
Counting the dimensions of the tangent spaces gives the inequality

dim TCðEÞ;ZðEÞXdim TT :p,ImðeÞ;ZðEÞ4dim ImðeÞ ¼ dim Tabþ
ZðEÞ:

This contradicts the equality of the first and last tangent spaces asserted by
Bialynicki-Birula. We will conclude with the construction of a morphism

i :HcardðEÞ-PN such that i3e : Tabþ
ZðEÞ-PN is an embedding.

Fix now n40 and let KnCk½x; y	 be the vector space generated by the monomials

m of degree dðmÞpn: If n is big enough, and if I is an ideal in HcardðEÞ; I-KnCKn is
a vector space of codimension cardðEÞ; corresponding to a point in the
Grassmannian G ¼ Gðdim Kn � cardðEÞ;KnÞ: By the usual Plucker embedding, G

embeds in the projective space PðLdim Kn�cardðEÞKnÞ: Summing up, we have

constructed a morphism i :HcardðEÞ-PN ¼ PðLdim Kn�cardðEÞKnÞ such that, if
g1;y; gp is a basis of I-Kn; iðIÞ is the one-dimensional space generated by

g14g2?4gp:

Define the set of monomials Cn by

Cn :¼ fm ¼ xaybeE such that dðmÞpng:

Each m of Cn is in one sector Di: Put fm ¼ PðciÞ:mci
: A division of fm by the elements fm0

smaller than fm with respect to the order 4� is:

fm ¼
X

dðm0Þ¼dðmÞ; m0o�m

qm0 fm0 þ gm; where qm0Ak:

The remainder gm writes down

gm ¼ m þ
X

miAE; dðmiÞ¼dðmÞ
mm;mi

mi:

By the above, if we have chosen n big enough, i3e is given in Plücker coordinates by
the coefficients of

V
mACn

gm: The coordinate corresponding to the term
V

mACn
m

equals 1 and i3e is then a morphism from Spec k½Xc;m	 to an affine space

Spec k½Y1;y;Yp	: If ðc;mÞ is a significant cleft couple, the coordinate corresponding

to the factor m
V
ð4m0ACn;m0acm0Þ is mc;m ¼ Xc;m þ Rc;m; where Rc;m is a polynomial in

the variables Xc0;m0 ; with c0o�c or (c0 ¼ c and m0oþm). This means that we can order

the variables Xc;m and the variables Y1;y;Yp such that the morphism

i3e: Spec k½Xc;m	 ¼: Spec k½X1;y;Xq	-Spec k½Y1;y;Yp	

is given by Y1 ¼ X1 and for 2pipq; Yi ¼ Xi þ Ri where Ri is a polynomial in the
variables Xj ; joi: This shows that i3e is an embedding. &
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3.2. The general case

In the previous section, we have defined a map e : Tabþ
ZðEÞ-Hab which induces an

isomorphism e : Tabþ
ZðEÞ-CðEÞ: In this section, we extend the results from the

invariant case to the general case. Explicitly, we construct a map Tþ
ZðEÞ-H; which

induces an isomorphism between Tþ
ZðEÞ and a Bialynicki-Birula cell CðEÞ of H and

we explain the link between this description of CðEÞ and the one of [5]. Note that this
section is not useful for the proof of Theorem 1.

Choose ao0 and bo0 relatively prime. The one-dimensional torus k� ¼ Tab acts
on H with the monomial subschemes as the only invariant subschemes by (7), so we
can apply Bialynicki-Birula to define cells from this action. To be concrete,

CðEÞ ¼ subschemes XCA2 such that lim
t-0

ðt�b; taÞ:X ¼ ZðEÞ
� �

: ð1Þ

Choose a variable Xc;m for each cleft couple ðc;mÞ with positive half-direction.

Define as in the previous section polynomials PðciÞAk½Xc;m	½x; y	 for each cleft

ci; Qðci;mÞAk½Xc;m	½x; y	 for each significant ðci;mÞ: Explicitly, with the notations of

the previous section

PðcnÞ ¼ cn;

Qðci;mÞ ¼ PðciþkÞ:
m

ciþk

and for ion;

PðciÞ ¼ Pðciþ1Þ:
ci

ciþ1
þ

X
m s:t: ðci ;mÞ is significant

Xci ;mQðci;mÞ:

Proposition 12. The ideal Iþ generated by the PðciÞ defines a flat family Zþ of constant

length over Spec k½Xc;m	:

Proof. This is exactly the same as for Proposition 10, except for the proof of flatness
which is not the same since the family is no longer supported by the origin. To
conclude that Zþ is flat over Spec k½Xc;m	 knowing that the fibers have constant

length, we will check that Zþ is a projective family, i.e. that the composition
morphism

Zþ-Spec k½Xc;m	 
A2-Spec k½Xc;m	 
 P2

is a closed embedding, where the first arrow is the closed embedding defining Zþ and
the second arrow is defined by the immersion of the affine plane in the projective

ARTICLE IN PRESS
L. Evain / Advances in Mathematics 185 (2004) 328–346340



plane. Let G be the reduced scheme associated with Zþ: Since being closed is a

topological property, we simply need check that GCSpec k½Xc;m	 
 P2 is closed.

