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Abstract. The nilpotent �ltration of the category of unstable modules gives
rise to the invariants d0, d1 of Noetherian unstable algebras and of �nitely
generated modules in unstable modules over such algebras.

This paper considers the e�ect of the induction functor L⊗K − associated
to a �at K-algebra L in unstable algebras on the invariant d0. The behaviour
is analysed by using invariants from commutative algebra, namely the tran-
scendence degree and the depth.

These results are applied to examples from invariant theory, motivated by
the work of Henn, Lannes and Schwartz on the invariants d0, d1 for group
cohomology.
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1. Introduction

A graded commutative algebra over a prime �eld Fp can be studied by passage to
the associated algebraic variety. The presence of an action of the Steenrod algebra
which de�nes an object of the category K of unstable algebras over the Steenrod
algebra gives rise to structure which recovers information on the nilpotency in the
algebra; this can be analysed by using the nilpotent �ltration of the category U of
unstable modules over the Steenrod algebra, introduced by Schwartz and studied
in the work of Henn, Lannes and Schwartz [11, 12].

The nilpotent �ltration of the abelian category U is a descending �ltration by
thick, localizing subcategories N iln, n ∈ N. In applying the theory to an unstable
algebra K, one is led naturally to consider modules over K in unstable modules;
these objects form an abelian category, K−U . If the underlying algebra of K is
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�nitely generated then the full subcategory of �nitely generated modules, Kfg−U ,
is abelian.

The nilpotent �ltration leads to the de�nition of invariants d0, d1 : Obj U →
N∪{∞}. The invariant d0M is the least integer t such thatM contains no subobject
in N ilt+1; the invariant d1M is de�ned in terms of the notion of closure associated
to the localizing subcategories N ilt. For K a Noetherian unstable algebra and
M an object of Kfg−U , Henn [9] showed that these invariants are �nite: d0M ≤
d1M < ∞. For example, if G is a �nite group and H∗(BG) denotes singular
cohomology with Fp-coe�cients, then d0H

∗(BG) ≤ d1H
∗(BG) <∞ de�ne integer-

valued invariants of the �nite group G. The calculation of these invariants is a deep
and interesting problem.

A morphism K → L of unstable algebras induces an induction functor L⊗K − :
K−U → L−U . The behaviour of the nilpotent �ltration under the induction functor
is interesting; in particular, given an objectM of K−U , what can be said about the
invariants d0, d1 of L⊗K M in terms of those of M?

We restrict to the Noetherian setting, where K is a Noetherian unstable algebra
and L is a �nitely generated K-module; furthermore, we suppose that K and L
are connected unstable algebras and L is a �at K-module. This hypothesis is fairly
restrictive, in that it implies that L is a free, �nitely generated K-module, yet it
contains cases of interest arising from invariant theory. For example, the theory
applies to the inclusion

Fp[x1, . . . , xn]Sn ∼= Fp[σ1, . . . , σn] ↪→ Fp[x1, . . . , xn]

of the symmetric invariants.
The study of induced modules of the form L ⊗K M is carried out by consid-

ering the injective objects of the category Kfg−U . A family I(V,ϕ)(n) of injective
cogenerators was de�ned by Henn, indexed by natural numbers n and pairs (V, ϕ)
corresponding to morphisms of unstable algebras K

ϕ→ H∗(BV ), such that H∗(BV )
is �nitely generated as aK-module. An analysis of these objects, together with tech-
niques developed by Lannes and Zarati in their study of the category H∗(BV )−U
leads to the following general result.

Theorem 1. Let M be an object of Kfg−U which admits an embedding M ↪→⊕
i∈I I(Vi,ϕi)(ni), then:

d0M ≤ d0(L⊗K M) ≤ d0M + sup
i∈I
{||TVi,ϕiL⊗TVi,ϕiK Fp||}.

(Here, ||N || denotes the supremum of the dimensions of elements of N and TV,ϕ
denotes a component of the T -functor applied to K−U ).

To gain meaningful information from this result, it is necessary to have some
control over the embedding of M in an injective. Full information is given in terms
of the associated primes; weaker bounds are given by considering the values of
dimVi. An upper bound is given by the transcendence degree of M , which is an
invariant which can be de�ned in terms of the action of the T -functor. A lower
bound is given by the depth, by applying one of the main results of Bourguiba and
Zarati used in their proof of the Landweber-Stong conjecture.

Theorem 2. Let K be a Noetherian unstable algebra andM be an object of Kfg−U ,
then there exists an embedding in Kfg−U

M ↪→
⊕
i∈I

I(Vi,ϕi)(ni),

where I is a �nite indexing set and

(1) ni ≤ d0M , with equality for some i;
(2) DepthKM ≤ dimVi ≤ TrDegKM.
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In the case of invariant theory, the calculation of the T -functor in terms of other
algebras of invariants is straightforward. When this theory is applied to the algebra
of symmetric invariants F2[σ1, . . . , σn] ↪→ F2[x1, . . . , xn], one deduces the following
result.

Corollary 3. Let M be an object of F2[σ1, . . . , σn]fg−U which has depth d. Then
there are inequalities:

d0M ≤ d0(F2[x1, . . . , xn]⊗F2[σ1,...,σn] M) ≤ d0M +
1
2
n(n− 1)− 1

2
d(d− 1).

This result sheds light upon the motivating example for this study, which is the
bound obtained by Henn, Lannes and Schwartz on d0H

∗(BG; F2), for a �nite group
G. Their work uses the �at base change argument of Quillen, associated to the
extension H∗(BO(n)) = F2[σ1, . . . , σn] ↪→ F2[x1, . . . , xn] = H∗(BFn2 ). The bound
is in fact a bound for d0(H∗(BFn2 ) ⊗H∗(BO(n) H

∗(BG)), which is obtained from
geometric considerations, using results and methods of Du�ot.

Organization of the paper: Section 2 provides a brief review of some of the notions
which are essential to the paper, such as Lannes' T -functor. The following section 3
recalls the de�nition and the fundamental properties of the categoriesK−U together
with the induction and restriction functors which are the subject of the paper. The
nilpotent �ltration of the category of unstable modules is reviewed in Section 4; the
relation with the notion of locally �nite submodule is explained and the behaviour
of the �ltration in the presence of a module structure is considered. Section 5
continues the foundational part of the paper, with a review of the division functors
which are used in the paper, in particular the functors Fix. The foundational part
of the paper concludes with Section 6, which covers the necessary material on the
injective objects in K−U .

Section 7 explains how the transcendence degree and the depth can be used to give
information on the �rst term of an injective resolution of an object of K−U . This
builds on work of Henn, Lannes and Schwartz and of Bourguiba and Zarati. These
results are applied in Section 8, which gives the general results on the behaviour
of d0 with respect to induction. Section 8.4 specializes to the case of rings of
invariants and Section 9 specializes further to the case of symmetric invariants.
Finally, Section 10 explains the original motivation for these considerations, which
is related to understanding the invariants d0, d1 for group cohomology.

Notation: Throughout the paper, a prime p is �xed and F denotes the prime
�eld of characteristic p; the category of unstable modules over the mod-p Steenrod
algebra A is written U and K denotes the subcategory of unstable algebras.

2. Preliminaries

2.1. Recollections on unstable modules and algebras. The reader is referred
to the book by Schwartz [20] as a general reference for the categories of unstable
modules and unstable algebras.

De�nition 2.1.1. An unstable algebra K is :

(1) connected if K0 = F;
(2) Noetherian if the underlying algebra is �nitely generated.

The degree zero part K0 of an unstable algebra K ∈ Obj K is a p-Boolean
algebra (Cf. [20, Section 3.8]). The category B of p-Boolean is equivalent to the
opposite of the category of pro�nite sets, via the functor Spec, where Spec(B)
is de�ned as HomB(B,Fp). The following result is fundamental when passing to
connected components of an unstable algebra.
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Proposition 2.1.2. Let B be an object of B and ϕ : B → F be an element of
Spec(B), then F is a �at B-module via ϕ.

Let V be a �nitely generated elementary abelian p-group. The T -functor TV :
U → U is the left adjoint to the functor H∗(V )⊗− : U → U , where H∗(V ) de-
notes the group cohomology of V with F coe�cients. The functor TV has remarkable
algebraic properties: for instance, it is exact and commutes with tensor products.
Moreover, the association V 7→ TV is functorial in V . The functor TV restricts to a
functor TV : K → K , which is left adjoint to the functor H∗(V )⊗− : K → K .

2.2. Categories associated to unstable algebras. There are two fundamental
categories which are associated to an unstable algebra K. Related categories occur
in the work of Lam and Rector, which depends on the seminal work of Adams-
Wilkerson [1]. This theory was exploited in the current form by Henn, Lannes and
Schwartz in [11, 12].

De�nition 2.2.1. Let K be an unstable algebra.

(1) The category S (K) has objects pairs (V, ϕ), where V is an elementary
abelian p-group and ϕ : K → H∗(V ) is a morphism of unstable algebras.
A morphism (V1, ϕ1)→ (V2, ϕ2) is a homomorphism α : V1 → V2 such that
ϕ1 = H∗(α)ϕ2.