We already know that GCSpec k½Xc;m	 
A2 is closed, therefore it suffices to

show that the closure G of G in Spec k½Xc;m	 
 P2 does not intersect the

subset Spec k½Xc;m	 
 ðP2
\A2Þ: The ideal of G in Spec k½Xc;m	 
A2 contains an ideal

ðx; yl þ al�1yl�1 þ?a0y0Þ; where ai is a polynomial in the indeterminates Xc;m:

The closure G is included in the subscheme defined by the homogeneous

ideal ðx; yl þ al�1yl�1h þ?a0y0hlÞ: Thus G does not meet the relative line

Spec k½Xc;m	 
 ðP2
\A2Þ: &

Theorem 13. The morphism e : Tþ
ZðEÞ ¼ Spec k½Xc;m	-H defined by Iþ induces an

isomorphism Tþ
ZðEÞCCðEÞ:

Proof. The proof is essentially the same as that of Proposition 11, with a few changes
left to the reader. &

Remark 14. When ao0 and bo0; we have parametrized the cells CðEÞ defined in
Section 3.2, formula (1) using the positive tangent space. If a40; b40; we can clearly
by the same method parametrize the cells using the negative tangent space.

We now explain the link between this last theorem and Theorem 2 of [5].
To describe a Bialynicki-Birula cell CðEÞ of H; we have produced a set of variables

Cþ ¼ fXc;mg; a universal family Zþ over Spec k½Xc;m	 inducing an isomorphism

CðEÞCSpec k½Xc;m	: On the other hand, Ellingsrud and Str^mme construct a set of

weighted variables fsijg; a universal family Z over Spec k½sij	 inducing an

isomorphism CðEÞCSpec k½sij 	: (To give a rough idea of Z; they considered a

nonminimal resolution of the ideal IE ; and they deformed the matrix of the
resolution using the variables sij: The ideal of Z is generated by the maximal minors

of this matrix). The following proposition (whose proof is omitted) explains that, up
to sign, we can identify the variables sij and Xc;m such that Z ¼ Zþ:

To state the identification, we need to be a little more precise since the Bialynicki-
Birula stratification of H depends in general on the choice of a one parameter

subgroup c : k�-T : Considering for instance all the one-parameter subgroups c ¼
cab : t/ðt�b; taÞ; with ab40; there are two distinct stratifications, one for the
subgroups cab with a40; b40 described by Theorem 13 and one for the subgroups
with ao0; bo0 described via Remark 14.

Ellingsrud and Str^mme deal with every possible subgroup c: Though the cells
depend on c; the number of cells is fixed since the cells are parametrized by staircases
as in our case. To parameterize such a cell CcðEÞ; they construct a set of variables

sij and they give to each variable a weight nij which depends on c: Denoting by

DðcÞ the set of variables with negative weight, they show the isomorphism
CcðEÞCSpec k½sij; sijADðcÞ	:
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In case c ¼ cab; with ab40; we can establish the link between the two theorems.
Using symmetry, we can concentrate on the case ao0 and bo0:

In this particular case, the variables sij with negative weight are the variables sij with

ði; jÞAD1 with the notations of [5]. We can define a bijection j : Cþ-DðcÞ as follows.

If Xc;mACþ; let l40 be the smallest integer such that xl :meE: Using the numeration

of the monomials of [5], we have cxl ¼ dj and mxl ¼ di: We let jðXc;mÞ ¼ sij: We are

now ready to identify the Ellingsrud–Str^mme family Z and our Zþ:

Proposition 15. There exists an application e : Cþ-f1;�1g such that, if

Z: Spec k½sij; sijADðcÞ	-Spec k½Xc;m	

is the morphism defined by Xc;m/eðXc;mÞjðXc;mÞ; then

Z ¼ Zþ 
Spec k½Xc;m	 Spec k½sij ; sijADðcÞ	:

The theorem of Ellingsrud and Str^mme is more general than ours, since they
describe the cells CcðEÞ defined by the action of any one parameter subgroup c of

k� 
 k� whereas we only consider the action of sub-tori cab with ab40: However, the
following example shows that the fibers of the family Z they produced is not of
constant length in general, and it is not possible to associate a morphism to the
Hilbert scheme with Z:

Example 16. Consider the one parameter subgroup t/ðt4; t5Þ; and, following the
procedure of [5], construct a family whose fiber over the origin is the subscheme ZðEÞ
of length 6, where IE ¼ ðy3; xy; x4Þ: The fiber of Z over the point with all coordinates
sij ¼ 0 but s03 ¼ 1; s74 ¼ 1 is of length 7 since a Gröbner basis with respect to the

homogeneous order with x4y is xy2 þ y3; x2y þ xy2; x3 þ x2y � xy � y2; y4 � y3:

Other examples suggest that Theorem 2 of Ellingsrud and Str^mme is correct for a
one parameter subgroup c ¼ cab if ðao0 and b40Þ or abX0: In the remaining cases
a40; bo0; the fibers of the family Z they constructed are sometimes of constant
length, sometimes not. One can understand which cases are correct as follows. Fix a

staircase E and a torus c ¼ cab with a40; bo0: If there exists a torus c0 ¼ ca0b0

with a0b040 such that CcðEÞ is an affine subspace of Cc0 ðEÞ; then one can prove that

the fibers of Z have constant length using Theorem 13 and Remark 14. In substance,
the argument is that the cell is a priori defined with a ‘‘bad torus’’ c; but the same

call could be defined with a ‘‘good torus’’ c0 and we know that the fibers of Z have
constant length for a ‘‘good torus’’. For a concrete example, let E be the staircase

such that IE ¼ ðx2; yÞða; bÞ ¼ ð1;�2Þ; ða0; b0Þ ¼ ð1; 1Þ; ðc0;m0Þ ¼ ðy; xÞ: Then, CcðEÞ
is an affine subspace of Cc0 ðEÞ: Indeed, the exponential isomorphism

e : Spec k½Xc;m	-Cc0 ðEÞ that parametrizes Cc0 ðEÞ restricts to an embedding

re : Spec k½Xc0;m0
	-Cc0 ðEÞ and CcðEÞ is the image ImðreÞ of this restriction.
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Following [5], the base of the universal family Z is Spec k½s31	 and, up to the
identification Xc0;m0

¼ s31; Z is the universal family which defines re: In particular,

its fibers are of constant length. Summing up, there are cases where the correctness of

Z can be proved thanks to another torus c0: However, the existence of such a torus

c0 requires some combinatorial properties on the couple ðE;cÞ; which are not
satisfied for a ‘‘general’’ ðE;cÞ: Several examples have been computed. Whenever it
was not possible to use the trick of changing the torus to prove the correctness of Z;
the fibers of Z were not of constant length (Example 16 is the simplest example for
which the trick does not work).

4. Connecting the strata

In this section, we suppose a40 and bo0: The monomials of k½x; y	 can be
ordered in an infinite sequence m0om1o? with respect to the order 4 defined by

mom0 if ðdðmÞ; dyðmÞÞoðdðm0Þ; dyðm0ÞÞ for the lexicographic order on N2: For a

staircase E; let SE be the function from N to N defined by SEðkÞ ¼ number of
monomials in E smaller or equal to mk:

Definition 17. We define a partial relation 4 on staircases by E4F if 8k;
SEðkÞ4SF ðkÞ:

The goal of this section is to show the following proposition:

Proposition 18. Let E be a staircase such that Tabþ
ZðEÞa0: Then there exists a staircase

F verifying FoE and CðEÞ-CðFÞa|:

Proof. Choose a point pASpec k½Xc;m	 different from the origin O: There exists a

monomial m which is in IE but not in Iþð pÞ (otherwise IECIþð pÞ; and even IE ¼
Iþð pÞ since the subschemes defined by IE and Iþð pÞ have the same length, which is
impossible since eðOÞaeð pÞ by 11). Take such an m minimal. The element
gmð pÞAIþð pÞ defined in the proof of Theorem 11 has its terms in E except the initial
term m: There is at least one term different from m since meIþð pÞ by definition.
Consider the subscheme Xð pÞ defined by the ideal Iþð pÞ: If the torus k� acts on
Spec k½x; y	 by t:x ¼ tx; t:y ¼ y; then the scheme XðNÞ ¼ limt-N t:X ð pÞ is not in
CðEÞ since its ideal contains the monomial limt-N t:gmð pÞAE: If F is the staircase of