(2) The category R(K) is the full subcategory of S (K) with objects (V, ϕ)
such that H∗(V ) is a �nitely generated K-module via ϕ.

Lemma 2.2.2. A morphism α : K → L of unstable algebras induces a functor
S (α) : S (L) → S (K). If L is a �nitely generated K-module via α, then S (α)
restricts to a functor R(α) : R(L)→ R(K).

The category R(K) is a fundamental object in the study of a Noetherian unstable
algebra K.

Proposition 2.2.3. Let K be a Noetherian unstable algebra of transcendence degree
d. The following properties hold.

(1) The category R(K) has a �nite skeleton and dim(V ) ≤ d for each object
(V, ϕ) of R(K).

(2) If (V, ϕ) → (W,ψ) is a morphism of R(K), then the underlying morphism
α : V → W is a monomorphism; the morphism is an isomorphism if and
only if α is an isomorphism.

Considerations of base change are simpli�ed by the following observation.

Lemma 2.2.4. Let α : K → L be a morphism of Noetherian unstable algebras for
which L is a �nitely generated K-module. The following is a pullback diagram of
categories

R(L)
R(α) //

� _

��

R(K)� _

��
S (L)

S (α)
// S (K).

3. Modules over an unstable algebra

3.1. The category of K-modules. Fix an unstable algebra K ∈ K .

De�nition 3.1.1. Let K−U denote the category of modules in U over K and
Kfg−U denote the full subcategory of modules which are �nitely generated as mod-
ules over the underlying algebra of K.
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Theorem 3.1.2. [14] The category K−U is abelian. Moreover it is a Grothendieck
category: it contains all small colimits and �ltered colimits are exact.

If K is Noetherian, then Kfg−U is an abelian subcategory of K−U .

Corollary 3.1.3. [7, Théorème II.2] The category K−U has injective envelopes.

Theorem 3.1.4. [17] [14, Théorème 3.1.5] The category K−U is locally Noetherian
if K is Noetherian.

Corollary 3.1.5. [7, Théorème IV.2 and Proposition IV.6] Let K be a Noetherian
unstable algebra. There exists a set of indecomposable injectives {Eλ|λ ∈ L } such
that

(1) for any injective J in K−U , there exists a unique set of cardinals {aλ|λ ∈
L } such that

J ∼=
⊕
λ∈L

E⊕aλ
λ

(2) any object of K−U of this form is injective.

3.2. Tensor structures, restriction and induction. The category of unstable
modules U is a tensor abelian category; this structure induces internal and external
tensor products on the categories of modules over unstable algebras. These satisfy
associativity conditions which can be formulated by the reader.

Proposition 3.2.1. Let K,L be unstable algebras. The tensor product of U induces
an exterior tensor product K−U × L−U → (K ⊗ L)−U .

The internal tensor product on the category K−U is induced by the tensor prod-
uct on the category of graded K-modules.

Proposition 3.2.2. Tensor product over K induces a functor:

⊗K : K−U ×K−U → K−U ,

which gives rise to a symmetric monoidal structure (K−U ,⊗K ,K).

A morphism α : K → L of unstable algebras induces an exact and faithful
restriction functor α∗ : L−U → K−U .

Proposition 3.2.3. Let α : K → L be a morphism of unstable algebras. The
restriction functor α∗ admits a left adjoint, the induction functor:

L⊗K − : K−U → L−U ,

which satis�es the following properties:

(1) induction is right exact and is exact if L is �at as a K-module;
(2) the functor L⊗K − induces a symmetric monoidal functor

L⊗K − : (K−U ,⊗K ,K)→ (L−U ,⊗L, L).

3.3. Algebras under an unstable algebra. The category of K-algebras in K
is denoted by K↓K . There is a commutative diagram of forgetful functors:

K↓K //

��

K−U

��
K

� � // U

Proposition 3.3.1. Let K,L be unstable algebras.

(1) The exterior tensor product restricts to an exterior tensor product K↓K ×
L↓K → (K ⊗ L)↓K .



6 GEOFFREY M.L. POWELL

(2) The tensor product over K restricts to a functor

⊗K : K↓K × K↓K → K↓K ,

which induces a symmetric monoidal structure (K↓K ,⊗K ,K).
(3) If α : K → L is a morphism of unstable algebras, the restriction functor

α∗ : L−U → K−U restricts to α∗ : L↓K → K ↓K , which has left adjoint
L⊗K − : K↓K → L↓K .

4. The nilpotent filtration

4.1. Recollections. This section reviews the nilpotent �ltration of the category U
(Cf. [20, Chapter 6] and [13] for further details). Recall that the objectH∗(V )⊗J(k)
is an injective of U , where V is an elementary abelian p-group and J(k) denotes
the Brown-Gitler module, which is the injective envelope of ΣkF.

De�nition 4.1.1. For s a positive integer, let N ils denote the full subcategory of
U with objects which are annihilated by the exact functor

k=s−1⊕
k=0,V

HomU (−,H∗(V )⊗ J(k)).

It follows from the de�nition that N ils is a thick, localizing subcategory of U ; it
is the smallest such subcategory which contains all objects of the form ΣsM . There
are inclusions of full subcategories

. . .N ils+1 ⊂ N ils ⊂ . . . ⊂ N il := N il1 ⊂ N il0 = U .

The quotient category U /N ils is de�ned and there is an adjunction

ls : U � U /N ils : rs

and the quotient functor ls is exact. The composite functor rsls : U → U is denoted
Ls in [12, Section I.3] and the adjunction unit de�nes a natural transformation
λs : 1→ Ls. In the terminology of localization of abelian categories [7], the natural
transformation λs is the localization of U away from N ils and the functor Ls :
U → U is the localization functor.

The inclusion N ils ↪→ U admits a right adjoint, nils : U → N ils. The
adjunction counit de�nes a canonical monomorphism nilsM ↪→M , forM ∈ Obj U ,
and this induces the nilpotent �ltration

. . . ⊂ nils+1M ⊂ nilsM ⊂ . . . ⊂M.

Remark 4.1.2. An unstable module M is reduced if it contains no non-trivial sus-
pension; this condition is equivalent to nil1M = 0.

Proposition 4.1.3. [13, Propositions 2.2, 2.5] Let M,N,Q be unstable modules
and s be a natural number.

(1) The unstable module nilsM/nils+1M is the s-fold suspension of a reduced
unstable module, RsM .

(2) The functor TV commutes with the functor nilsM , so that there is a natural
isomorphism TV (nilsM) ∼= nils(TVM).

(3) There is an equality of submodules of M ⊗N

nils(M ⊗N) = Σi+j=sniliM ⊗ niljN.

(4) A morphism f : M ⊗ N → Q induces a canonical morphism niliM ⊗
niljN → nili+jQ .
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4.2. The invariants d0, d1. Henn, Lannes and Schwartz [12] introduce invariants
of an unstable module which are de�ned in terms of the nilpotent �ltration.

De�nition 4.2.1. For M ∈ Obj U , the invariants d0M,d1M ∈ N∪{∞} are given
by:

(1) d0M := inf{t | λt+1 : M → Lt+1M is a monomorphism};
(2) d1M := inf{t | λt+1 : M → Lt+1M is an isomorphism}.

The following Lemma is a formal consequence of the de�nitions.

Lemma 4.2.2. For M an unstable module, d0M = inf{t | nilt+1M = 0}.

Proposition 4.2.3. [12, Proposition I.3.6]

(1) If M ↪→ N is a monomorphism in U , then d0M ≤ d0N .
(2) Let 0 → M1 → M2 → M3 → 0 be a short exact sequence, then d0M2 ≤

max{d0M1, d0M3}.
(3) Let M,N be non-trivial unstable modules, then d0(M ⊗N) = d0M + d0N .
(4) If X is an unstable module of �nite total dimension, then d0X = ||X||,

where ||X|| = inf{t | Xt+1 = 0}.

4.3. Locally �nite unstable modules and the nilpotent �ltration. There is
an intimate relationship between the nilpotent �ltration of U by the subcategories
N ils and locally �nite unstable modules. Recall that an unstable module is locally
�nite if each cyclic submodule is �nite; the reader is referred to [20, Chapter 6] and
[13, Section 3] for further details.

The inclusion of the full subcategory Ulf of locally �nite unstable modules in U
admits a right adjoint lf : U → Ulf . This will be considered abusively as a functor
U → U , via the canonical inclusion. Thus, for M an unstable module, there is a
natural monomorphism lfM ↪→ M and lfM is the largest locally �nite submodule
of M .

Notation 4.3.1. For N an unstable module and s a non-negative integer, let N≥s

denote the submodule of elements of degree at least s. Thus, there is a canonical
short exact sequence of unstable modules:

0→ N≥s → N → N<s → 0

where the surjection N → N<s is the unit of the truncation adjunction.

The following result is fundamental.

Proposition 4.3.2. [13, Proposition 2.11] Let s be a non-negative integer and M
be an unstable module.

(1) There is a natural isomorphism nils(lfM) ∼= (lfM)≥s.
(2) The canonical inclusion lfM ↪→M induces an isomorphism

(lfM)s ∼= (nilsM)s.

Recall from Proposition 4.1.3 that the unstable module nilsM/nils+1M is the
s-fold suspension of a reduced unstable module RsM .