XðNÞ; then CðEÞ-CðFÞa|: This nonvacuity implies E4F ([6] or [15]). &

5. Uniqueness of the final stratum and conclusion of the proof

The connectedness of HabðHÞ has been proved in the first section under the
condition abp0: In the remaining cases, one can suppose a40 and bo0 and we have
stratified HabðHÞ by affine spaces CðEÞ; ordered the staircases parametrizing the
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strata and we have proven that CðEÞ-CðFÞa| for some staircase FoE provided

that Tabþ
ZðEÞa0: The stratum CðFÞ itself is connected to a smaller stratum CðGÞ if

Tabþ
ZðFÞa0: Carrying on, we can go down from stratum to stratum while the positive

tangent space at the special points is nontrivial. The process stops after a finite
number of steps since the number of possible staircases is finite. In fact, the stratum
CðEmÞ in which the process stops does not depend on the intermediate
degenerations. The staircase Em parametrizing this final stratum is characterized
by the following theorem.

Recall that a staircase E is compatible with H ¼ ðy; h�1; h0; h1;yÞ if

CðEÞ-HabðHÞa| or equivalently if E has hi elements in degree i:

Theorem 19. Let S be the set of staircases compatible with H: If S a |; then there

exists in S a staircase Em such that: 8EAS; EmpE:

To conclude the proof of the connectedness, it clearly suffices to prove this last
theorem and to show that the path through the strata always stops in that special
stratum CðEmÞ:

Since a minimal staircase E verifies Tabþ
ZðEÞ ¼ 0 by the previous section, and since we

stop when Tabþ
ZðEÞ ¼ 0; we just have to show that there is a unique staircase EAS such

that Tabþ
ZðEÞ ¼ 0; which we prove by induction on the cardinal of E:

The case cardðEÞ ¼ 1 is trivial. A general E is the ‘‘vertical collision’’ of
the bottom row L and of a residual staircase U determined by its monomials:
U :¼ fm such that ymAEg: It is in fact sufficient to show that the bottom row
L of E is completely determined. Indeed, suppose that L is known. The
positive tangent space at ZðUÞ injects in the positive tangent space at ZðEÞ by

sending
P

lc;mðc;mÞ to
P

lc;mðyc; ymÞ; so Tabþ
ZðUÞ ¼ Tabþ

ZðEÞ ¼ 0: It follows that U is

completely determined by induction (since its Hilbert function is determined by that
of E and L).

The next two lemmas complete the proof. They explain that the bottom row L of a
staircase E with trivial positive tangent space and compatible with H is determined:

the maximal integer k such that xkAE is the maximum integer such that Hð�kb �
aÞoHð�kbÞ: More precisely, Lemma 20 shows that the bottom row contains all the

monomials xk such that Hð�kb � aÞoHð�kbÞ and Lemma 20 shows that it cannot
contain a bigger monomial.

Lemma 20. Let E be a staircase compatible with H: Let xk be the maximal power

of x such that xkAE and let d ¼ dðxkÞ ¼ �kb be its degree. If HðdÞpHðd� aÞ;
then Tabþ

ZðEÞaf0g:

Proof. E contains a monomial m of degree d� a such such that ym e E: Otherwise,
j : m/ym would be an injective application from the set Eðd� aÞ :¼
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fmAE; dðmÞ ¼ d� ag to EðdÞ: The map j is not surjective since xkeImðjÞ: Thus,
cardðEðdÞÞ ¼ HðdÞ4Hðd� aÞ ¼ cardðEðd� aÞÞ; contradicting the hypothesis.

Now choose lAN maximal such that c :¼ ym
xl Ak½x; y	 � E: By construction,

ðc; xk�lÞ is a cleft couple, which shows Tabþ
ZðEÞa0: &

Lemma 21. Let d ¼ �kb be an integer. If Hðd� aÞoHðdÞ; then for any staircase E

compatible with H; the element xk of degree d is in the bottom row of E:

Proof. If xk were not in E; then to each element xaybAE of degree d would be

associated the element xayb�1AE of degree d� a: A count of these elements would
then show Hðd� aÞXHðdÞ: &

Remark 22. The existence of a minimal staircase with respect to the partial order on
staircases in Theorem 19 is a purely combinatorial statement which has required an
algebro-geometric proof. I have not found a combinatorial proof simpler than the
given argument.

Remark 23. One can deduce from the proof a construction of the minimal staircase
Em of Theorem 19 associated with the Hilbert function H: Indeed, Em is the vertical
collision of its bottom row and of the residual staircase U which is the minimal
staircase associated with a function H 0: The length k of the bottom row is explicitly
given as the greatest integer such that Hð�kb � aÞoHð�kbÞ and H 0 is defined by

* H 0ðiÞ ¼ Hði þ aÞ � 1 if b divides i þ a and i þ apkb
* H 0ðiÞ ¼ Hði þ aÞ otherwise.

The inductive construction of Em follows immediately.
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