Proposition 4.3.3. Let M be an unstable module and s be a natural number. The
reduced unstable module RsM is trivial if and only if (lf(TVM))s = 0 for each
elementary abelian p-group V .

Proof. The theory of nil-localization for unstable modules [11] implies that a reduced
unstable module N is trivial if and only if T 0

VN = 0, for each V . The functor TV
commutes with Rs and Proposition 4.3.2 implies that T 0

VRsM = (lf(TVM))s. The
result follows. �
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Corollary 4.3.4. Let M be an unstable module, then

d0M = inf{t | (lf(TVM))s = 0, ∀s ≥ t+ 1, V }.

Proof. The invariant d0M identi�es with inf{t | nilt+1M = 0} by Lemma 4.2.2 and
hence, by �ltration, with inf{t | RsM = 0,∀s ≥ t+ 1}. The result follows from the
identi�cation given by Proposition 4.3.3. �

4.4. The nilpotent �ltration and K−U . The nilpotent �ltration of the category
U behaves well with respect to algebra structures and module structures.

Proposition 4.4.1. Let K be an unstable algebra, M be an object of K−U and i, j
be natural numbers. The following properties hold:

(1) niliM is naturally an object of K−U ;
(2) the structure morphisms induce morphisms

niliK ⊗ niljK → nili+jK
niliK ⊗ niljM → nili+jM ;

(3) K/nil1K has the structure of an unstable algebra in K↓K and niliM/nili+1M
is naturally an object of (K/nil1K)−U .

Remark 4.4.2. If K is a Noetherian unstable algebra andM is an object of Kfg−U ,
then each module considered above is �nitely generated over its respective algebra.

The behaviour of the Noetherian hypothesis under nil-localization is given by the
following result.

Theorem 4.4.3. [12, Corollary 4.10] Let K be a Noetherian unstable algebra, M
be an object of Kfg−U and s be a natural number. The following properties hold:

(1) LsM ∈ Obj Kfg−U ;
(2) LsK ∈ K↓K and LsK ∈ Kfg−U ; in particular, LsK is Noetherian;
(3) LsM ∈ Obj (LsK)fg−U .

A fundamental problem is to understand the behaviour of the nilpotent �ltration
under the functor L ⊗K − : K−U → L−U , where α : K → L is a morphism of
unstable algebras.

Lemma 4.4.4. Let M be an object of K−U and s be a natural number. The
morphism M → L⊗K M induces a canonical morphism in L−U :

L⊗K nilsM → nils(L⊗K M)

which is a monomorphism if the unstable algebras K,L are connected and L is a
�at K-module.

Remark 4.4.5. The failure of the morphism L ⊗K niltM → nilt(L ⊗K M) to be
an isomorphism is an interesting phenomenon. For example, the unstable algebra
L = F2[x] on a generator of degree one has nil1L = 0; for K = F2[x2] ⊂ L,
nil1(L⊗K L) is non-trivial.

5. Division functors

5.1. Lannes' T -functor and K-modules. Let K be an unstable algebra and M
be an object of K−U . An object (V, ϕ) of S (K) induces a morphism of unstable
algebras TVK → F, by adjunction, which restricts to a morphism of p-Boolean
algebras T 0

VK → F. This allows the passage to connected components:

Notation 5.1.1. For (V, ϕ) an object of S (K), denote
(1) TV,ϕK := TVK ⊗T 0

VK
F;

(2) TV,ϕM := TVM ⊗T 0
VK

F ∼= TVM ⊗TVK TV,ϕK.
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The T -functor induces an exact functor between categories of modules over un-
stable algebras TV : K−U → TVK−U . This functor commutes with tensor products,
so that there is a natural isomorphism TV (M ⊗K N) ∼= TVM ⊗TVK TVN.

Proposition 5.1.2. [14, Proposition 1.3.1] Let K,L be unstable algebras and ψ :
K → H∗(V ) ⊗ L be a morphism of unstable algebras. For M ∈ Obj K−U and
N ∈ Obj L−U , the adjunction isomorphism

HomU (M,H∗(V )⊗N) ∼= HomU (TVM,N)

induces an isomorphism

HomK−U (M,H∗(V )⊗N) ∼= HomTVK−U (TVM,N)
∼= HomL−U (L⊗TVK TVM,N)

where H∗(V ) ⊗ N is a K-module via ψ and N is a TVK-module via the adjoint
ψ′ : TVK → L to ψ.

De�nition 5.1.3. For (V, ϕ) an object of S (K), let

H∗(V )⊗ϕ − : TV,ϕK−U → K−U

denote the functor which associates to N ∈ Obj TV,ϕK−U the object H∗(V )⊗N ,
considered as an object of K−U via the morphism K → H∗(V )⊗ TV,ϕK adjoint to
the projection TVK � TV,ϕK.

Corollary 5.1.4. For (V, ϕ) an object of S (K), the functor TV,ϕ : K−U →
TV,ϕK−U is left adjoint to the functor H∗(V ) ⊗ϕ −. In particular, for M ∈
Obj K−U and N ∈ Obj TV,ϕK−U , there is an adjunction isomorphism

HomK−U (M,H∗(V )⊗ϕ N) ∼= HomTV,ϕK−U (TV,ϕM,N).

5.2. Division functors and Fix. The functor Fix was introduced by Lannes in
his work on the Sullivan conjecture [15]; this was extended by Lannes-Zarati to a
relative version in [14] and exploited by the same authors in [16]. The proof of
the Landweber-Stong conjecture by Bourguiba and Zarati [2] also exploits these
functors.

Notation 5.2.1. Let ιV : TVH∗(V )→ F denote the adjoint to the identity onH∗(V ).

Proposition 5.2.2. [15, 14, 16] The external tensor product functor

H∗(V )⊗− : U → H∗(V )−U

admits a left adjoint FixV : H∗(V )−U → U , which is given on M ∈ H∗(V )−U by

FixVM := F⊗TVH∗(V ) TVM

where F is a TVH
∗(V )-algebra via ιV .

Recall the essential properties of the functor FixV .

Theorem 5.2.3. [15, 14]

(1) The functor FixV : H∗(V )−U → U is exact.
(2) For N ∈ Obj U , there is a natural isomorphism FixV (H∗(V )⊗N) ∼= TVN .
(3) The functor FixV commutes with tensor product in the following sense: for

M,N two objects of H∗(V )−U , there is a natural isomorphism

FixV (M ⊗H∗(V ) N) ∼= FixVM ⊗ FixVN.

5.3. Unstable algebras and Fix. The functors Fix behave well with respect to
unstable algebra structures:

Proposition 5.3.1. [14, Theorem 0.2] The functor FixV : H∗(V )−U → U restricts
to a functor FixV : H∗(V ) ↓K → K which is right adjoint to the base change
induction functor K → H∗(V ) ↓K induced by H∗(V ) ⊗ −, so that there is an
adjunction

H∗(V )⊗− : K � H∗(V )↓K : FixV .
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5.4. The relation between Fix and the locally �nite submodule. The functor
FixV applied to an object of H∗(V )fg−U can be given an alternative description
using the functor lf : U → U .

Notation 5.4.1. Let M be an object of H∗(V )−U .

(1) Let (V, ι) denote the object of R(H∗(V )) which corresponds to the identity
morphism of H∗(V ).

(2) Let κM : TVM → H∗(V ) ⊗ FixVM denote the morphism which is adjoint
to the composite

M → H∗(V )⊗ FixVM
∆⊗1→ H∗(V )⊗H∗(V )⊗ FixVM,

where the �rst morphism is the adjunction unit and ∆ is the diagonal of
H∗(V ).

(3) Let κM : TV,ιM → H∗(V ) ⊗ FixVM denote the canonical factorization of
κM . (Cf. [15, Section 4.5]).

The functor TV,ι : H∗(V )−U → H∗(V )−U is exact; it is related to the functor
Fix by the following result.

Proposition 5.4.2. [15, Proposition 4.5] Let M be an object of H∗(V )−U . Then
the morphism

κM : TV,ιM → H∗(V )⊗ FixVM
is an isomorphism in H∗(V )−U .

Corollary 5.4.3. Let M be an object of H∗(V )fg−U . The following properties
hold:

(1) the morphism κM induces a natural isomorphism lfTV,ιM ∼= FixVM ;
(2) the morphism TV,ιM � FixVM is a retract of the inclusion lfTV,ιM ↪→

TV,ιM .
(3) If K is an object of H∗(V ) ↓ K which belongs to H∗(V )fg−U , then the

isomorphism lfTV,ιK ∼= FixVK is an isomorphism of unstable algebras.

Proof. There is a natural isomorphism lf(FixVM) ∼= lf(H∗(V ) ⊗ FixVM), since
FixVM is a �nite unstable module and H∗(V ) is nil-closed. Hence the �rst state-
ment follows from Proposition 5.4.2. The statement concerning the retraction is a
straightforward veri�cation and the �nal statement concerning the unstable algebra
structures is clear. �

5.5. Structure results.

Notation 5.5.1. [14] Let cV denote the element of H∗(V ) de�ned as follows:

(p = 2) cV :=
∏
u∈H1(V )\{0} u;

(p odd) cV :=
∏
u∈H1(V )\{0} βu.

Thus, for p = 2, cV corresponds to the top Dickson invariant. The work of
Lannes-Zarati on algebraic Smith theory analyzes the localization obtained by in-
verting the class cV . Their results include the following:

Theorem 5.5.2. (Cf. [14, Théorème 2.1]) Let M be an object of H∗(V )fg−U .
Then the unstable module FixVM is �nite and the adjunction morphism induces an
isomorphism

M [c−1
V ]→ H∗(V )[c−1

V ]⊗ FixVM.

This result will be applied via the following Corollary.

Corollary 5.5.3. Let M be an object of H∗(V )fg−U such that the underlying
H∗(V )-module is free. Then the adjunction morphism induces an embedding in the
category H∗(V )−U

M ↪→ H∗(V )⊗ FixVM
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and FixVM is a �nite unstable module. Moreover the total dimension of FixVM is
equal to the rank of M as an H∗(V )-module.

Proof. Theorem 5.5.2 implies that the kernel of the adjunction morphism M →
H∗(V )⊗FixVM is cV -torsion. The hypothesis that M is free as an H∗(V )-module
implies that it is cV -torsion free, whence the �rst statement. The remainder of the
result is straightforward. �

6. Injective objects

6.1. Families of injectives in K−U . There are analogues in the category K−U
the Brown-Gitler modules:

De�nition 6.1.1. [14] Let JK(n) be the object of K−U which is determined (up
to isomorphism) by the natural isomorphism:

HomK−U (M,JK(n)) ∼= (Mn)∗.

The object JK(n) is trivial in degrees strictly greater than n and has �nite total
dimension if K is �nite dimensional in each degree, for example if K is Noetherian.

Theorem 6.1.2. The set of objects {JK(n) | n ≥ 0} forms a set of injective
cogenerators of K−U .

The study of the injective objects in the category K−U for K an unstable algebra
was initiated by Henn in [10], which is primarily concerned with the injective objects
which lie in Kfg−U , and extended by Meyer in her thesis [17].

The following de�nition uses the functor H∗(V ) ⊗ϕ − introduced in De�nition
5.1.3.

De�nition 6.1.3. [10] Let (V, ϕ) be an object of the category S (K) and n be a
natural number. The object I(V,ϕ)(n) of K−U

I(V,ϕ)(n) := H∗(V )⊗ϕ JTV,ϕ(K)(n).

Example 6.1.4. The object I(V,ϕ)(0) is the unstable algebra H∗(V ), which is
considered as a K-module via ϕ. This object is sometimes denoted by H∗(V )(ϕ).

The following result is a formal consequence of the adjunction properties of TV ,
as stated in Corollary 5.1.4; it implies that the object I(V,ϕ)(n) is injective.

Proposition 6.1.5. [10, Proposition 1.7] Let ϕ̃ : K → H∗(V ) be a morphism of
unstable algebras and J be an injective of TV,ϕ(K), then H∗(V )⊗ϕ J is an injective
object of K−U .

Remark 6.1.6. In general, the injective objects I(V,ϕ)(n) are not indecomposable.
See [17] for the classi�cation of the indecomposable injectives of K−U in the case
that K is Noetherian.

The following result gives the de�ning property of such injectives.

Lemma 6.1.7. let M be an object of K−U and (V, ϕ) be an object of R(K). There
is an isomorphism

HomK−U (M, I(V,ϕ)(n)) ∼= (TV,ϕM)n∗.

Example 6.1.8. LetN be an object of TV,ϕ(K)−U which has �nite total dimension.
Then there exists an embedding N ↪→

⊕
j JTV,ϕK(nj) into a �nite direct sum of

injectives in TV,ϕ(K)−U which induces an embedding

H∗(V )⊗ϕ N ↪→
⊕
j

I(V,ϕ)(nj)

in K−U .
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In particular, taking N = ΣnF, which is naturally an object over the connected
unstable algebra TV,ϕK, the above induces an embedding in K−U :

ΣnH∗(V ) ↪→ I(V,ϕ)(n).

The following result provides a useful analysis of the structure of the injective
I(V,ϕ)(n).

Proposition 6.1.9. Let K be a Noetherian unstable algebra and (V, ϕ) be an ob-
ject of S (K), then the injective I(V,ϕ)(n) admits a �nite �ltration with �ltration

quotients of the form ΣkH∗(V )(ϕ), where k is an integer 0 ≤ k ≤ n.

Proof. The �ltration JTV,ϕK(n) by the degree is �nite; the hypothesis that K is
Noetherian serves to ensure that TV,ϕK is �nite-dimensional in each degree, so that
JTV,ϕK(n) has �nite total dimension. The �ltration re�nes to give the required
�ltration with quotients as stated. �

6.2. Injectives in Kfg−U . Throughout this section, let K be a Noetherian unsta-
ble algebra. The following result forms the foundations of the theory.

Theorem 6.2.1. [10, Theorem 1.9] Let K be a Noetherian unstable algebra and M
be an object of Kfg−U .

(1) If (V, ϕ) is an object of R(K), then I(V,ϕ)(n) lies in Kfg−U .
(2) There exists a �nite set of pairs {((Vj , ϕj), nj) | j ∈J }, where (Vj , ϕj) is

an object of R(K) and nj is a natural number, and an embedding in K−U :

M ↪→
⊕
j∈J

I(Vj ,ϕj)(nj).

In particular, M embeds in an injective object of K−U which is �nitely
generated as a K-module.

This result implies the existence of injective resolutions of �nite type.

Corollary 6.2.2. Let K be a Noetherian unstable algebra and let M be an unstable
module in Kfg−U . There exists an injective resolution of M in K−U in which each
term is a �nite direct sum of injective objects of the form I(Vl,ϕl)(nl), for objects
(Vl, ϕl) ∈ Obj R(K) and natural numbers nl.

An important result is the following, which re�ects the unimodular nature of the
category R(K).

Proposition 6.2.3. Let I(Vi,ϕi)(ni) be injectives of Kfg−U , for i ∈ {1, 2}. If
dimV1 < dimV2, then

HomK−U (I(V1,ϕ1)(n1), I(V2,ϕ2)(n2)) = 0.

Proof. By adjunction and Proposition 6.1.9, the proof reduces to showing that

TV2,ϕ2(H
∗(V1)(ϕ1)) = 0.

It is a standard calculation to show that

TV2,ϕ2(H
∗(V1)(ϕ1)) ∼= H∗(V )⊗ FHomR(K)((V2,ϕ2),(V1,ϕ1)).

Proposition 2.2.3 shows that HomR(K)((V2, ϕ2), (V1, ϕ1)) = ∅, since dimV1 < dimV2.
This completes the proof. �
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7. Bounds on injective resolutions

Injective envelopes exist in the category K−U and, if M is an object of Kfg−U ,
the injective envelope will be of the form⊕

λ∈L

Ebλλ

where {Eλ|λ ∈ L } is a set of representatives of the isomorphism classes of indecom-
posable injectives in Kfg−U , the bλ are �nite natural numbers which are non-zero
for only �nitely many λ. (Cf. Corollary 3.1.5).

The aim of this section is to provide information on the injective envelope of an
object of Kfg−U in terms of invariants from commutative algebra. For the purposes
of this paper, it is su�cient to work with embeddings into injectives of the form⊕

i∈I I(Vi,ϕi)(ni), where (Vi, ϕi) ∈ R(K). It should be noted, however, that the
injective objects I(V,ϕ)(n) are not indecomposable in general, so that the resolutions
constructed using Corollary 6.2.2 will usually not be minimal.

7.1. Transcendence degree for unstable algebras. The results of Henn, Lannes
and Schwartz [11, Part II] show that the transcendence degree of a Noetherian un-
stable algebra can be interpreted in terms of the unstable algebra structure.

Theorem 7.1.1. [11, Section 7] The transcendence degree TrDeg(K) of K is

TrDeg(K) = sup{dimV |(V, ϕ) ∈ R(K)}.

The Dickson invariants play a fundamental rôle in the theory of Noetherian
unstable algebras, by the work of Henn, Lannes and Schwartz. The main result is
given in the appendix by Lannes to the paper of Bourguiba and Zarati [2], whose
notation is adopted here.

Namely, let Pn denote the polynomial subalgebra of H∗(Fn) and let Dn denote

the Dickson invariants Dn := P
GLn(F)
n , which is a polynomial algebra F[c1, . . . , cn].

For s a natural number, let Dn,s denote the unstable algebra Φs(Dn), where Φ :
U → U is the functor de�ned in [20, Section 1.7]. The algebra Dn,s identi�es with
the subalgebra of Dn on the ps-th powers of the elements of Dn.

Theorem 7.1.2. [2, Theorem A.1] Let K be a Noetherian unstable algebra of tran-
scendence degree n. Then

(1) there exists a natural number s and a monomorphism of unstable algebras
ι : Dn,s → K for which K is a �nitely generated Dn,s-module;

(2) if ι′ : Dn,t → K is a morphism of unstable algebras such that K is a �nitely
generated Dn,t-module, then ι′ is injective and there exists an integer u ≥ s, t
such that the restrictions of ι, ι′ to Dn,u coincide.

Notation 7.1.3. For ι : Dn,s ↪→ K a monomorphism of unstable algebras for which
K is a �nitely generated Dn,s-module (so that TrDeg(K) = n), let ωι denote the

image of the generator cp
s

n .

The localization inverting the multiplicative set generated by ωι is a standard
technique (Cf. the paper on algebraic Smith theory, [14]).

Lemma 7.1.4. Let (V, ϕ) be an object of R(K) with dimV < TrDeg(K) and n
be a natural number. Then

I(V,ϕ)(n)[ω−1
ι ] = 0.

Proof. By Proposition 6.1.9 and the exactness of the localization functor (−)[ω−1
ι ],

it su�ces to prove that ΣkH∗(V )(ϕ)[ω−1
ι ] = 0. Moreover, the suspension functor

commutes with localization, so it su�ces to treat the case k = 0. The hypothesis
on V implies that ϕ(ωι) = 0, by Theorem 7.1.2, hence the result follows. �
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7.2. Transcendence degree for modules. There is a notion of transcendence
degree of an object of K−U , de�ned in terms of the structure of the underlying
unstable module, which is implicit in the work of Henn, Lannes and Schwartz, [12].
For the purposes of this paper, it is su�cient to use the following notion, de�ned in
terms of the structure in K−U .

De�nition 7.2.1. Let K be a Noetherian unstable algebra.

(1) [10, De�nition 2.8] The T -support of M is the set of objects of R(K):

T−Supp(M) := {(V, ϕ) ∈ Obj R(K)|TV,ϕM 6= 0}.
(2) Let M be an object of Kfg−U ; the K−U -transcendence degree of M is

TrDegK−U M := sup{dimV |(V, ϕ) ∈ T−Supp(M)}.

This notion of K−U -transcendence degree behaves well under restriction and
induction.

Proposition 7.2.2. Let α : K → L be a morphism of Noetherian unstable algebras
for which L is a �nitely generated K-module andM , N be objects of Kfg−U , Lfg−U
respectively. Then the following equalities hold:

(1) TrDegK−U (α∗N) = TrDegL−U N ;
(2) TrDegL−U (L⊗K M) = TrDegK−U M.

Proof. The �rst statement follows by a straightforward argument using the identi-
�cation

TV,ϕ(α∗N) =
⊕

(V,ψ)∈R(α)−1(V,ϕ)

TV,ψN,

for (V, ϕ) ∈ R(K).
For the second statement, consider (V, ψ) ∈ R(L) and its image R(α)(V, ψ) =

(V, ψα). There is an identi�cation

TV,ψ(L⊗K M) ∼= TV,ψL⊗TV,ψαK TV,ψαM.

Hence, if TV,ψ(L⊗KM) is non-trivial, so is TV,ψαM . For the converse, the commu-
tative triangle

K
α //

ψα

��

L

ψ||yy
yy

yy
yy

y

H∗(V )

induces morphisms of (�nitely generated) Boolean algebras

T 0
V,ψαK → T 0

V,ψL→ F(1)

by adjunction, with non-trivial composite. Hence the unit provides a section F η→
T 0
V,ψαK to the composite in the category of Boolean algebras.
Suppose that TV,ψαM 6= 0 and let d be the minimal degree in which TV,ψαM is

non-trivial, so that there is an isomorphism:

T dV,ψ(L⊗K M) ∼= T 0
V,ψL⊗T 0

V,ψαK
T dV,ψαM.

The morphisms (1) induce a morphism

T 0
V,ψL⊗T 0

V,ψαK
T dV,ψαM → T dV,ψαM

which admits a section induced by η and is therefore surjective. It follows that
T dV,ψ(L⊗K M) is non-trivial, which concludes the proof. �

De�nition 7.2.3. Let M be an object of Kfg−U . The annihilator ideal AnnK(M)
is the graded ideal {k ∈ K | km = 0, ∀ ∈M}.

The following Lemma is standard.
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Lemma 7.2.4. The annihilator ideal AnnKM is closed under the action of the
Steenrod algebra, hence K := K/AnnKM is naturally a Noetherian unstable algebra
and the canonical projection α : K → K is a morphism of unstable algebras.

Moreover, M ∼= α∗M where M is the object of Kfg−U induced by M .

De�nition 7.2.5. ForM an object of Kfg−U , let TrDegKM denote the transcen-

dence degree of the Noetherian algebra K := K/AnnKM .

Proposition 7.2.6. Let M be an object of Kfg−U . There is an equality

TrDegK−U M = TrDegKM.

Proof. Let K and M be as in Lemma 7.2.4, so that M identi�es with α∗M . Propo-
sition 7.2.2 implies that TrDegK−U M = TrDegK−U M .

The results of Henn, Lannes and Schwartz recalled in Theorem 7.1.1 imply the
inequality

TrDegK−U M ≤ TrDegK = TrDegKM,

hence it su�ces to prove the reverse inequality.
Consider the element ωι de�ned in Notation 7.1.3 with respect to a chosen em-

bedding ι : Dn,s ↪→ K. The fact that M is a Noetherian module and the de�nition

of K implies that the localization M [ω−1
ι ] 6= 0 is non-trivial.

There exists an embedding in K−U of the form

M ↪→
⊕
i∈I

I(Vi,ϕi)(ai)

such that, for each i ∈ I , the component M ↪→ I(Vi,ϕi)(ai) is non-trivial. The

transcendence degree of K is n, hence dimVi ≤ n, for each n.
By the exactness of localization, this implies that there exists an i ∈ I for which

I(Vi,ϕi)(ai)[ω
−1
ι ] 6= 0. Lemma 7.1.4 implies that, for this i, dimVi = n. It follows

that TrDegK−U M is equal to n, as required. �

7.3. Depth. Bourguiba and Zarati showed the fundamental rôle of the invariant
depth in studying modules over unstable algebras. Namely, a key ingredient in
Bourguiba and Zarati's proof of the Landweber-Stong conjecture is [2, Proposition
3.2.1], which gives information on the injective envelope of an object of H∗(V )fg−U
in terms of its depth.

This result implies the following:

Proposition 7.3.1. Let 0 6= N ↪→M be a monomorphism of Kfg−U , then

TrDegKN = TrDegK−U N ≥ DepthKM.

Proof. The equality TrDegKN = TrDegK−U N is given by Proposition 7.2.6.
Hence it su�ces to show that TrDegK−U N ≥ DepthKM .

The result can be reduced to the case K = H∗(V ) by the standard argument, as
in [2, Section 4]. Namely, there exists a monomorphism Dn,s ↪→ K, for s a natural
number and n the transcendence degree of K. The inclusion Dn,s ↪→ H∗(Fn) is
faithfully �at and hence there is an induced monomorphism

0 6= H∗(Fn)⊗Dn,s N ↪→ H∗(Fn)⊗Dn,s M.

Moreover, TrDegH∗(Fn)−U (H∗(Fn)⊗Dn,s N) = TrDegK−U N , by applying Propo-

sition 7.2.2 to the inclusions H∗(Fn)←↩ Dn,s ↪→ K and

DepthKM = DepthH∗(Fn)(H
∗(Fn)⊗Dn,s M),

as in the proof of [2, Proposition 2.4.3]. Hence, it su�ces to prove the result for
K = H∗(Fn).
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The results of Bourguiba and Zarati, notably [2, Proposition 3.2.1], imply that
there exists an embedding in K−U of the form:

M ↪→
⊕
i∈I

I(Vi,ϕi)(mi)

in which dimVi ≥ DepthKM , for each i ∈ I . Hence there exists a monomorphism
inKfg−U of the form N ↪→

⊕
i∈I I(Vi,ϕi)(mi) and therefore a non-trivial morphism

N → I(Vi,ϕi)(mi), for some i ∈ I . It follows that (Vi, ϕi) ∈ T−Supp(N), so that
TrDegK−U N ≥ dimVi ≥ DepthKM , as required. �

7.4. The invariant d0. The previous results concern which objects of R(K) index
injectives in the �rst term of an injective resolution of an object of Kfg−U . It is also
necessary to have an understanding of the invariant d0M in terms of the beginning
of the resolution.

Proposition 7.4.1. The integer d0M coincides with the least integer t for whichM
admits an embedding of the form M ↪→

⊕
i∈I I(Vi,ϕi)(ai) in Kfg−U , where ai ≤ t,

for each i and (Vi, ϕi) ∈ R(K).

Proof. The result is proved by an induction upon d0M . The initial step is the
proof that an object of Kfg−U which is reduced embeds in an injective of the
from

⊕
i I(Vi,ϕi)(0) (which is reduced). The inductive step is a straightforward

generalization of the initial step using the horseshoe lemma; the details are left to
the reader. �

7.5. Conclusion. The previous results combine to give the following result:

Theorem 7.5.1. Let K be a Noetherian unstable algebra and M be an object of
Kfg−U , then there exists an embedding in Kfg−U

M ↪→
⊕
i∈I

I(Vi,ϕi)(ni),

where
I is a �nite indexing set and

(1) ni ≤ d0M , with equality for some i;
(2) (Vi, ϕi) ∈ Obj R(K) and

DepthKM ≤ dimVi ≤ TrDegKM.

Proof. Consider some embedding M ↪→
⊕

i∈I I(Vi,ϕi)(ni) as provided by Propo-
sition 7.4.1, so that ni ≤ d0M , for each i ∈ I . This embedding factors across
the inclusion of the direct sum of the factors indexed by i such that dimVi ≤
TrDegKM = TrDegK−U M , by the de�nition of TrDegK−U M .

Finally consider the projection onto the factors with dimVi ≥ DepthKM and
let N be the kernel of this projection. By construction, the unstable module N ∈
Obj Kfg−U embeds in a �nite direct sum of injectives of the form I(W,ψ)(n), with
dimW < DepthKM . This implies that TrDegK−U N < DepthKM . Hence,
Proposition 7.3.1 implies that N = 0, which concludes the proof. �

8. The nilpotent filtration and induction

8.1. General results. In order to simplify the theory, the following restriction will
be placed on the base-change morphism.

Hypothesis 8.1.1. Let α : K → L be a morphism of unstable algebras where K,L
are connected, Noetherian unstable algebras such that α makes L a �at, �nitely
generated K-module.

Remark 8.1.2.
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(1) The restriction to considering connected unstable algebras is not signif-
icant, since one can reduced to this situtation by passage to connected
components.

(2) The hypothesis implies that L is a �nitely generated free K-module (Cf.
[18, Proposition A.1.5]). In particular, L is a faithfully �at K-module.

Lemma 8.1.3. Let α : K → L be a morphism of unstable algebras which satis�es
Hypothesis 8.1.1 and let M be an object of Kfg−U . There is an exact sequence in
Kfg−U :

0→M → L⊗K M → L⊗K L⊗K M.

In particular d0M ≤ d0(L⊗KM) and d1M ≤ max{d1(L⊗KM), d0(L⊗KL⊗KM)}.

Proof. The exact sequence is provided by faithfully �at descent. The inequalities
follow from Proposition 4.2.3. �

The hypothesis that L is K-�at implies that an embedding in Kfg−U supplied
by Theorem 7.5.1 induces a monomorphism in Lfg−U

L⊗K M ↪→
⊕
i∈I

L⊗K I(Vi,ϕi)(ni).

Lemma 8.1.4. Let (V, ϕ) be an object of R(K) and n be a natural number, then

d0(L⊗K I(V,ϕ)(n)) = n+ d0(L⊗K H∗(V )(ϕ)),

where H∗(V )(ϕ) ∈ Kfg−U is the object H∗(V ) considered as a K-module via ϕ.

Proof. The result follows from the basic properties of the invariant d0 recalled in
Proposition 4.2.3. There is an inclusion Σn(L ⊗K H∗(V )(ϕ)) ↪→ L ⊗K I(V,ϕ)(n),
which implies that d0(L⊗K I(V,ϕ)(n)) ≥ n+d0(L⊗KH∗(V )(ϕ)). For the reverse in-
equality, Proposition 6.1.9 provides a �ltration of I(V,ϕ)(n) with �ltration quotients

of the form ΣkH∗(V )(ϕ), with 0 ≤ k ≤ n; again the result follows from Proposition
4.2.3. �

As a consequence, one obtains the weak general bound given by:

Proposition 8.1.5. Let M ↪→
⊕

i∈I I(Vi,ϕi)(ni) be a monomorphism in Kfg−U ,
where 0 ≤ ni ≤ d0M , then

d0(L⊗K M) ≤ d0M + max
i∈I
{d0(L⊗K H∗(Vi)(ϕi))}.

Proof. The result follows from Lemma 8.1.4, using Proposition 4.2.3 to provide the
inequality. �

8.2. Base change for H∗(V )(ϕ). Proposition 8.1.5 reduces considerations to the
study of d0(L⊗K H∗(V )(ϕ)), for (V, ϕ) an object of R(K).

Lemma 8.2.1. The object L ⊗K H∗(V )(ϕ) is an unstable algebra which belongs
to H∗(V )↓K and de�nes an object of H∗(V )fg−U with underlying H∗(V )-module
which is free.

Proof. Straightforward; the hypothesis upon K ↪→ L implies that L is a �nitely
generated free K-module, which implies the �nal statement. �

Lemma 8.2.2. The adjunction unit induces a monomorphism in H∗(V )↓K :

L⊗K H∗(V )(ϕ) ↪→ H∗(V )⊗ FixV (L⊗K H∗(V )(ϕ)).

Proof. The existence of the morphism follows from the adjunction properties of FixV
when considering the categoryH∗(V )↓K (Cf. Proposition 5.3.1). To prove that the
morphism is injective, it su�ces to show injectivity in the category H∗(V )−U . This
follows from Corollary 5.5.3, using Lemma 8.2.1 which shows that L⊗K H∗(V )(ϕ)
satis�es the hypotheses. �
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The unstable algebra FixV (L ⊗K H∗(V )(ϕ)) has total �nite dimension; recall
that ||X|| denotes inf{t | Xt+1 = 0}.

Proposition 8.2.3. Suppose that α : K → L satis�es hypothesis 8.1.1 and (V, ϕ)
is an object of R(K), then

d0(L⊗K H∗(V )(ϕ)) = ||FixV (L⊗K H∗(V )(ϕ))||.

Proof. Lemma 8.2.2 implies that there is an inequality d0(L ⊗K H∗(V )(ϕ)) ≤
||FixV (L⊗K H∗(V )(ϕ))||, hence it remains to establish the reverse inequality.

Corollary 5.4.3 identi�es FixV (L ⊗K H∗(V )(ϕ)) with lfTV,ι(L ⊗K H∗(V )(ϕ)),
hence lfTV (L ⊗K H∗(V )(ϕ)) is non-zero in degree ||FixV (L ⊗K H∗(V )(ϕ))||. The
result follows from Corollary 4.3.4, which expresses the invariant d0 in terms of lf
and the T -functor. �

This result lends itself to explicit calculation using the identi�cation of the functor
Fix, via Proposition 5.2.2.

Lemma 8.2.4. There is an isomorphism

FixV (L⊗K H∗(V )(ϕ)) ∼= TV L⊗TVK F ∼= TV,ϕL⊗TV,ϕK F

where F is a TVK-module via the adjoint to ϕ, TVK → F.

Proof. Proposition 5.2.2 identi�es FixV (L⊗KH∗(V )(ϕ)) with F⊗TVH∗(V )⊗TV (L⊗K
H∗(V )(ϕ)), where F is a TVH

∗(V )-module via ι : TVH∗(V ) → F. The �rst iso-
morphism follows by properties of the tensor product and the identi�cation of the

composite TVK
TV ϕ→ TVH

∗(V ) → F with ϕ, which is formal. The second isomor-
phism follows by passage to the connected component TV,ϕK. �

Combining Proposition 8.1.5, Proposition 8.2.3 and Lemma 8.2.4, one obtains
the following result.

Corollary 8.2.5. Let M ↪→
⊕

i∈I I(Vi,ϕi)(ai) be a monomorphism in Kfg−U ,
where 0 ≤ ai ≤ d0M , then

d0(L⊗K M) ≤ d0M + max
i∈I
{||TVi,ϕiL⊗TVi,ϕiK F||}.

8.3. Generalities on calculating Fix. The following result of Dwyer and Wilk-
erson [5] illustrates that the calculation of the object Fix as a graded vector space
(which is su�cient for the current purposes) is accessible.

Proposition 8.3.1. [5, Proposition 4.1] Let K be an unstable algebra and M be
an object of K−U which is free as a K-module. Then, for any (V, ϕ) ∈ S (K), the
unstable module TV,ϕM in TV,ϕK−U is free as an TV,ϕK-module.

This result applies, in particular, to the unstable algebra L, considered as an
object of K−U , under Hypothesis 8.1.1.

Corollary 8.3.2. Let (V, ϕ) be an object of R(K). Each connected component of
the unstable algebra TV,ϕL is a free, �nitely generated module over TV,ϕK.

Proof. Proposition 8.3.1 implies that TV,ϕL is a free, �nitely generated module over
TV,ϕK. Each connected component is a TV,ϕK-module, which is �at, since it is
projective. The algebras and modules are graded and connected, hence the module
is free. �
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8.4. Examples associated to rings of invariants. To maintain clarity of expo-
sition, the prime p is taken to be 2, so that F is the �eld with two elements. Hence,
H∗(V ) is the symmetric algebra on the dual V ] of V .

Let G be a �nite subgroup of Aut(V ), then G acts on the right on V ] and hence
acts by morphisms of unstable algebras upon H∗(V ) on the right. The ring of
invariants H∗(V )G is a Noetherian unstable algebra (Cf. [18]).

We are interested in the case where H∗(V )G is a polynomial algebra. Dwyer-
Wilkerson [5] attribute the following result to Serre; it is an equi-characteristic
analogue of the Shephard-Todd, Chevalley theorem [18, Theorem 7.1.4]. Recall
that a subgroup G of Aut(V ) is generated by pseudore�ections if it is generated by
the pseudore�ections which it contains. (A pseudore�ection is an element of �nite
order such that the image of w − 1V has rank one).

Proposition 8.4.1. If the algebra H∗(V )G is polynomial, then G is generated by
pseudore�ections.

Throughout this section, the following Hypothesis is imposed.

Hypothesis 8.4.2. Let G be a �nite subgroup of Aut(V ) for which H∗(V )G is a
polynomial algebra.

The hypothesis has important consequences; for instance, the following result is
standard.

Proposition 8.4.3. [18, Corollary 4.5.4, Theorem 5.4.1] Suppose that the group
G ⊂ Aut(V ) satis�es hypothesis 8.4.2 and that the polynomial generators have
degrees di, 1 ≤ i ≤ n, where n = dimV . Then the following properties are satis�ed:

(1)
∏n
i=1 di = |G|.

(2) The algebra H∗(V ) ⊗H∗(V )G F is a Poincaré duality algebra of dimension
(Σni=1di)− n.

Remark 8.4.4. The terminology algebra of coinvariants is used for H∗(V )⊗H∗(V )GF
in invariant theory (Cf. [18] for example).

The calculation of the T -functor on rings of invariants is straightforward (Cf.
[20, Proposition 3.9.8] or [5, Proof of 1.4]).

Proposition 8.4.5.

(1) The category R(H∗(V )G) has objects (W,ϕ), for W an F2-vector space and
ϕ ranging ranges over the set of G-orbits G\Mono(W,V ).

(2) The component TW,ϕ(H∗(V )G) is isomorphic to the algebra of invariants
H∗(V )Gϕ , where Gϕ denotes the pointwise stabilizer in G of a representative
in Mono(W,V ) of the orbit ϕ.

(3) The unstable algebra TW,ϕ(H∗(V )) is isomorphic to the unstable algebra∏
[Gϕ\G]H

∗(V ), where [Gϕ\G] denotes the set of cosets.

(4) The monomorphism of unstable algebras TW,ϕ(H∗(V )G) ↪→ TW,ϕ(H∗(V ))
has component indexed by the coset Gϕg given by the monomorphism of
unstable algebras

H∗(V )Gϕ ↪→ H∗(V )
.g→ H∗(V )

where .g is induced by the right action of Aut(V ).

Dwyer and Wilkerson [5] prove that the T -functor preserves �nitely generated
polynomial algebras (after passage to connected components). In particular, [5,
Theorem 1.4] shows that the rings of invariants H∗(V )Gϕ are also polynomial alge-
bras, under the given hypothesis upon G.
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Corollary 8.4.6. Suppose that the group G satis�es hypothesis 8.4.2 and let (W,ϕ)
be an object of R(H∗(V )G), then

d0(H∗(V )⊗H∗(V )G H
∗(W )) = ||H∗(V )⊗H∗(V )Gϕ F||

where the morphism of unstable algebras H∗(V )Gϕ → H∗(W ) is induced by a
monomorphism W ↪→ V in the orbit ϕ.

Proof. The Corollary is proved by applying Proposition 8.2.3 and Lemma 8.2.4 in
the context of the invariant rings, using Proposition 8.4.5 to reduce to the consid-
eration of a single component. �

Example 8.4.7. There are two examples of groups G ⊂ Aut(V ) which are of
particular interest, namely the case G = Aut(V ), which corresponds to the Dickson
invariants, and the case G = Sn, where n = dimV and Sn acts by permuting
a choice of basis. In both these examples, the associated rings of invariants are
polynomial.

9. Symmetric invariants and induction

This section specializes the considerations of the section 8.4 to the case where the
group G is the symmetric group. Throughout the section, the prime p is taken to
be two; the monomorphism of unstable algebras K ↪→ L is taken to be the inclusion
of the algebra of invariants

H∗(V )Sn ↪→ H∗(V )

where V = Fn for a �xed positive integer n, with Sn acting upon Fn by permuting
a given basis {y1, . . . , yn}.

9.1. Pointwise stabilizers of subspaces. The purpose of this section is to pro-
vide an analysis of the pointwise stabilizer of a subspace W ≤ V . The main result
of the section is Proposition 9.1.5. The precision provided by Lemma 9.1.4 is im-
portant.

Let V = Fn be as above, with chosen basis {y1, . . . , yn}, considered as a set Bn.
There is a bijection between vectors of V and subsets of Bn, since F is the �eld with
two elements. Under this bijection, a subset T ⊂ Bn de�nes a vector vT and the
addition of the vector space corresponds to the law

vT1 + vT2 = vT1∪T2\T1∩T2 .

Lemma 9.1.1. The isotropy group of the vector vT is the subgroup Aut(T ) ×
Aut(T ′) ⊂ Sn, where T

′ denotes the complement of T in Bn.

Proof. Straightforward. �

The pointwise stabilizer in Sn of a subspace W ⊂ V is the intersection of the
isotropy groups of a basis of the space W . A basis of a vector subspace W of
dimension d is de�ned by a set {T1, . . . , Td} of subsets of Bn (which satis�es a
suitable condition which corresponds to linear independence).

De�nition 9.1.2. For {T1, . . . , Td} a set of subsets of Bn, let T denote the subset
of non-empty subsets of Bn which are of the form

d⋂
i=1

T±i

where T±i denotes either Ti or its complement T ′i .

Lemma 9.1.3.

(1) If X,Y are distinct elements of T , then X ∩ Y = ∅.
(2)

⋃
X∈T X = Bn.
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(3) The set T depends only upon the vector space which is generated by the
vectors vTi .

Proof. The �rst and second statements are straightforward. To prove the third
statement it is su�cient to check that replacing the pair {T1, T2} by {T1, (T1∩T ′2)∪
(T ′1 ∩ T2)} does not change T . This is straightforward. �

Hence, the above construction associates to the subspace W a partition of the
set Bn, corresponding to a set TW of subsets of Bn.

Lemma 9.1.4. The set TW has cardinality at least dimW .

Proof. The proof is by induction upon dimW . Consider U ⊂ W of codimension
one; the sets of TW are of the form X ∩T or X ∩T ′, where T represents a vector of
W\U and X is an element of TU . For each X, at least one of these is non-trivial,
hence |TW | ≥ |TU |. Thus, it remains only to consider the case when |TU | = dimU .
In this case, it is straightforward to check that U = 〈vX | X ∈ TU 〉. Suppose that
there is equality |TW | = |TU |; then T is the disjoint union of the sets X in TU such
that T ∩X 6= ∅. This implies that the vector vT lies in W , which contradicts the
fact that U is of codimension one. Hence |TW | > |TU | = dimU , which proves the
result. �

A monomorphism of F2-vector spaces, c : W ↪→ V , is �xed by the left action
of Sn if and only if the subspace c(W ) is stabilized pointwise by the action of Sn

upon V .

Proposition 9.1.5. The pointwise stabilizer SW ⊂ Sn of the subspace W ≤ V is
the subgroup

SW
∼=

∏
X∈TW

Aut(X) ⊂ Sn.

Proof. The result follows from Lemma 9.1.1 by an analysis of the intersections of
the isotropy groups associated to a basis. The details are left to the reader. �

9.2. Invariants for products of symmetric groups. The invariants and the
coinvariants corresponding to the action of Sn upon V = Fn are well under-
stood. The ring of invariants H∗(V )Sn is a polynomial algebra on the elemen-
tary symmetric functions σi(x1, . . . , xn), 1 ≤ i ≤ n, where {xj} denotes the dual
basis for V ] associated to the basis {yj}. In particular |σi| = i and the alge-
bra F[xj | 1 ≤ j ≤ n] ⊗F[σj | 1≤j≤n] F is a Poincaré duality algebra of dimension

Σnj=1(j − 1) = 1
2n(n− 1), by Proposition 8.4.3.

These considerations can be generalized to subgroups of the symmetric group
which are of the form appearing in Proposition 9.1.5. There is a Künneth formula
for the calculation of rings of invariants: if Gi is a subgroup of Aut(Vi), for i ∈ {1, 2}
then G1 ×G2 is a subgroup of Aut(V1 ⊕ V2) and there are isomorphisms

H∗(V1 ⊕ V2)G1×G2 ∼= (H∗(V1)⊗H∗(V2))G1×G2 ∼= H∗(V1)G1 ⊗H∗(V2)G2 .

This formula extends by induction to arbitrary direct sums of vector spaces Vi and
groups Gi ⊂ Aut(Vi).

Notation 9.2.1. If A is a Poincaré duality algebra over F (see [18, Section 5.4]),
write ||A|| for the dimension of A, which is the degree of the fundamental class.

Remark 9.2.2. If A is an unstable algebra over the Steenrod algebra which is a
Poincaré duality algebra, the two usages of ||A|| which have been introduced coin-
cide, so this notation is consistent when applied to rings of invariants.

Lemma 9.2.3. Let Gi ⊂ Aut(Vi), 1 ≤ i ≤ N be subgroups, where Vi is an elemen-
tary abelian p-group for each i. Then the following properties hold.
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(1) The ring of invariants is polynomial.
(2) The Poincaré duality algebra H∗(

⊕
i Vi)⊗H∗(L

i Vi)
×iGi F has dimension

||H∗(
⊕
i

Vi)⊗H∗(L
i Vi)

×iGi F|| = ΣNi=1||H∗(Vi)⊗H∗(Vi)Gi F.||

Proof. Straightforward. �

Proposition 9.1.5 identi�es the pointwise stabilizer SW ofW ≤ Fn. The previous
results therefore imply the following.

Proposition 9.2.4. Let W ≤ V = Fn be a subspace. The Poincaré duality algebra
H∗(V )⊗H∗(V )SW F has dimension:

||H∗(V )⊗H∗(V )SW F|| = ΣX∈TW

1
2
|X|(|X| − 1).

For the application, it is necessary to have a weak quantitative understanding of
the sum above in terms of the number of elements D = |TW | of the set TW .

Notation 9.2.5. Choose a bijection between the elements of TW and {1, . . . , D} and
write Xj for the element of TW indexed by j ∈ {1, . . . , D}. The cardinality |Xj |
will be written mj .

There is an equality

ΣDj=1

1
2
mj(mj − 1) =

1
2
n(n− 1)− Σ1≤j<k≤D mjmk,

where n = ΣDj=1mj . The natural numbers mj are non-zero, hence n ≥ D with
equality if and only if mj = 1 for each j.

Lemma 9.2.6. There is an inequality

ΣDj=1

1
2
mj(mj − 1) ≤ 1

2
n(n− 1)− 1

2
D(D − 1)

with equality if and only if mj = 1 for each j, when the expression equals zero.

Proof. Straightforward. �

9.3. Application to the invariant d0. Corollary 8.4.6 expresses

d0(H∗(V )⊗H∗(V )G H
∗(W )),

for (W,ϕ) an object of R(H∗(V )G), in terms of the dimension of the appropriate
Poincaré duality algebra. This result applies in the case V = Fn, G = Sn where ϕ
is represented by a monomorphism W ↪→ Fn. By abuse of notation, we identify W
with its image in Fn, so that the isotropy group Gϕ can be identi�ed with SW .

Corollary 9.3.1. Let (W,ϕ) be an object of R(H∗(Fn)Sn). There is an inequality:

d0(H∗(Fn)⊗H∗(Fn)Sn H
∗(W )) ≤ 1

2
n(n− 1)− 1

2
dimW (dimW − 1).

Proof. The result follows from Corollary 8.4.6 by applying Proposition 9.2.4 to-
gether with the inequality provided by Lemma 9.2.6, using Lemma 9.1.4 which
implies that dimW ≤ D = |TW |. �

Corollary 9.3.2. LetM ↪→
⊕

i∈I I(Wi,ϕi)(ai) be a monomorphism in H∗(Fn)Sn

fg −U ,
where 0 ≤ ai ≤ d0M , and d ≤ dimWi ≤ TrDegU M . Then

d0M ≤ d0(H∗(Fn)⊗H∗(Fn)Sn M) ≤ d0M +
1
2
n(n− 1)− 1

2
d(d− 1).

Proof. The result is a consequence of Corollary 9.3.1 and Proposition 8.1.5. �
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10. Group cohomology with F2-coefficients

The cohomology of a �nite group with coe�cients in a prime �eld Fp is an unsta-
ble algebra, which is Noetherian by the fundamental result of Venkov [21] and, by an
algebraic approach, Evens [6]. The group cohomology is therefore amenable to study
as a module over the Steenrod algebra; in particular the invariants d0H

∗(BG; Fp)
and d1H

∗(BG; Fp) are de�ned and are �nite integers.
Henn, Lannes and Schwartz used the methods of Quillen [19] together with results

of Du�ot on smooth toral actions [4] to provide an upper bound on d0 and d1 [12,
Theorem 0.5]. The calculation of this bound involves an induction argument, which
can lead to this bound from being far from sharp, even when the bound derived
from Du�ot is sharp. The algebraic considerations of this paper shed some light on
this.

These results have analogues for the equivariant cohomology of a �nite G CW-
complex. For simplicity of presentation, this is not considered here.

10.1. Methods of Quillen and Henn-Lannes-Schwartz. Quillen [19] provided
an understanding of the algebraic variety corresponding to H∗(BG; Fp). These
results have an elegant interpretation in terms of algebras over the Steenrod algebra,
due to Lannes, using the T -functor (see [15] and [12]).

Notation 10.1.1. In this section, the group cohomology H∗(BG; Fp) is denoted sim-
ply by H∗(BG); in particular, the cohomology H∗(V ) of an elementary abelian
p-group V is written as H∗(BV ).

There are two fundamental results on the structure of the ring H∗(BG) which
are relevant here, due to Quillen and Du�ot respectively.

Theorem 10.1.2. Let G be a �nite group.

(1) [19] The transcendence degree of the unstable algebra H∗(BG) is equal to
the maximal rank of an elementary abelian p-subgroup of G.

(2) [3] The depth of the algebra H∗(BG) is at least the rank of the maximal
elementary abelian p-subgroup of the centre of G.

At the prime two, rather than considering an embedding of G into a unitary
group, it is usual to consider an embedding in an orthogonal group. (Recall that
the orthogonal group O(n) is a compact Lie group of dimension 1

2n(n− 1)).
Let G be a �nite group and choose an embedding G ↪→ O(n) in an orthogonal

group. Let T be a maximal torus, which is of rank n, and let V be the 2-torus in
T of elements of order 2.

There are induced morphism of Noetherian unstable algebras

H∗(BO(n)) //

��

H∗(BV )

H∗(BG),

where cohomology is taken with F2 coe�cients. The algebra H∗(BV ) is the sym-
metric algebra and H∗(BO(n)) identi�es with the symmetric invariants, via the
canonical inclusion. The methods of Venkov imply that H∗(BG) is a �nitely gen-
erated module over the algebra H∗(BO(n)).

There is a morphism of �brations

O(n)/V // EG×G (O(n)/V )

��

// BG

��
O(n)/V // BV // BO(n).
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The right hand square induces a morphism of unstable algebras

H∗(BV )⊗H∗(BO(n)) H
∗(BG)→ H∗(EG×G (O(n)/V )),

which an isomorphism, by the arguments of Quillen [19]. (Cf. Henn, Lannes and
Schwartz [12, Section II.2], especially Example 2.2 and Proposition 2.4).

Under these hypotheses, writing F for O(n)/V , and letting X be a G-space, the
diagram of projections

F × F ×X
p1 //
p2

// F ×X // X

induces an equalizer diagram in the category of unstable algebras

H∗
G(X) // H∗

G(F ×X) //// H∗
G(F × F ×X),

where H∗
G denotes Borel cohomology H∗(EG×G −). The equalizer corresponds to

that given by faithfully �at descent, as in Lemma 8.1.3.
Henn, Lannes and Schwartz use the equalizer diagram to obtain information

on the invariants d0H
∗
G(X), d2H

∗
G(X) by considering the invariants d0, d1 for the

algebras H∗
G(F × X) and H∗

G(F × F × X) which are accessible by the geometric
techniques of Du�ot [4].

In the case X = ∗, this gives d0H
∗(BG) ≤ dimO(n) = 1

2n(n − 1); via the
inequality

d0(H∗(BV )⊗H∗(BO(n) H
∗(BG)) ≤ dimO(n)

by using the isomorphism of unstable algebras H∗(BV ) ⊗H∗(BO(n)) H
∗(BG) ∼=

H∗(EG ×G (O(n)/V )). The latter unstable algebra is isomorphic (as an unstable
algebra) to the Borel cohomology algebra H∗

V (G\O(n)) which is analysed by the
methods of Du�ot for smooth toral actions.

10.2. Application of the induction results. The algebraic result Corollary 9.3.2
can be applied to give information on the relationship between the invariants d0 of
the unstable algebras H∗(BG) and H∗(EG ×G (O(n)/V )) ∼= H∗(BV ) ⊗H∗(BO(n))

H∗(BG), using the notation of the previous section.

Corollary 10.2.1. Let G be a �nite group equipped with an embedding G ↪→ O(n)
and d be the depth of H∗(BG). There are inequalities

d0H
∗(BG) ≤ d0(H∗(BV )⊗H∗(BO(n))H

∗(BG)) ≤ d0H
∗(BG)+

1
2
n(n−1)−1

2
d(d−1).

Proof. The result is a restatement of Corollary 9.3.2, using the depth via Theorem
7.5.1. �

Remark 10.2.2. An explicit lower bound for the depth in terms of the structure of
the group G is given by the Theorem of Du�ot [3] which is recalled in Theorem
10.1.2.

Example 10.2.3. There are two fundamental examples which shed light on the
content of Corollary 10.2.1.

(1) Take G = V the chosen 2-torus of O(n). Then H∗(BV ) is nil-closed, so
d0H

∗(BV ) = 0, and the depth is equal to the Krull dimension which is
n. The previous result corresponds to the fact that H∗(BV ) ⊗H∗(BO(n))

H∗(BV ) is reduced, which can be seen directly by algebraic methods. In
this case, the bound provided by Henn, Lannes and Schwartz using the
methods of Du�ot is as far from being sharp as possible.

(2) Let G be the symmetric group Sn, which embeds in O(n). It is known from
the work of Gunawardena, Lannes and Zarati [8] thatH∗(BSn) is nil-closed
when coe�cients are taken in F2, in particular the invariant d0 is trivial.
The inequality provided by the Theorem therefore recovers the bound for
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d0(H∗(BV ) ⊗H∗(BO(n)) H
∗(BSn)) which is given by Henn, Lannes and

Schwartz
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